1
|
Al-Jaber H, Al-Muraikhy S, Jabr A, Yousef A, Anwardeen NR, Elrayess MA, Al-Mansoori L. Comparing Methods for Induction of Insulin Resistance in Mouse 3T3-L1 Cells. Curr Diabetes Rev 2025; 21:1-12. [PMID: 38204253 DOI: 10.2174/0115733998263359231211044539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 01/12/2024]
Abstract
Cell culture plays a crucial role in addressing fundamental research questions, particularly in studying insulin resistance (IR) mechanisms. Multiple in vitro models are utilized for this purpose, but their technical distinctions and relevance to in vivo conditions remain unclear. This study aims to assess the effectiveness of existing in vitro models in inducing IR and their ability to replicate in vivo IR conditions. BACKGROUND Insulin resistance (IR) is a cellular condition linked to metabolic disorders. Despite the utility of cell culture in IR research, questions persist regarding the suitability of various models. This study seeks to evaluate these models' efficiency in inducing IR and their ability to mimic in vivo conditions. Insights gained from this research could enhance our understanding of model strengths and limitations, potentially advancing strategies to combat IR and related disorders. OBJECTIVE 1- Investigate the technical differences between existing cell culture models used to study molecular mediators of insulin resistance (IR). 2- Compare the effectiveness of present in vitro models in inducing insulin resistance (IR). 3- Assess the relevance of the existing cell culture models in simulating the in vivo conditions and environment that provoke the induction of insulin resistance (IR). METHODS AND MATERIAL In vitro, eight sets of 3T3-L1 cells were cultured until they reached 90% confluence. Subsequently, adipogenic differentiation was induced using a differentiation cocktail (media). These cells were then divided into four groups, with four subjected to normal conditions and the other four to hypoxic conditions. Throughout the differentiation process, each cell group was exposed to specific factors known to induce insulin resistance (IR). These factors included 2.5 nM tumor necrosis factor-alpha (TNFα), 20 ng/ml interleukin-6 (IL-6), 10 micromole 4-hydroxynonenal (4HNE), and high insulin (HI) at a concentration of 100 nM. To assess cell proliferation, DAPI staining was employed, and the expression of genes associated with various metabolic pathways affected by insulin resistance was investigated using Real-Time PCR. Additionally, insulin signaling was examined using the Bio-plex Pro cell signaling Akt panel. RESULTS We induced insulin resistance in 3T3-L1 cells using IL-6, TNFα, 4HNE, and high insulin in both hypoxic and normoxic conditions. Hypoxia increased HIF1a gene expression by approximately 30% (P<0.01). TNFα reduced cell proliferation by 10-20%, and chronic TNFα treatment significantly decreased mature adipocytes due to its cytotoxicity. We assessed the impact of insulin resistance (IR) on metabolic pathways, focusing on genes linked to branched-chain amino acid metabolism, detoxification, and chemotaxis. Notably, ALDH6A1 and MCCC1 genes, related to amino acid metabolism, were significantly affected under hypoxic conditions. TNFα treatment notably influenced MCP-1 and MCP-2 genes linked to chemotaxis, with remarkable increases in MCP-1 levels and MCP-2 expression primarily under hypoxia. Detoxification-related genes showed minimal impact, except for a significant increase in MAOA expression under acute hypoxic conditions with TNFα treatment. Additional genes displayed varying effects, warranting further investigation. To investigate insulin signaling's influence in vitro by IRinducing factors, we assessed phospho-protein levels. Our results reveal a significant p-Akt induction with chronic high insulin (10%) and acute TNFα (12%) treatment under hypoxia (both P<0.05). Other insulin resistance-related phospho-proteins (GSK3B, mTOR, PTEN) increased with IL-6, 4HNE, TNFα, and high insulin under hypoxia, while p-IRS1 levels remained unaffected. CONCLUSION In summary, different in vitro models using inflammatory, oxidative stress, and high insulin conditions under hypoxic conditions can capture various aspects of in vivo adipose tissue insulin resistance (IR). Among these models, acute TNFα treatment may offer the most robust approach for inducing IR in 3T3-L1 cells.
