1
|
Kihal N, Archambault MJ, Babych M, Nazemi A, Bourgault S. Probing the molecular determinants of the activation of toll-like receptor 2/6 by amyloid nanostructures through directed peptide self-assembly. SOFT MATTER 2024; 20:7821-7831. [PMID: 39225438 DOI: 10.1039/d4sm00638k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Amyloid fibrils are proteinaceous nanostructures known for their ability to activate the innate immune system, which has been recently exploited for their use as self-adjuvanted antigen delivery systems for vaccines. Among mechanisms of immunostimulation, the activation of the heterodimeric toll-like receptor 2/6 (TLR2/TLR6) by the cross-β-sheet quaternary conformation appears important. Nonetheless, the lack of control over the process of self-assembly and the polydispersity of the resulting supramolecular architectures make it challenging to elucidate the molecular basis of TLR2/TLR6 engagement by amyloid assemblies. In this context, we harnessed the effects of N- and C-terminal modifications of a short 10-mer β-peptide derived from the islet amyloid polypeptide (I10) to investigate the relationships between the morphology and physicochemical properties of amyloid assemblies and their TLR2/TLR6 activity. Chemical substitutions at the N- and C-termini of the I10 peptide, including addition of charged residues at the N-terminus and α-amidation of C-terminus, allowed the controlled formation of a diversity of architectures, including belt-like filaments, rigid nanorods as well as flat and twisted fibrils. These fully cytocompatible peptide nanostructures showed different potencies to activate TLR2/TLR6, which correlated with the charge exposed on the surface. These results further demonstrate the potent modulatory effect of N- and C-terminal electrostatic capping on the self-assembly of short synthetic β-peptides. This study also indicates that self-assembly into cross-β-sheet nanostructures is essential for the activation of the TLR2/TLR6 by amyloidogenic peptides, albeit the structural requirements of the engagement of this promiscuous immune receptor by the nanostructures remain challenging to precisely untangle.
Collapse
Affiliation(s)
- Nadjib Kihal
- Department of Chemistry, Université du Québec à Montréal. C.P.8888, Succursale Centre-Ville, Montréal, H3C 3P8, Canada.
- Quebec Network for Research on Protein Function, Engineering and Applications (PROTEO), Québec, Canada
- Quebec Centre for Advanced Materials, QCAM, Montreal, Canada
| | - Marie-Jeanne Archambault
- Department of Chemistry, Université du Québec à Montréal. C.P.8888, Succursale Centre-Ville, Montréal, H3C 3P8, Canada.
- Quebec Network for Research on Protein Function, Engineering and Applications (PROTEO), Québec, Canada
| | - Margaryta Babych
- Department of Chemistry, Université du Québec à Montréal. C.P.8888, Succursale Centre-Ville, Montréal, H3C 3P8, Canada.
- Quebec Network for Research on Protein Function, Engineering and Applications (PROTEO), Québec, Canada
| | - Ali Nazemi
- Department of Chemistry, Université du Québec à Montréal. C.P.8888, Succursale Centre-Ville, Montréal, H3C 3P8, Canada.
- Quebec Centre for Advanced Materials, QCAM, Montreal, Canada
| | - Steve Bourgault
- Department of Chemistry, Université du Québec à Montréal. C.P.8888, Succursale Centre-Ville, Montréal, H3C 3P8, Canada.
- Quebec Network for Research on Protein Function, Engineering and Applications (PROTEO), Québec, Canada
| |
Collapse
|
2
|
Zottig X, Al-Halifa S, Babych M, Quittot N, Archambault D, Bourgault S. Guiding the Morphology of Amyloid Assemblies by Electrostatic Capping: from Polymorphic Twisted Fibrils to Uniform Nanorods. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1901806. [PMID: 31268238 DOI: 10.1002/smll.201901806] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/31/2019] [Indexed: 06/09/2023]
Abstract
Peptides that self-assemble into cross-β-sheet amyloid structures constitute promising building blocks to construct highly ordered proteinaceous materials and nanoparticles. Nevertheless, the intrinsic polymorphism of amyloids and the difficulty of controlling self-assembly currently limit their usage. In this study, the effect of electrostatic interactions on the supramolecular organization of peptide assemblies is investigated to gain insights into the structural basis of the morphological diversities of amyloids. Different charged capping units are introduced at the N-terminus of a potent β-sheet-forming sequence derived from the 20-29 segment of islet amyloid polypeptide, known to self-assemble into polymorphic fibrils. By tuning the charge and the electrostatic strength, different mesoscopic morphologies are obtained, including nanorods, rope-like fibrils, and twisted ribbons. Particularly, the addition of positive capping units leads to the formation of uniform rod-like assemblies, with lengths that can be modulated by the charge number. It is proposed that electrostatic repulsions between N-terminal positive charges hinder β-sheet tape twisting, leading to a unique control over the size of these cytocompatible nanorods by protofilament growth frustration. This study reveals the high susceptibility of amyloid formation to subtle chemical modifications and opens to promising strategies to control the final architecture of proteinaceous assemblies from the peptide sequence.
