1
|
El-Tanani M, Rabbani SA, Satyam SM, Rangraze IR, Wali AF, El-Tanani Y, Aljabali AAA. Deciphering the Role of Cancer Stem Cells: Drivers of Tumor Evolution, Therapeutic Resistance, and Precision Medicine Strategies. Cancers (Basel) 2025; 17:382. [PMID: 39941751 PMCID: PMC11815874 DOI: 10.3390/cancers17030382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/17/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
Cancer stem cells (CSCs) play a central role in tumor progression, recurrence, and resistance to conventional therapies, making them a critical focus in oncology research. This review provides a comprehensive analysis of CSC biology, emphasizing their self-renewal, differentiation, and dynamic interactions with the tumor microenvironment (TME). Key signaling pathways, including Wnt, Notch, and Hedgehog, are discussed in detail to highlight their potential as therapeutic targets. Current methodologies for isolating CSCs are critically examined, addressing their advantages and limitations in advancing precision medicine. Emerging technologies, such as CRISPR/Cas9 and single-cell sequencing, are explored for their transformative potential in unraveling CSC heterogeneity and informing therapeutic strategies. The review also underscores the pivotal role of the TME in supporting CSC survival, promoting metastasis, and contributing to therapeutic resistance. Challenges arising from CSC-driven tumor heterogeneity and dormancy are analyzed, along with strategies to mitigate these barriers, including novel therapeutics and targeted approaches. Ethical considerations and the integration of artificial intelligence in designing CSC-specific therapies are discussed as essential elements of future research. The manuscript advocates for a multi-disciplinary approach that combines innovative technologies, advanced therapeutics, and collaborative research to address the complexities of CSCs. By bridging existing gaps in knowledge and fostering advancements in personalized medicine, this review aims to guide the development of more effective cancer treatment strategies, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Mohamed El-Tanani
- RAK College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah P.O. Box 11172, United Arab Emirates
| | - Syed Arman Rabbani
- Department of Clinical Pharmacy, RAK College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah P.O. Box 11172, United Arab Emirates
| | - Shakta Mani Satyam
- Department of Pharmacology, RAK College of Medical Sciences, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah P.O. Box 11172, United Arab Emirates
| | - Imran Rashid Rangraze
- Department of Internal Medicine, RAK College of Medical Sciences, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah P.O. Box 11172, United Arab Emirates
| | - Adil Farooq Wali
- Department of Medicinal Chemistry, RAK College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah P.O. Box 11172, United Arab Emirates
| | | | - Alaa A. A. Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan
| |
Collapse
|
2
|
Wang SSY. Advancing biomarker development for diagnostics and therapeutics using solid tumour cancer stem cell models. TUMORI JOURNAL 2024; 110:10-24. [PMID: 36964664 DOI: 10.1177/03008916231158411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
The cancer stem cell model hopes to explain solid tumour carcinogenesis, tumour progression and treatment failure in cancers. However, the cancer stem cell model has led to minimal clinical translation to cancer stem cell biomarkers and targeted therapies in solid tumours. Many reasons underlie the challenges, one being the imperfect understanding of the cancer stem cell model. This review hopes to spur further research into clinically translatable cancer stem cell biomarkers through first defining cancer stem cells and their associated models. With a better understanding of these models there would be a development of more accurate biomarkers. Making the clinical translation of biomarkers into diagnostic tools and therapeutic agents more feasible.
Collapse
|
3
|
Zaarour RF, Ribeiro M, Azzarone B, Kapoor S, Chouaib S. Tumor microenvironment-induced tumor cell plasticity: relationship with hypoxic stress and impact on tumor resistance. Front Oncol 2023; 13:1222575. [PMID: 37886168 PMCID: PMC10598765 DOI: 10.3389/fonc.2023.1222575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023] Open
Abstract
The role of tumor interaction with stromal components during carcinogenesis is crucial for the design of efficient cancer treatment approaches. It is widely admitted that tumor hypoxic stress is associated with tumor aggressiveness and thus impacts susceptibility and resistance to different types of treatments. Notable biological processes that hypoxia functions in include its regulation of tumor heterogeneity and plasticity. While hypoxia has been reported as a major player in tumor survival and dissemination regulation, the significance of hypoxia inducible factors in cancer stem cell development remains poorly understood. Several reports indicate that the emergence of cancer stem cells in addition to their phenotype and function within a hypoxic tumor microenvironment impacts cancer progression. In this respect, evidence showed that cancer stem cells are key elements of intratumoral heterogeneity and more importantly are responsible for tumor relapse and escape to treatments. This paper briefly reviews our current knowledge of the interaction between tumor hypoxic stress and its role in stemness acquisition and maintenance. Our review extensively covers the influence of hypoxia on the formation and maintenance of cancer stem cells and discusses the potential of targeting hypoxia-induced alterations in the expression and function of the so far known stem cell markers in cancer therapy approaches. We believe that a better and integrated understanding of the effect of hypoxia on stemness during carcinogenesis might lead to new strategies for exploiting hypoxia-associated pathways and their targeting in the clinical setting in order to overcome resistance mechanisms. More importantly, at the present time, efforts are oriented towards the design of innovative therapeutical approaches that specifically target cancer stem cells.