Collapse
Affiliation(s)
- Hend Al-Jaber
- Biomedical Research Center, Qatar University, Doha, Qatar
| | | | - Aldana Jabr
- Biomedical Sciences Department, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Aisha Yousef
- Biomedical Sciences Department, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | | | | | | |
Collapse
|
2
|
Zhang P, Zhang Z, Li J, Xu M, Lu W, Chen M, Shi J, Wang Q, Zhang H, Huang S, Lian C, Liu J, Ma J, Liu J. Advanced PROTAC and Quantitative Proteomics Strategy Reveals Bax Inhibitor-1 as a Critical Target of Icaritin in Burkitt Lymphoma. Int J Mol Sci 2024; 25:12944. [PMID: 39684655 DOI: 10.3390/ijms252312944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/23/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Understanding the molecular targets of natural products is crucial for elucidating their mechanisms of action, mitigating toxicity, and uncovering potential therapeutic pathways. Icaritin (ICT), a bioactive flavonoid, demonstrates significant anti-tumor activity but lacks defined molecular targets. This study employs an advanced strategy integrating proteolysis targeting chimera (PROTAC) technology with quantitative proteomics to identify ICT's key targets. A library of 22 ICT-based PROTAC derivatives were synthesized, among which LJ-41 exhibited a superior IC50 of 5.52 μM against Burkitt lymphoma (CA-46) cells. Then, differential proteomic analysis identified Bax inhibitor-1 (BI-1) as a potential target. Target validation techniques, including cellular thermal shift assay (CETSA), drug affinity responsive target stability (DARTS) assay, surface plasmon resonance (SPR) assay, and molecular docking, confirmed LJ-41's high specificity for BI-1. Mechanistic investigations revealed that LJ-41 induces apoptosis through BI-1 degradation, triggering endoplasmic reticulum stress and activating inositol-requiring enzyme 1 α (IRE1α), activating transcription factor 6 (ATF6), and nuclear factor erythroid 2-related factor transcription factor heme oxygenase 1 (NRF2-HO-1) signaling pathways. This study establishes a refined methodological framework for natural product target discovery and highlights ICT-PROTAC derivatives' potential for clinical application in Burkitt lymphoma treatment.
Collapse
Affiliation(s)
- Peixi Zhang
- School of Medicine, Huaqiao University, Quanzhou 362021, China
| | - Ziqing Zhang
- School of Medicine, Huaqiao University, Quanzhou 362021, China
| | - Jie Li
- School of Medicine, Huaqiao University, Quanzhou 362021, China
| | - Meng Xu
- School of Medicine, Huaqiao University, Quanzhou 362021, China
| | - Weiming Lu
- School of Medicine, Huaqiao University, Quanzhou 362021, China
| | - Ming Chen
- School of Medicine, Huaqiao University, Quanzhou 362021, China
| | - Jiaqi Shi
- School of Medicine, Huaqiao University, Quanzhou 362021, China
| | - Qiaolai Wang
- School of Medicine, Huaqiao University, Quanzhou 362021, China
| | - Hengyuan Zhang
- School of Medicine, Huaqiao University, Quanzhou 362021, China
| | - Shi Huang
- School of Medicine, Huaqiao University, Quanzhou 362021, China
| | - Chenlei Lian
- School of Medicine, Huaqiao University, Quanzhou 362021, China
| | - Jia Liu
- School of Medicine, Huaqiao University, Quanzhou 362021, China
| | - Junjie Ma
- School of Medicine, Huaqiao University, Quanzhou 362021, China
| | - Jieqing Liu
- School of Medicine, Huaqiao University, Quanzhou 362021, China
| |
Collapse
|
3
|
Li Y, Zhang D, Gao Y, Wang P, Wang Z, Zhang B, Liu J, Ye D, Ma W, Lu S. METTL3 exacerbates insulin resistance in hepatocytes by regulating m 6A modification of cytochrome P450 2B6. Nutr Metab (Lond) 2023; 20:40. [PMID: 37710320 PMCID: PMC10502999 DOI: 10.1186/s12986-023-00762-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/01/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND Insulin resistance (IR) in hepatocytes endangers human health, and frequently results in the development of non-alcoholic fatty liver disease (NAFLD). Research on m6A methylation of RNA molecules has gained popularity in recent years; however, the molecular mechanisms regulating the processes of m6A modification and IR are not known. The cytochrome P450 (CYP450) enzyme system, which is mainly found in the liver, is associated with the pathogenesis of NAFLD. However, few studies have been conducted on CYP450 related m6A methylation. Here, we investigated the role of the methyltransferase METTL3 in exacerbating IR in hepatocytes, mainly focusing on the regulation of m6A modifications in CYP2B6. METHODS AND RESULTS Analysis using dot blot and epitranscriptomic chips revealed that the m6A modification pattern of the transcriptome in high-fat diet (HFD)-induced fatty liver and free fatty acid (FFA)-induced fatty hepatocytes showed significant changes. CYP450 family members, especially Cyp2b10, whose homolog in humans is CYP2B6, led to a noticeable increase in m6A levels in HFD-induced mice livers. Application of the METTL3 methyltransferase inhibitor, STM2457, increased the level of insulin sensitivity in hepatocytes. We then analyzed the role of METTL3 in regulating m6A modification of CYP2B6 in hepatocytes. METTL3 regulated the m6A modification of CYP2B6, and a positive correlation was found between the levels of CYP2B6 translation and m6A modifications. Furthermore, interference with METTL3 expression and exposure to STM2457 inhibited METTL3 activity, which in turn interfered with the phosphorylated insulin receptor substrate (pIRS)-glucose transporter 2 (GLUT2) insulin signaling pathway; overexpression of CYP2B6 hindered IRS phosphorylation and translocation of GLUT2 to membranes, which ultimately exacerbated IR. CONCLUSION These findings offer unique insights into the role that METTL3-mediated m6A modifications of CYP2B6 play in regulating insulin sensitivity in hepatocytes and provide key information for the development of strategies to induce m6A modifications for the clinical treatment of NAFLD.