Collapse
Affiliation(s)
- Ximena Zottig
- Chemistry Department, Université du Québec à Montréal, Montreal, Québec, H2L 2C4, Canada
- Quebec Network for Research on Protein Function, Engineering and Applications PROTEO, Québec, G1V 0A6, Canada
| | - Soultan Al-Halifa
- Chemistry Department, Université du Québec à Montréal, Montreal, Québec, H2L 2C4, Canada
- Quebec Network for Research on Protein Function, Engineering and Applications PROTEO, Québec, G1V 0A6, Canada
| | - Margaryta Babych
- Chemistry Department, Université du Québec à Montréal, Montreal, Québec, H2L 2C4, Canada
- Quebec Network for Research on Protein Function, Engineering and Applications PROTEO, Québec, G1V 0A6, Canada
| | - Noé Quittot
- Chemistry Department, Université du Québec à Montréal, Montreal, Québec, H2L 2C4, Canada
- Quebec Network for Research on Protein Function, Engineering and Applications PROTEO, Québec, G1V 0A6, Canada
| | - Denis Archambault
- Department of Biological Sciences, Université du Québec à Montréal, Montreal, Québec, H2X 1Y4, Canada
- Swine and Poultry Infectious Diseases Research Center, CRIPA, Québec, J2S 2M2, Canada
| | - Steve Bourgault
- Chemistry Department, Université du Québec à Montréal, Montreal, Québec, H2L 2C4, Canada
- Quebec Network for Research on Protein Function, Engineering and Applications PROTEO, Québec, G1V 0A6, Canada
- Swine and Poultry Infectious Diseases Research Center, CRIPA, Québec, J2S 2M2, Canada
| |
Collapse
|
3
|
Iadanza MG, Silvers R, Boardman J, Smith HI, Karamanos TK, Debelouchina GT, Su Y, Griffin RG, Ranson NA, Radford SE. The structure of a β 2-microglobulin fibril suggests a molecular basis for its amyloid polymorphism. Nat Commun 2018; 9:4517. [PMID: 30375379 PMCID: PMC6207761 DOI: 10.1038/s41467-018-06761-6] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 09/20/2018] [Indexed: 11/08/2022] Open
Abstract
All amyloid fibrils contain a cross-β fold. How this structure differs in fibrils formed from proteins associated with different diseases remains unclear. Here, we combine cryo-EM and MAS-NMR to determine the structure of an amyloid fibril formed in vitro from β2-microglobulin (β2m), the culprit protein of dialysis-related amyloidosis. The fibril is composed of two identical protofilaments assembled from subunits that do not share β2m's native tertiary fold, but are formed from similar β-strands. The fibrils share motifs with other amyloid fibrils, but also contain unique features including π-stacking interactions perpendicular to the fibril axis and an intramolecular disulfide that stabilises the subunit fold. We also describe a structural model for a second fibril morphology and show that it is built from the same subunit fold. The results provide insights into the mechanisms of fibril formation and the commonalities and differences within the amyloid fold in different protein sequences.
Collapse
Affiliation(s)
- Matthew G Iadanza
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Robert Silvers
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Chemistry & Biochemistry, Florida State University, 95 Chieftan Way Rm. 118 DLC, Tallahassee, FL, 32306-4390, USA
| | - Joshua Boardman
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Hugh I Smith
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Theodoros K Karamanos
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, 20892-0510, USA
| | - Galia T Debelouchina
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yongchao Su
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, NJ, 07033, USA
| | - Robert G Griffin
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
4
|
Díaz-Caballero M, Fernández MR, Navarro S, Ventura S. Prion-based nanomaterials and their emerging applications. Prion 2018; 12:266-272. [PMID: 30196749 PMCID: PMC6277190 DOI: 10.1080/19336896.2018.1521235] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 08/22/2018] [Accepted: 08/23/2018] [Indexed: 12/12/2022] Open
Abstract
Protein misfolding and aggregation into highly ordered fibrillar structures have been traditionally associated with pathological processes. Nevertheless, nature has taken advantage of the particular properties of amyloids for functional purposes, like in the protection of organisms against environmental changing conditions. Over the last decades, these fibrillar structures have inspired the design of new nanomaterials with intriguing applications in biomedicine and nanotechnology such as tissue engineering, drug delivery, adhesive materials, biodegradable nanocomposites, nanowires or biosensors. Prion and prion-like proteins, which are considered a subclass of amyloids, are becoming ideal candidates for the design of new and tunable nanomaterials. In this review, we discuss the particular properties of this kind of proteins, and the current advances on the design of new materials based on prion sequences.
Collapse
Affiliation(s)
- Marta Díaz-Caballero
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autonoma de Barcelona, Bellaterra (Barcelona), Spain
| | - Maria Rosario Fernández
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autonoma de Barcelona, Bellaterra (Barcelona), Spain
| | - Susanna Navarro
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autonoma de Barcelona, Bellaterra (Barcelona), Spain
| | - Salvador Ventura
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autonoma de Barcelona, Bellaterra (Barcelona), Spain
| |
Collapse
|
5
|
Okesola BO, Mata A. Multicomponent self-assembly as a tool to harness new properties from peptides and proteins in material design. Chem Soc Rev 2018; 47:3721-3736. [DOI: 10.1039/c8cs00121a] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nature is enriched with a wide variety of complex, synergistic and highly functional protein-based multicomponent assemblies.
Collapse
Affiliation(s)
- Babatunde O. Okesola
- School of Engineering and Materials Science
- Institute of Bioengineering
- Queen Mary University of London
- UK
| | - Alvaro Mata
- School of Engineering and Materials Science
- Institute of Bioengineering
- Queen Mary University of London
- UK
| |
Collapse
|