Collapse
Affiliation(s)
- RF. Zaarour
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - M. Ribeiro
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - B. Azzarone
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - S. Kapoor
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - S. Chouaib
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Faculty of Medicine, University Paris-Saclay, Villejuif, France
| |
Collapse
|
4
|
Bonartsev AP, Lei B, Kholina MS, Menshikh KA, Svyatoslavov DS, Samoylova SI, Sinelnikov MY, Voinova VV, Shaitan KV, Kirpichnikov MP, Reshetov IV. Models of head and neck squamous cell carcinoma using bioengineering approaches. Crit Rev Oncol Hematol 2022; 175:103724. [PMID: 35609774 DOI: 10.1016/j.critrevonc.2022.103724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/24/2022] [Accepted: 05/18/2022] [Indexed: 11/21/2022] Open
Abstract
The use of bioengineering methods and approaches is extremely promising for the development of experimental models of cancer, especially head and neck squamous cell carcinomas (HNSCC) that are characterized by early metastasis and rapid progression., for testing novel anticancer drugs and diagnostics. This review summarizes the most relevant HNSCC tumor models used to this day as well as future directions for improved modeling of the malignant disease. Apart from conventional 2D-cell cultivation methods and in vivo animal cancer models a number of bioengineering techniques of modeling HNSCC tumors were reported: genetic-engineering, ethanol/tobacco exposure experiment, spheroids, hydrogel-based cell culture, scaffold-based cell culture, microfluidics, bone-tumor niche cell culture, cancer and normal cells co-culture, cancer cells, and bacteria co-culture. An organized set of these models can constitute a system of HNSCC experimental modeling, which gives potential towards developing the newest approaches in the diagnosis, prevention, and treatment of HNSCC.
Collapse
Affiliation(s)
- Anton P Bonartsev
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, Moscow 119234, Russia.
| | - Bo Lei
- Frontier Institute of Science and Technology, Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710000, China; National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710000, China; Instrument Analysis Center, Xi'an Jiaotong University, Xi'an 710054, China.
| | - Margarita S Kholina
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, Moscow 119234, Russia.
| | - Ksenia A Menshikh
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, Moscow 119234, Russia.
| | - Dmitriy S Svyatoslavov
- I.M.Sechenov First Moscow State Medical University, Trubetskaya 8-2, Moscow 119991, Russia.
| | - Svetlana I Samoylova
- I.M.Sechenov First Moscow State Medical University, Trubetskaya 8-2, Moscow 119991, Russia.
| | - Mikhail Y Sinelnikov
- I.M.Sechenov First Moscow State Medical University, Trubetskaya 8-2, Moscow 119991, Russia.
| | - Vera V Voinova
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, Moscow 119234, Russia.
| | - Konstantin V Shaitan
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, Moscow 119234, Russia.
| | - Mikhail P Kirpichnikov
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, Moscow 119234, Russia.
| | - Igor V Reshetov
- I.M.Sechenov First Moscow State Medical University, Trubetskaya 8-2, Moscow 119991, Russia.
| |
Collapse
|
5
|
Brown G, Petrie K. The RARγ Oncogene: An Achilles Heel for Some Cancers. Int J Mol Sci 2021; 22:3632. [PMID: 33807298 PMCID: PMC8036636 DOI: 10.3390/ijms22073632] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer "stem cells" (CSCs) sustain the hierarchies of dividing cells that characterize cancer. The main causes of cancer-related mortality are metastatic disease and relapse, both of which originate primarily from CSCs, so their eradication may provide a bona fide curative strategy, though there maybe also the need to kill the bulk cancer cells. While classic anti-cancer chemotherapy is effective against the dividing progeny of CSCs, non-dividing or quiescent CSCs are often spared. Improved anti-cancer therapies therefore require approaches that target non-dividing CSCs, which must be underpinned by a better understanding of factors that permit these cells to maintain a stem cell-like state. During hematopoiesis, retinoic acid receptor (RAR) γ is selectively expressed by stem cells and their immediate progeny. It is overexpressed in, and is an oncogene for, many cancers including colorectal, renal and hepatocellular carcinoma, cholangiocarcinomas and some cases of acute myeloid leukemia that harbor RARγ fusion proteins. In vitro studies suggest that RARγ-selective and pan-RAR antagonists provoke the death of CSCs by necroptosis and point to antagonism of RARγ as a potential strategy to treat metastatic disease and relapse, and perhaps provide a cure for some cancers.
