1
|
Patel P, Nandi A, Verma SK, Kaushik N, Suar M, Choi EH, Kaushik NK. Zebrafish-based platform for emerging bio-contaminants and virus inactivation research. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162197. [PMID: 36781138 PMCID: PMC9922160 DOI: 10.1016/j.scitotenv.2023.162197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/23/2023] [Accepted: 02/08/2023] [Indexed: 05/27/2023]
Abstract
Emerging bio-contaminants such as viruses have affected health and environment settings of every country. Viruses are the minuscule entities resulting in severe contagious diseases like SARS, MERS, Ebola, and avian influenza. Recent epidemic like the SARS-CoV-2, the virus has undergone mutations strengthen them and allowing to escape from the remedies. Comprehensive knowledge of viruses is essential for the development of targeted therapeutic and vaccination treatments. Animal models mimicking human biology like non-human primates, rats, mice, and rabbits offer competitive advantage to assess risk of viral infections, chemical toxins, nanoparticles, and microbes. However, their economic maintenance has always been an issue. Furthermore, the redundancy of experimental results due to aforementioned aspects is also in examine. Hence, exploration for the alternative animal models is crucial for risk assessments. The current review examines zebrafish traits and explores the possibilities to monitor emerging bio-contaminants. Additionally, a comprehensive picture of the bio contaminant and virus particle invasion and abatement mechanisms in zebrafish and human cells is presented. Moreover, a zebrafish model to investigate the emerging viruses such as coronaviridae and poxviridae has been suggested.
Collapse
Affiliation(s)
- Paritosh Patel
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, South Korea
| | - Aditya Nandi
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Suresh K Verma
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India; Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Neha Kaushik
- Department of Biotechnology, College of Engineering, The University of Suwon, 18323 Hwaseong, Republic of Korea
| | - Mrutyunjay Suar
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, South Korea.
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, South Korea.
| |
Collapse
|
2
|
Kim H, Park H, Schulz ET, Azuma Y, Azuma M. EWSR1 prevents the induction of aneuploidy through direct regulation of Aurora B. Front Cell Dev Biol 2023; 11:987153. [PMID: 36875767 PMCID: PMC9975954 DOI: 10.3389/fcell.2023.987153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 01/09/2023] [Indexed: 02/17/2023] Open
Abstract
EWSR1 (Ewing sarcoma breakpoint region 1) was originally identified as a part of an aberrant EWSR1/FLI1 fusion gene in Ewing sarcoma, the second most common pediatric bone cancer. Due to formation of the EWSR1/FLI1 fusion gene in the tumor genome, the cell loses one wild type EWSR1 allele. Our previous study demonstrated that the loss of ewsr1a (homologue of human EWSR1) in zebrafish leads to the high incidence of mitotic dysfunction, of aneuploidy, and of tumorigenesis in the tp53 mutant background. To dissect the molecular function of EWSR1, we successfully established a stable DLD-1 cell line that enables a conditional knockdown of EWSR1 using an Auxin Inducible Degron (AID) system. When both EWSR1 genes of DLD-1 cell were tagged with mini-AID at its 5'-end using a CRISPR/Cas9 system, treatment of the (AID-EWSR1/AID-EWSR1) DLD-1 cells with a plant-based Auxin (AUX) led to the significant levels of degradation of AID-EWSR1 proteins. During anaphase, the EWSR1 knockdown (AUX+) cells displayed higher incidence of lagging chromosomes compared to the control (AUX-) cells. This defect was proceeded by a lower incidence of the localization of Aurora B at inner centromeres, and by a higher incidence of the protein at Kinetochore proximal centromere compared to the control cells during pro/metaphase. Despite these defects, the EWSR1 knockdown cells did not undergo mitotic arrest, suggesting that the cell lacks the error correction mechanism. Significantly, the EWSR1 knockdown (AUX+) cells induced higher incidence of aneuploidy compared to the control (AUX-) cells. Since our previous study demonstrated that EWSR1 interacts with the key mitotic kinase, Aurora B, we generated replacement lines of EWSR1-mCherry and EWSR1:R565A-mCherry (a mutant that has low affinity for Aurora B) in the (AID-EWSR1/AID-EWSR1) DLD-1 cells. The EWSR1-mCherry rescued the high incidence of aneuploidy of EWSR1 knockdown cells, whereas EWSR1-mCherry:R565A failed to rescue the phenotype. Together, we demonstrate that EWSR1 prevents the induction of lagging chromosomes, and of aneuploidy through the interaction with Aurora B.