Collapse
Affiliation(s)
- Yongqing Li
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, 250000, China
| | - Dantong Zhang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, 250000, China
| | - Yinan Gao
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, 250000, China
| | - Peijun Wang
- Department of Clinical Laboratory Medicine, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250000, China
| | - Zejun Wang
- Department of Clinical Laboratory Medicine, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250000, China
| | - Bingyang Zhang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, 250000, China
- Department of Clinical Laboratory Medicine, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250000, China
| | - Junjun Liu
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, 250000, China
- Department of Clinical Laboratory Medicine, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250000, China
| | - Diwen Ye
- School of Laboratory Medicine, Weifang Medical University, Weifang, 261000, China
| | - Wanshan Ma
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, 250000, China.
- Department of Clinical Laboratory Medicine, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250000, China.
| | - Sumei Lu
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, 250000, China.
- Department of Clinical Laboratory Medicine, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250000, China.
| |
Collapse
|
4
|
Lin DW, Hsu YC, Chang CC, Hsieh CC, Lin CL. Insights into the Molecular Mechanisms of NRF2 in Kidney Injury and Diseases. Int J Mol Sci 2023; 24:6053. [PMID: 37047024 PMCID: PMC10094034 DOI: 10.3390/ijms24076053] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 04/14/2023] Open
Abstract
Redox is a constant phenomenon in organisms. From the signaling pathway transduction to the oxidative stress during the inflammation and disease process, all are related to reduction-oxidation (redox). Nuclear factor erythroid 2-related factor 2 (NRF2) is a transcription factor targeting many antioxidant genes. In non-stressed conditions, NRF2 maintains the hemostasis of redox with housekeeping work. It expresses constitutively with basal activity, maintained by Kelch-like-ECH-associated protein 1 (KEAP1)-associated ubiquitination and degradation. When encountering stress, it can be up-regulated by several mechanisms to exert its anti-oxidative ability in diseases or inflammatory processes to protect tissues and organs from further damage. From acute kidney injury to chronic kidney diseases, such as diabetic nephropathy or glomerular disease, many results of studies have suggested that, as a master of regulating redox, NRF2 is a therapeutic option. It was not until the early termination of the clinical phase 3 trial of diabetic nephropathy due to heart failure as an unexpected side effect that we renewed our understanding of NRF2. NRF2 is not just a simple antioxidant capacity but has pleiotropic activities, harmful or helpful, depending on the conditions and backgrounds.
Collapse
Affiliation(s)
- Da-Wei Lin
- Department of Internal Medicine, St. Martin de Porres Hospital, Chiayi 600, Taiwan;
| | - Yung-Chien Hsu
- Department of Nephrology, Chang Gung Memorial Hospital, Chiayi 613, Taiwan
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613, Taiwan
| | - Cheng-Chih Chang
- Department of Surgery, Chang Gung Memorial Hospital, Chiayi 613, Taiwan; (C.-C.C.); (C.-C.H.)
| | - Ching-Chuan Hsieh
- Department of Surgery, Chang Gung Memorial Hospital, Chiayi 613, Taiwan; (C.-C.C.); (C.-C.H.)
| | - Chun-Liang Lin
- Department of Nephrology, Chang Gung Memorial Hospital, Chiayi 613, Taiwan
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Kidney Research Center, Chang Gung Memorial Hospital, Taipei 105, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| |
Collapse
|
5
|
Mechanical Study of Jian-Gan-Xiao-Zhi Decoction on Nonalcoholic Fatty Liver Disease Based on Integrated Network Pharmacology and Untargeted Metabolomics. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2264394. [PMID: 35845577 PMCID: PMC9286980 DOI: 10.1155/2022/2264394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 11/18/2022]
Abstract
Jian-Gan-Xiao-Zhi decoction (JGXZ) has demonstrated beneficial effects on nonalcoholic fatty liver disease (NAFLD). However, the mechanisms by which JGXZ improve NAFLD are still unclear. Methods. In this study, we first used a high-fat diet (HFD) to establish a NAFLD rat model to clarify the therapeutic effect of JGXZ on NAFLD. Secondly, we used network pharmacology to predict the potential targets of JGXZ on NAFLD, and then the key targets obtained from network pharmacology were verified. Finally, we used untargeted metabolomics to study the metabolic regulatory mechanism of JGXZ. Results. JGXZ treatment could decrease body weight and ameliorate dyslipidemia in NAFLD model rats. H&E and oil red O staining indicated that JGXZ reduced steatosis and infiltration of inflammatory cells in the liver. In addition, network pharmacology research found that the potential targets of JGXZ on NAFLD pathway were mainly associated with improving oxidative stress, apoptosis, inflammation, lipid metabolism disorders, and insulin resistance. Further experimental verification confirmed that JGXZ could inhibit inflammation and improve oxidative stress, insulin resistance, and lipid metabolism disorders. Serum untargeted metabolomics analyses indicated that the JGXZ in the treatment of NAFLD may work through the linoleic acid metabolism, alpha-linolenic acid metabolism, tryptophan metabolism, and glycerophospholipid metabolism pathways. Conclusions. In conclusion, this study found that JGXZ has an ameliorative effect on NAFLD, and JGXZ alleviates the inflammatory response and oxidative stress and lipid metabolism disorders in NAFLD rats. The mechanism of action of JGXZ in the treatment of NAFLD may be related to the regulation of linoleic acid metabolism, tryptophan metabolism, alpha-linolenic acid metabolism, and glycerophospholipid metabolism.