Collapse
Affiliation(s)
- Geoffrey Brown
- Institute of Clinical Sciences, School of Biomedical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B152TT, UK
| | - Kevin Petrie
- School of Medicine, Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland SR13SD, UK;
| |
Collapse
|
6
|
Hypoxia-Induced Cancer Cell Responses Driving Radioresistance of Hypoxic Tumors: Approaches to Targeting and Radiosensitizing. Cancers (Basel) 2021; 13:cancers13051102. [PMID: 33806538 PMCID: PMC7961562 DOI: 10.3390/cancers13051102] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/21/2021] [Accepted: 02/25/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Some regions of aggressive malignancies experience hypoxia due to inadequate blood supply. Cancer cells adapting to hypoxic conditions somehow become more resistant to radiation exposure and this decreases the efficacy of radiotherapy toward hypoxic tumors. The present review article helps clarify two intriguing points: why hypoxia-adapted cancer cells turn out radioresistant and how they can be rendered more radiosensitive. The critical molecular targets associated with intratumoral hypoxia and various approaches are here discussed which may be used for sensitizing hypoxic tumors to radiotherapy. Abstract Within aggressive malignancies, there usually are the “hypoxic zones”—poorly vascularized regions where tumor cells undergo oxygen deficiency through inadequate blood supply. Besides, hypoxia may arise in tumors as a result of antiangiogenic therapy or transarterial embolization. Adapting to hypoxia, tumor cells acquire a hypoxia-resistant phenotype with the characteristic alterations in signaling, gene expression and metabolism. Both the lack of oxygen by itself and the hypoxia-responsive phenotypic modulations render tumor cells more radioresistant, so that hypoxic tumors are a serious challenge for radiotherapy. An understanding of causes of the radioresistance of hypoxic tumors would help to develop novel ways for overcoming this challenge. Molecular targets for and various approaches to radiosensitizing hypoxic tumors are considered in the present review. It is here analyzed how the hypoxia-induced cellular responses involving hypoxia-inducible factor-1, heat shock transcription factor 1, heat shock proteins, glucose-regulated proteins, epigenetic regulators, autophagy, energy metabolism reprogramming, epithelial–mesenchymal transition and exosome generation contribute to the radioresistance of hypoxic tumors or may be inhibited for attenuating this radioresistance. The pretreatments with a multitarget inhibition of the cancer cell adaptation to hypoxia seem to be a promising approach to sensitizing hypoxic carcinomas, gliomas, lymphomas, sarcomas to radiotherapy and, also, liver tumors to radioembolization.
Collapse
|
7
|
Giuli MV, Hanieh PN, Giuliani E, Rinaldi F, Marianecci C, Screpanti I, Checquolo S, Carafa M. Current Trends in ATRA Delivery for Cancer Therapy. Pharmaceutics 2020; 12:E707. [PMID: 32731612 PMCID: PMC7465813 DOI: 10.3390/pharmaceutics12080707] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/23/2020] [Accepted: 07/25/2020] [Indexed: 12/12/2022] Open
Abstract
All-Trans Retinoic Acid (ATRA) is the most active metabolite of vitamin A. It is critically involved in the regulation of multiple processes, such as cell differentiation and apoptosis, by activating specific genomic pathways or by influencing key signaling proteins. Furthermore, mounting evidence highlights the anti-tumor activity of this compound. Notably, oral administration of ATRA is the first choice treatment in Acute Promyelocytic Leukemia (APL) in adults and NeuroBlastoma (NB) in children. Regrettably, the promising results obtained for these diseases have not been translated yet into the clinics for solid tumors. This is mainly due to ATRA-resistance developed by cancer cells and to ineffective delivery and targeting. This up-to-date review deals with recent studies on different ATRA-loaded Drug Delivery Systems (DDSs) development and application on several tumor models. Moreover, patents, pre-clinical, and clinical studies are also reviewed. To sum up, the main aim of this in-depth review is to provide a detailed overview of the several attempts which have been made in the recent years to ameliorate ATRA delivery and targeting in cancer.