Collapse
Affiliation(s)
| | | | | | | | - Mizuki Azuma
- Molecular Biosciences, University of Kansas, Lawrence, KS, United States
| |
Collapse
|
3
|
Abstract
Zebrafish are rapidly becoming a leading model organism for cancer research. The genetic pathways driving cancer are highly conserved between zebrafish and humans, and the ability to easily manipulate the zebrafish genome to rapidly generate transgenic animals makes zebrafish an excellent model organism. Transgenic zebrafish containing complex, patient-relevant genotypes have been used to model many cancer types. Here we present a comprehensive review of transgenic zebrafish cancer models as a resource to the field and highlight important areas of cancer biology that have yet to be studied in the fish. The ability to image cancer cells and niche biology in an endogenous tumor makes zebrafish an indispensable model organism in which we can further understand the mechanisms that drive tumorigenesis and screen for potential new cancer therapies.
Collapse
Affiliation(s)
- Alicia M. McConnell
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
- Harvard Stem Cell Institute, Boston, Massachusetts 02138, USA
- Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Haley R. Noonan
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
- Harvard Stem Cell Institute, Boston, Massachusetts 02138, USA
- Harvard Medical School, Boston, Massachusetts 02115, USA
- Biological and Biomedical Sciences Program, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Leonard I. Zon
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
- Harvard Stem Cell Institute, Boston, Massachusetts 02138, USA
- Harvard Medical School, Boston, Massachusetts 02115, USA
- Stem Cell and Regenerative Biology Department and Howard Hughes Medical Institute, Harvard University, Boston, Massachusetts 02138, USA
| |
Collapse
|
4
|
Park H, Kim H, Hassebroek V, Azuma Y, Slawson C, Azuma M. Chromosomal localization of Ewing sarcoma EWSR1/FLI1 protein promotes the induction of aneuploidy. J Biol Chem 2020; 296:100164. [PMID: 33293370 PMCID: PMC7857440 DOI: 10.1074/jbc.ra120.014328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 12/02/2020] [Accepted: 12/08/2020] [Indexed: 11/06/2022] Open
Abstract
Ewing sarcoma is a pediatric bone cancer that expresses the chimeric protein EWSR1/FLI1. We previously demonstrated that EWSR1/FLI1 impairs the localization of Aurora B kinase to the midzone (the midline structure located between segregating chromosomes) during anaphase. While localization of Aurora B is essential for faithful cell division, it is unknown whether interference with midzone organization by EWSR1/FLI1 induces aneuploidy. To address this, we generated stable Tet-on inducible cell lines with EWSR1/FLI1, using CRISPR/Cas9 technology to integrate the transgene at the safe-harbor AAVS1 locus in DLD-1 cells. Induced cells expressing EWSR1/FLI1 displayed an increased incidence of aberrant localization of Aurora B, and greater levels of aneuploidy, compared with noninduced cells. Furthermore, the expression of EWSR1/FLI1-T79A, containing a threonine (Thr) to alanine (Ala) substitution at amino acid 79, failed to induce these phenotypes, indicating that Thr 79 is critical for EWSR1/FLI1 interference with mitosis. In contrast, the phosphomimetic mutant EWSR1/FLI1-T79D (Thr to aspartic acid (Asp)) retained the high activity as wild-type EWSR1/FLI1. Together, these findings suggest that phosphorylation of EWSR1/FLI1 at Thr 79 promotes the colocalization of EWSR1/FLI1 and Aurora B on the chromosomes during prophase and metaphase and, in addition, impairs the localization of Aurora B during anaphase, leading to induction of aneuploidy. This is the first demonstration of the mechanism for EWSR1/FLI1-dependent induction of aneuploidy associated with mitotic dysfunction and the identification of the phosphorylation of the Thr 79 of EWSR1/FLI1 as a critical residue required for this induction.