Collapse
|
6
|
Yin T, Xu F, Shi S, Liao S, Tang X, Zhang H, Zhou Y, Li X. Vitamin D mediates the association between acrylamide hemoglobin biomarkers and obesity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:17162-17172. [PMID: 34661844 DOI: 10.1007/s11356-021-16798-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Mediation analysis aims to discover the role of intermediate variables from exposure to disease. The current study was performed to evaluate how vitamin D mediates the association between acrylamide hemoglobin biomarkers and obesity. Data were collected on 10,377 adults participating in the National Health and Nutrition Examination Survey (NHANES) 2003-2006 and 2013-2014 aged ≥ 18 years. Obesity was assessed through body mass index and abdominal circumference measurements. Generalized linear and restricted cubic spline (RCS) regression were used to estimate the association between vitamin D and acrylamide hemoglobin biomarkers, and the mediation effect of vitamin D was also discussed. After adjusting for potentially confounding factors, vitamin D had strong negative associations with serum concentrations of acrylamide hemoglobin adducts (HbAA, HbGA, and HbAA + HbGA). The RCS plots demonstrated that vitamin D was inversely and nonlinearly associated with HbAA and HbAA + HbGA while inversely and linearly associated with HbGA, and also a striking difference when vitamin D was lower than 60 nmol/L. Mediation analysis suggested that a negative correlation between acrylamide and obesity was mediated by vitamin D. The current study is expected to offer a fresh perspective on reducing the toxicity of acrylamide.
Collapse
Affiliation(s)
- Ting Yin
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Fang Xu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Shi Shi
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Shengen Liao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Xiaosu Tang
- Jiangxi Environmental Engineering Vocational College, Zhangong district, Ganzhou city, Jiangxi, 341000, China
| | - Haifeng Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
- Gusu School, Nanjing Medical University, Suzhou, 215002, China
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215002, China
| | - Yanli Zhou
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.
| | - Xinli Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.
| |
Collapse
|
7
|
Bhattarai KR, Kim HK, Chaudhary M, Ur Rashid MM, Kim J, Kim HR, Chae HJ. TMBIM6 regulates redox-associated posttranslational modifications of IRE1α and ER stress response failure in aging mice and humans. Redox Biol 2021; 47:102128. [PMID: 34562874 PMCID: PMC8476450 DOI: 10.1016/j.redox.2021.102128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/30/2021] [Accepted: 09/06/2021] [Indexed: 12/25/2022] Open
Abstract
Age-associated persistent ER stress is the result of declining chaperone systems of the ER that reduces cellular functions, induces apoptosis, and leads to age-related diseases. This study investigated the previously unknown regulatory mechanism of TMBIM6 during age-associated hepatic abnormalities. Wild-type (WT) and the TMBIM6 knockout (TMBIM6−/−) mice liver, human liver samples from different age groups were used to demonstrate the effect of physiological aging on liver. For TMBIM6 rescue experiments, TMBIM6−/− old mice and stable human hepatic cell lines expressing TMBIM 6 were used to study the functional role of TMBIM6 on aging-associated steatosis and its associated mechanisms. In aging humans and mice, we observed declined expression of TMBIM6 and aberrant UPR expression, which were associated with high hepatic lipid accumulation. During aging, TMBIM6-deficient mice had increased senescence than their WT counterparts. We identified redox-mediated posttranslational modifications of IRE1α such as S-nitrosylation and sulfonation were higher in TMBIM6-deficient aging mice and humans, which impaired the ER stress response signaling. Sulfonation of IRE1α enhanced regulated IRE1α-dependent decay (RIDD) activity inducing TMBIM6 decay, whereas S-nitrosylation of IRE1α inhibited XBP1 splicing enhancing the cell death. Moreover, the degradation of miR-338-3p by strong IRE1α cleavage activity enhanced the expression of PTP1B, resulting in diminishing phosphorylation of PERK. The re-expression of TMBIM6 reduced IRE1α modifications, preserved ER homeostasis, reduced senescence and senescence-associated lipid accumulation in human hepatic cells and TMBIM6-depleted mice. S-nitrosylation or sulfonation of IRE1α and its controller, the TMBIM6, might be the potential therapeutic targets for maintaining ER homeostasis in aging and aging-associated liver diseases. TMBIM6 is downregulated in fatty degeneration, and in aging human and mouse liver. TMBIM6 deficiency induces ER stress response failure and cell death and increases age-associated steatosis. TMBIM6 regulates redox-mediated cysteine modifications such as S-nitrosylation and sulfonation of IRE1α. IRE1α-SNO inhibits XBP1 splicing, whereas IRE1α-SO3H enhances RIDD activity inducing TMBIM6 decay. TMBIM6 overexpression attenuates hepatic steatosis by regulating ER stress and cysteine modifications caused by aging.
Collapse
Affiliation(s)
- Kashi Raj Bhattarai
- School of Pharmacy and Institute of New Drug Development, Jeonbuk National University, 54896, Jeonju, Republic of Korea; Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, 38105, Memphis, TN, USA
| | - Hyun-Kyoung Kim
- School of Pharmacy and Institute of New Drug Development, Jeonbuk National University, 54896, Jeonju, Republic of Korea
| | - Manoj Chaudhary
- Department of Pharmacology and Institute of New Drug Development, Jeonbuk National University Medical School, 54896, Jeonju, Republic of Korea
| | - Mohammad Mamun Ur Rashid
- Department of Pharmacology and Institute of New Drug Development, Jeonbuk National University Medical School, 54896, Jeonju, Republic of Korea
| | - Jisun Kim
- School of Pharmacy and Institute of New Drug Development, Jeonbuk National University, 54896, Jeonju, Republic of Korea
| | - Hyung-Ryong Kim
- Department of Dental Pharmacology, College of Dentistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| | - Han-Jung Chae
- School of Pharmacy and Institute of New Drug Development, Jeonbuk National University, 54896, Jeonju, Republic of Korea.
| |
Collapse
|
8
|
Diesinger T, Lautwein A, Buko V, Belonovskaya E, Lukivskaya O, Naruta E, Kirko S, Andreev V, Dvorsky R, Buckert D, Bergler S, Renz C, Müller‐Enoch D, Wirth T, Haehner T. ω-Imidazolyl-alkyl derivatives as new preclinical drug candidates for treating non-alcoholic steatohepatitis. Physiol Rep 2021; 9:e14795. [PMID: 33769703 PMCID: PMC7995547 DOI: 10.14814/phy2.14795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 01/15/2023] Open
Abstract
Cytochrome P450 2E1 (CYP2E1)-associated reactive oxygen species production plays an important role in the development and progression of inflammatory liver diseases such as alcoholic steatohepatitis. We developed two new inhibitors for this isoenzyme, namely 12-imidazolyl-1-dodecanol (I-ol) and 1-imidazolyldodecane (I-an), and aimed to test their effects on non-alcoholic steatohepatitis (NASH). The fat-rich and CYP2E1 inducing Lieber-DeCarli diet was administered over 16 weeks of the experimental period to induce the disease in a rat model, and the experimental substances were administered simultaneously over the last four weeks. The high-fat diet (HFD) pathologically altered the balance of reactive oxygen species and raised the activities of the liver enzymes alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (AP) and γ-glutamyl-transferase (γ-GT); lowered the level of adiponectine and raised the one of tumor necrosis factor (TNF)-α; increased the hepatic triglyceride and phospholipid content and diminished the serum HDL cholesterol concentration. Together with the histological findings, we concluded that the diet led to the development of NASH. I-ol and, to a lesser extent, I-an shifted the pathological values toward the normal range, despite the continued administration of the noxious agent (HFD). The hepatoprotective drug ursodeoxycholic acid (UDCA), which is used off-label in clinical practice, showed a lower effectiveness overall. I-ol, in particular, showed extremely good tolerability during the acute toxicity study in rats. Therefore, cytochrome P450 2E1 may be considered a suitable drug target, with I-ol and I-an being promising drug candidates for the treatment of NASH.
Collapse
Affiliation(s)
- Torsten Diesinger
- Chair of Biochemistry and Molecular MedicineFaculty of Health/School of MedicineWitten/Herdecke UniversityWittenGermany
- Department of Internal MedicineNeu‐Ulm HospitalNeu‐UlmGermany
- Institute of Physiological ChemistryUniversity of UlmUlmGermany
| | - Alfred Lautwein
- Institute of Physiological ChemistryUniversity of UlmUlmGermany
| | - Vyacheslav Buko
- Division of Biochemical PharmacologyInstitute of Biochemistry of Biologically Active CompoundsNational Academy of SciencesBulvar Leninskogo KomsomolaGrodnoBelarus
- Department of BiotechnologyUniversity of Medical SciencesBiałystokPoland
| | - Elena Belonovskaya
- Division of Biochemical PharmacologyInstitute of Biochemistry of Biologically Active CompoundsNational Academy of SciencesBulvar Leninskogo KomsomolaGrodnoBelarus
| | - Oksana Lukivskaya
- Division of Biochemical PharmacologyInstitute of Biochemistry of Biologically Active CompoundsNational Academy of SciencesBulvar Leninskogo KomsomolaGrodnoBelarus
| | - Elena Naruta
- Division of Biochemical PharmacologyInstitute of Biochemistry of Biologically Active CompoundsNational Academy of SciencesBulvar Leninskogo KomsomolaGrodnoBelarus
| | - Siarhei Kirko
- Division of Biochemical PharmacologyInstitute of Biochemistry of Biologically Active CompoundsNational Academy of SciencesBulvar Leninskogo KomsomolaGrodnoBelarus