Collapse
Affiliation(s)
- Hyewon Park
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Haeyoung Kim
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Victoria Hassebroek
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Yoshiaki Azuma
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Chad Slawson
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City Kansas, USA
| | - Mizuki Azuma
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA.
| |
Collapse
|
5
|
Lee SG, Kim N, Kim SM, Park IB, Kim H, Kim S, Kim BG, Hwang JM, Baek IJ, Gartner A, Park JH, Myung K. Ewing sarcoma protein promotes dissociation of poly(ADP-ribose) polymerase 1 from chromatin. EMBO Rep 2020; 21:e48676. [PMID: 33006225 DOI: 10.15252/embr.201948676] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 08/30/2020] [Accepted: 09/15/2020] [Indexed: 12/19/2022] Open
Abstract
Poly(ADP-ribose) polymerase 1 (PARP1) facilitates DNA damage response (DDR). While the Ewing's sarcoma breakpoint region 1 (EWS) protein fused to FLI1 triggers sarcoma formation, the physiological function of EWS is largely unknown. Here, we investigate the physiological role of EWS in regulating PARP1. We show that EWS is required for PARP1 dissociation from damaged DNA. Abnormal PARP1 accumulation caused by EWS inactivation leads to excessive Poly(ADP-Ribosy)lation (PARylation) and triggers cell death in both in vitro and in vivo models. Consistent with previous work, the arginine-glycine-glycine (RGG) domain of EWS is essential for PAR chain interaction and PARP1 dissociation from damaged DNA. Ews and Parp1 double mutant mice do not show improved survival, but supplementation with nicotinamide mononucleotides extends Ews-mutant pups' survival, which might be due to compensatory activation of other PARP proteins. Consistently, PARP1 accumulates on chromatin in Ewing's sarcoma cells expressing an EWS fusion protein that cannot interact with PARP1, and tissues derived from Ewing's sarcoma patients show increased PARylation. Taken together, our data reveal that EWS is important for removing PARP1 from damaged chromatin.
Collapse
Affiliation(s)
- Seon-Gyeong Lee
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea.,Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Namwoo Kim
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea.,Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Su-Min Kim
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea.,Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - In Bae Park
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea
| | - Hyejin Kim
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea
| | - Shinseog Kim
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea
| | - Byung-Gyu Kim
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea
| | - Jung Me Hwang
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea
| | - In-Joon Baek
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea
| | - Anton Gartner
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea.,Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Jun Hong Park
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea.,Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Korea
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea.,Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| |
Collapse
|
6
|
Brown HK, Schiavone K, Tazzyman S, Heymann D, Chico TJ. Zebrafish xenograft models of cancer and metastasis for drug discovery. Expert Opin Drug Discov 2017; 12:379-389. [PMID: 28277839 DOI: 10.1080/17460441.2017.1297416] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Patients with metastatic cancer suffer the highest rate of cancer-related death, but existing animal models of metastasis have disadvantages that limit our ability to understand this process. The zebrafish is increasingly used for cancer modelling, particularly xenografting of human cancer cell lines, and drug discovery, and may provide novel scientific and therapeutic insights. However, this model system remains underexploited. Areas covered: The authors discuss the advantages and disadvantages of the zebrafish xenograft model for the study of cancer, metastasis and drug discovery. They summarise previous work investigating the metastatic cascade, such as tumour-induced angiogenesis, intravasation, extravasation, dissemination and homing, invasion at secondary sites, assessing metastatic potential and evaluation of cancer stem cells in zebrafish. Expert opinion: The practical advantages of zebrafish for basic biological study and drug discovery are indisputable. However, their ability to sufficiently reproduce and predict the behaviour of human cancer and metastasis remains unproven. For this to be resolved, novel mechanisms must to be discovered in zebrafish that are subsequently validated in humans, and for therapeutic interventions that modulate cancer favourably in zebrafish to successfully translate to human clinical studies. In the meantime, more work is required to establish the most informative methods in zebrafish.