| | - Viktor Andreev
- Department of Medical Biology and GeneticsGrodno State Medical UniversityGrodnoBelarus
| | - Radovan Dvorsky
- Institute of Biochemistry and Molecular Biology IIMedical Faculty of the Heinrich Heine University DüsseldorfDüsseldorfGermany
- Max Planck Institute of Molecular PhysiologyDortmundGermany
| | - Dominik Buckert
- Institute of Physiological ChemistryUniversity of UlmUlmGermany
- Department of Internal Medicine IIUniversity Hospital UlmUlmGermany
| | | | - Christian Renz
- Institute of Physiological ChemistryUniversity of UlmUlmGermany
| | | | - Thomas Wirth
- Institute of Physiological ChemistryUniversity of UlmUlmGermany
| | - Thomas Haehner
- Institute of Physiological ChemistryUniversity of UlmUlmGermany
| |
Collapse
|
9
|
Lebeaupin C, Blanc M, Vallée D, Keller H, Bailly-Maitre B. BAX inhibitor-1: between stress and survival. FEBS J 2020; 287:1722-1736. [PMID: 31841271 DOI: 10.1111/febs.15179] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/18/2019] [Accepted: 12/13/2019] [Indexed: 12/13/2022]
Abstract
Cellular gatekeepers are essential to maintain order within a cell and anticipate signals of stress to promote survival. BCL2 associated X, apoptosis regulator (BAX) inhibitor-1 (BI-1), also named transmembrane BAX inhibitor motif containing-6, is a highly conserved endoplasmic reticulum (ER) transmembrane protein. Originally identified as an inhibitor of BAX-induced apoptosis, its pro-survival properties have been expanded to include functions targeted against ER stress, calcium imbalance, reactive oxygen species accumulation, and metabolic dysregulation. Nevertheless, the structural biology and biochemical mechanism of action of BI-1 are still under debate. BI-1 has been implicated in several diseases, including chronic liver disease, diabetes, ischemia/reperfusion injury, neurodegeneration, and cancer. While most studies have demonstrated a beneficial role for BI-1 in the ubiquitous maintenance of cellular homeostasis, its expression in cancer cells seems most often to contribute to tumorigenesis and metastasis. Here, we summarize what is known about BI-1 and encourage future studies on BI-1's contribution to cellular life and death decisions to advocate its potential as a target for drug development and other therapeutic strategies.
Collapse
Affiliation(s)
- Cynthia Lebeaupin
- INSERM U1065, C3M, Université Côte d'Azur, Nice, France.,Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.,Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Marina Blanc
- INSERM U1065, C3M, Université Côte d'Azur, Nice, France
| | | | - Harald Keller
- INRA1355-CNRS7254, Université Côte d'Azur, Sophia Antipolis, France
| | | |
Collapse
|
10
|
Guan F, Yang X, Li J, Dong W, Zhang X, Liu N, Gao S, Wang J, Zhang L, Lu D. New Molecular Mechanism Underlying Myc-Mediated Cytochrome P450 2E1 Upregulation in Apoptosis and Energy Metabolism in the Myocardium. J Am Heart Assoc 2020; 8:e009871. [PMID: 30563421 PMCID: PMC6405704 DOI: 10.1161/jaha.118.009871] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Background Canonical studies indicate that cytochrome P450 2E1 (CYP2E1) plays a critical role in the metabolism of xenobiotics and ultimately participates in tissue damage. CYP2E1 upregulates in the pathophysiological development of multiple diseases; however, the mechanism of CYP2E1 upregulation, particularly in heart disease, remains elusive. Methods and Results We found that the level of CYP2E1 increased in heart tissues from patients with hypertrophic cardiomyopathy; multiple mouse models of heart diseases, including dilated cardiomyopathy, hypertrophic cardiomyopathy, and myocardial ischemia; and HL‐1 myocytes under stress. We determined that Myc bound to the CYP2E1 promoter and activated its transcription by bioinformatics analysis, luciferase activity, and chromatin immunoprecipitation, and Myc expression was modulated by extracellular signal–regulated kinases 1/2 and phosphatidylinositol 3 kinase/protein kinase B pathways under stress or injury in myocardium by signal transduction analysis. In addition, the level of oxidative stress and apoptosis gradually worsened with age in transgenic mice overexpressing CYP2E1, which was significantly inhibited with CYP2E1 knockdown. Conclusions Our results demonstrated that CYP2E1 is likely a sensor of diverse pathophysiological factors and states in the myocardium. Upregulated CYP2E1 has multiple pathophysiological roles in the heart, including increased oxidative stress and apoptosis as well as energy supply to meet the energy demand of the heart in certain disease states. Our discovery thus provides a basis for a therapeutic strategy for heart diseases targeting Myc and CYP2E1.
Collapse
Affiliation(s)
- Feifei Guan
- 1 Key Laboratory of Human Disease Comparative Medicine NHFPC Institute of Laboratory Animal Science Chinese Academy of Medical Sciences & Comparative Medical Center Peking Union Medical College Beijing China
| | - Xinlan Yang
- 1 Key Laboratory of Human Disease Comparative Medicine NHFPC Institute of Laboratory Animal Science Chinese Academy of Medical Sciences & Comparative Medical Center Peking Union Medical College Beijing China
| | - Jing Li
- 1 Key Laboratory of Human Disease Comparative Medicine NHFPC Institute of Laboratory Animal Science Chinese Academy of Medical Sciences & Comparative Medical Center Peking Union Medical College Beijing China
| | - Wei Dong
- 1 Key Laboratory of Human Disease Comparative Medicine NHFPC Institute of Laboratory Animal Science Chinese Academy of Medical Sciences & Comparative Medical Center Peking Union Medical College Beijing China
| | - Xu Zhang
- 1 Key Laboratory of Human Disease Comparative Medicine NHFPC Institute of Laboratory Animal Science Chinese Academy of Medical Sciences & Comparative Medical Center Peking Union Medical College Beijing China
| | - Ning Liu
- 1 Key Laboratory of Human Disease Comparative Medicine NHFPC Institute of Laboratory Animal Science Chinese Academy of Medical Sciences & Comparative Medical Center Peking Union Medical College Beijing China
| | - Shan Gao
- 1 Key Laboratory of Human Disease Comparative Medicine NHFPC Institute of Laboratory Animal Science Chinese Academy of Medical Sciences & Comparative Medical Center Peking Union Medical College Beijing China
| | - Jizheng Wang
- 2 State Key Laboratory of Cardiovascular Disease Fuwai Hospital National Center for Cardiovascular Disease Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Lianfeng Zhang
- 1 Key Laboratory of Human Disease Comparative Medicine NHFPC Institute of Laboratory Animal Science Chinese Academy of Medical Sciences & Comparative Medical Center Peking Union Medical College Beijing China
| | - Dan Lu
- 1 Key Laboratory of Human Disease Comparative Medicine NHFPC Institute of Laboratory Animal Science Chinese Academy of Medical Sciences & Comparative Medical Center Peking Union Medical College Beijing China
| |
Collapse
|
11
|
Lebeaupin C, Vallée D, Hazari Y, Hetz C, Chevet E, Bailly-Maitre B. Endoplasmic reticulum stress signalling and the pathogenesis of non-alcoholic fatty liver disease. J Hepatol 2018; 69:927-947. [PMID: 29940269 DOI: 10.1016/j.jhep.2018.06.008] [Citation(s) in RCA: 627] [Impact Index Per Article: 89.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/22/2018] [Accepted: 06/14/2018] [Indexed: 12/13/2022]
Abstract
The global epidemic of obesity has been accompanied by a rising burden of non-alcoholic fatty liver disease (NAFLD), with manifestations ranging from simple steatosis to non-alcoholic steatohepatitis, potentially developing into hepatocellular carcinoma. Although much attention has focused on NAFLD, its pathogenesis remains largely obscure. The hallmark of NAFLD is the hepatic accumulation of lipids, which subsequently leads to cellular stress and hepatic injury, eventually resulting in chronic liver disease. Abnormal lipid accumulation often coincides with insulin resistance in steatotic livers and is associated with perturbed endoplasmic reticulum (ER) proteostasis in hepatocytes. In response to chronic ER stress, an adaptive signalling pathway known as the unfolded protein response is triggered to restore ER proteostasis. However, the unfolded protein response can cause inflammation, inflammasome activation and, in the case of non-resolvable ER stress, the death of hepatocytes. Experimental data suggest that the unfolded protein response influences hepatic tumour development, aggressiveness and response to treatment, offering novel therapeutic avenues. Herein, we provide an overview of the evidence linking ER stress to NAFLD and discuss possible points of intervention.
Collapse
Affiliation(s)
| | - Deborah Vallée
- Université Côte d'Azur, INSERM, U1065, C3M, 06200 Nice, France
| | - Younis Hazari
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Claudio Hetz
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile; Buck Institute for Research on Aging, Novato, CA 94945, USA; Department of Immunology and Infectious Diseases, Harvard School of Public Health, 02115 Boston, MA, USA
| | - Eric Chevet
- "Chemistry, Oncogenesis, Stress, Signaling", Inserm U1242, Université de Rennes, Rennes, France; Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | | |
Collapse
|
12
|
Hepatoprotective Effect of Loquat Leaf Flavonoids in PM 2.5-Induced Non-Alcoholic Fatty Liver Disease via Regulation of IRs-1/Akt and CYP2E1/JNK Pathways. Int J Mol Sci 2018; 19:ijms19103005. [PMID: 30275422 PMCID: PMC6213634 DOI: 10.3390/ijms19103005] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/23/2018] [Accepted: 09/26/2018] [Indexed: 12/20/2022] Open
Abstract
Ambient air particulate matter (PM) represents a class of heterogeneous substances present in polluted air, which contains many harmful components. Exposure to ambient particulate matter in fine rages (PM2.5) is associated with non-alcoholic fatty liver disease (NAFLD). Loquat Leaf possesses pharmacological actions on NAFLD. As the main biological active ingredients, the potential therapeutic role of total flavonoids (TF) isolated from Loquat Leaf in PM2.5-induced NAFLD model remains unclear. The present study was designed to explore the hepatoprotective effect of TF in PM2.5-induced NAFLD mice with its related mechanisms of action. Mice were exposed to PM2.5 to induce NAFLD, and body weight, the ratio of liver to body weight, and blood lipids increased significantly compared with the control group. It was found that TF significantly reduced the above parameters in PM2.5-induced NAFLD mice. TF treatment alleviated oxidative stress by preventing the accumulation of oxidative product malondialdehyde (MDA) and by strengthening the anti-oxidative capacity of superoxide dismutase (SOD). TF was also found to reduce the alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activity in the PM2.5 group. In addition, TF repaired the PM2.5-induced decline of insulin receptor substrate-1 (IRs-1) and protein kinase B (Akt) phosphorylation. Meanwhile, the data showed TF suppressed the expression of cytochrome P450 2E1(CYP2E1) and the phosphorylation of c-jun N-terminal kinase (JNK) in PM2.5-induced NAFLD. Taken together, these findings show that TF alleviate PM2.5-induced NAFLD via regulation of IRs-1/Akt and CYP2E1/JNK pathways, which may have potential for further development as novel therapeutic agents for NAFLD.