Collapse
Affiliation(s)
- Hannah K Brown
- a Department of Oncology and Metabolism , The Medical School, University of Sheffield , Sheffield , UK.,b Sarcoma Research Unit, Medical School , INSERM, European Associated Laboratory, University of Sheffield , Sheffield , UK
| | - Kristina Schiavone
- a Department of Oncology and Metabolism , The Medical School, University of Sheffield , Sheffield , UK.,b Sarcoma Research Unit, Medical School , INSERM, European Associated Laboratory, University of Sheffield , Sheffield , UK
| | - Simon Tazzyman
- a Department of Oncology and Metabolism , The Medical School, University of Sheffield , Sheffield , UK.,c The Bateson Centre for Lifecourse Biology , University of Sheffield, Western Bank , Sheffield , UK
| | - Dominique Heymann
- a Department of Oncology and Metabolism , The Medical School, University of Sheffield , Sheffield , UK.,b Sarcoma Research Unit, Medical School , INSERM, European Associated Laboratory, University of Sheffield , Sheffield , UK.,d UMR 957, Pathophysiology of Bone Resorption and Therapy of Primary Bone Tumours , Nantes University Hospital , Nantes , France.,e Faculty of Medicine , INSERM, UMR 957, Pathophysiology of Bone Resorption and Therapy of Primary Bone Tumours, Equipe Ligue 2012, University of Nantes , Nantes , France
| | - Timothy Ja Chico
- c The Bateson Centre for Lifecourse Biology , University of Sheffield, Western Bank , Sheffield , UK.,f Department of Infection, Immunity & Cardiovascular Disease , The Medical School, University of Sheffield , Sheffield , UK
| |
Collapse
|
7
|
Spraggon L, Martelotto LG, Hmeljak J, Hitchman TD, Wang J, Wang L, Slotkin EK, Fan PD, Reis-Filho JS, Ladanyi M. Generation of conditional oncogenic chromosomal translocations using CRISPR-Cas9 genomic editing and homology-directed repair. J Pathol 2017; 242:102-112. [PMID: 28188619 DOI: 10.1002/path.4883] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 01/27/2017] [Accepted: 01/30/2017] [Indexed: 01/11/2023]
Abstract
Chromosomal rearrangements encoding oncogenic fusion proteins are found in a wide variety of malignancies. The use of programmable nucleases to generate specific double-strand breaks in endogenous loci, followed by non-homologous end joining DNA repair, has allowed several of these translocations to be generated as constitutively expressed fusion genes within a cell population. Here, we describe a novel approach that combines CRISPR-Cas9 technology with homology-directed repair to engineer, capture, and modulate the expression of chromosomal translocation products in a human cell line. We have applied this approach to the genetic modelling of t(11;22)(q24;q12) and t(11;22)(p13;q12), translocation products of the EWSR1 gene and its 3' fusion partners FLI1 and WT1, present in Ewing's sarcoma and desmoplastic small round cell tumour, respectively. Our innovative approach allows for temporal control of the expression of engineered endogenous chromosomal rearrangements, and provides a means to generate models to study tumours driven by fusion genes. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Lee Spraggon
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Luciano G Martelotto
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Julija Hmeljak
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tyler D Hitchman
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jiang Wang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lu Wang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Emily K Slotkin
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Pang-Dian Fan
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jorge S Reis-Filho
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marc Ladanyi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|