Collapse
|
13
|
Yang Y, Dong R, Chen Z, Hu D, Fu M, Tang Y, Wang DW, Xu X, Tu L. Endothelium-specific CYP2J2 overexpression attenuates age-related insulin resistance. Aging Cell 2018; 17. [PMID: 29318723 PMCID: PMC5847864 DOI: 10.1111/acel.12718] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2017] [Indexed: 12/18/2022] Open
Abstract
Ample evidences demonstrate that cytochrome P450 epoxygenase‐derived epoxyeicosatrienoic acids (EETs) exert diverse biological activities, which include potent vasodilatory, anti‐inflammatory, and cardiovascular protective effects. In this study, we investigated the effects of endothelium‐specific CYP2J2 overexpression on age‐related insulin resistance and metabolic dysfunction. Endothelium‐specific targeting of the human CYP epoxygenase, CYP2J2, transgenic mice (Tie2‐CYP2J2‐Tr mice) was utilized. The effects of endothelium‐specific CYP2J2 overexpression on aging‐associated obesity, inflammation, and peripheral insulin resistance were evaluated by assessing metabolic parameters in young (3 months old) and aged (16 months old) adult male Tie2‐CYP2J2‐Tr mice. Decreased insulin sensitivity and attenuated insulin signaling in aged skeletal muscle, adipose tissue, and liver were observed in aged adult male mice, and moreover, these effects were partly inhibited in 16‐month‐old CYP2J2‐Tr mice. In addition, CYP2J2 overexpression‐mediated insulin sensitization in aged mice was associated with the amelioration of inflammatory state. Notably, the aging‐associated increases in fat mass and adipocyte size were only observed in 16‐month‐old wild‐type mice, and CYP2J2 overexpression markedly prevented the increase in fat mass and adipocyte size in aged Tie2‐CYP2J2‐Tr mice, which was associated with increased energy expenditure and decreased lipogenic genes expression. Furthermore, these antiaging phenotypes of Tie2‐CYP2J2‐Tr mice were also associated with increased muscle blood flow, enhanced active‐phase locomotor activity, and improved mitochondrial dysfunction in skeletal muscle. Collectively, our findings indicated that endothelium‐specific CYP2J2 overexpression alleviated age‐related insulin resistance and metabolic dysfunction, which highlighted CYP epoxygenase‐EET system as a potential target for combating aging‐related metabolic disorders.
Collapse
Affiliation(s)
- Yan Yang
- Department of Geriatric Medicine; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Ruolan Dong
- Department of Geriatric Medicine; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Zhihui Chen
- Department of Geriatric Medicine; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Danli Hu
- Department of Geriatric Medicine; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Menglu Fu
- Department of Geriatric Medicine; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Ying Tang
- Department of Geriatric Medicine; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Dao Wen Wang
- Hubei Key laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders and Division of Cardiology; Department of Internal Medicine; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Xizhen Xu
- Hubei Key laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders and Division of Cardiology; Department of Internal Medicine; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Ling Tu
- Department of Geriatric Medicine; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| |
Collapse
|
14
|
Hu H, Li L, Guo Q, Zong H, Yan Y, Yin Y, Wang Y, Oh Y, Feng Y, Wu Q, Gu N. RNA sequencing analysis shows that titanium dioxide nanoparticles induce endoplasmic reticulum stress, which has a central role in mediating plasma glucose in mice. Nanotoxicology 2018; 12:341-356. [DOI: 10.1080/17435390.2018.1446560] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Hailong Hu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, PR China
| | - Li Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, PR China
| | - Qian Guo
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, PR China
| | - He Zong
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, PR China
| | - Yuheng Yan
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, PR China
| | - Yao Yin
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, PR China
| | - Yu Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, PR China
| | - Yuri Oh
- Faculty of Education, Wakayama University, Wakayama, Japan
| | - Yujie Feng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, PR China
| | - Qiong Wu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, PR China
| | - Ning Gu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, PR China
| |
Collapse
|