Collapse
Affiliation(s)
- Maria Valeria Giuli
- Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (M.V.G.); (E.G.); (I.S.)
| | - Patrizia Nadia Hanieh
- Department of Drug Chemistry and Technology, Sapienza University of Rome, 00185 Rome, Italy; (P.N.H.); (F.R.); (C.M.); (M.C.)
| | - Eugenia Giuliani
- Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (M.V.G.); (E.G.); (I.S.)
| | - Federica Rinaldi
- Department of Drug Chemistry and Technology, Sapienza University of Rome, 00185 Rome, Italy; (P.N.H.); (F.R.); (C.M.); (M.C.)
| | - Carlotta Marianecci
- Department of Drug Chemistry and Technology, Sapienza University of Rome, 00185 Rome, Italy; (P.N.H.); (F.R.); (C.M.); (M.C.)
| | - Isabella Screpanti
- Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (M.V.G.); (E.G.); (I.S.)
| | - Saula Checquolo
- Department of Medico-Surgical Sciences and Biotechnology, Sapienza University of Rome, 04100 Latina, Italy
| | - Maria Carafa
- Department of Drug Chemistry and Technology, Sapienza University of Rome, 00185 Rome, Italy; (P.N.H.); (F.R.); (C.M.); (M.C.)
| |
Collapse
|
8
|
Marcu LG. Cancer stem cells as therapeutic targets of pancreatic cancer. Fundam Clin Pharmacol 2020; 34:200-201. [PMID: 31944386 DOI: 10.1111/fcp.12536] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Loredana G Marcu
- Faculty of Informatics & Science, University of Oradea, Oradea, 410087, Romania.,School of Health Sciences, University of South Australia, Adelaide, SA, 5001, Australia
| |
Collapse
|
9
|
Forster JC, Marcu LG, Bezak E. Approaches to combat hypoxia in cancer therapy and the potential for in silico models in their evaluation. Phys Med 2019; 64:145-156. [PMID: 31515013 DOI: 10.1016/j.ejmp.2019.07.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/17/2019] [Accepted: 07/09/2019] [Indexed: 02/07/2023] Open
Abstract
AIM The negative impact of tumour hypoxia on cancer treatment outcome has been long-known, yet there has been little success combating it. This paper investigates the potential role of in silico modelling to help test emerging hypoxia-targeting treatments in cancer therapy. METHODS A Medline search was undertaken on the current landscape of in silico models that simulate cancer therapy and evaluate their ability to test hypoxia-targeting treatments. Techniques and treatments to combat tumour hypoxia and their current challenges are also presented. RESULTS Hypoxia-targeting treatments include tumour reoxygenation, hypoxic cell radiosensitization with nitroimidazoles, hypoxia-activated prodrugs and molecular targeting. Their main challenges are toxicity and not achieving adequate delivery to hypoxic regions of the tumour. There is promising research toward combining two or more of these techniques. Different types of in silico therapy models have been developed ranging from temporal to spatial and from stochastic to deterministic models. Numerous models have compared the effectiveness of different radiotherapy fractionation schedules for controlling hypoxic tumours. Similarly, models could help identify and optimize new treatments for overcoming hypoxia that utilize novel hypoxia-targeting technology. CONCLUSION Current therapy models should attempt to incorporate more sophisticated modelling of tumour angiogenesis/vasculature and vessel perfusion in order to become more useful for testing hypoxia-targeting treatments, which typically rely upon the tumour vasculature for delivery of additional oxygen, (pro)drugs and nanoparticles.
Collapse
Affiliation(s)
- Jake C Forster
- SA Medical Imaging, Department of Nuclear Medicine, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia; Department of Physics, University of Adelaide, North Terrace, Adelaide SA 5005, Australia
| | - Loredana G Marcu
- Faculty of Science, University of Oradea, Oradea 410087, Romania; Cancer Research Institute and School of Health Sciences, University of South Australia, Adelaide SA 5001, Australia.
| | - Eva Bezak
- Department of Physics, University of Adelaide, North Terrace, Adelaide SA 5005, Australia; Cancer Research Institute and School of Health Sciences, University of South Australia, Adelaide SA 5001, Australia
| |
Collapse
|
10
|
Forster JC, Douglass MJJ, Harriss-Phillips WM, Bezak E. Simulation of head and neck cancer oxygenation and doubling time in a 4D cellular model with angiogenesis. Sci Rep 2017; 7:11037. [PMID: 28887560 PMCID: PMC5591194 DOI: 10.1038/s41598-017-11444-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/18/2017] [Indexed: 11/09/2022] Open
Abstract
Tumor oxygenation has been correlated with treatment outcome for radiotherapy. In this work, the dependence of tumor oxygenation on tumor vascularity and blood oxygenation was determined quantitatively in a 4D stochastic computational model of head and neck squamous cell carcinoma (HNSCC) tumor growth and angiogenesis. Additionally, the impacts of the tumor oxygenation and the cancer stem cell (CSC) symmetric division probability on the tumor volume doubling time and the proportion of CSCs in the tumor were also quantified. Clinically relevant vascularities and blood oxygenations for HNSCC yielded tumor oxygenations in agreement with clinical data for HNSCC. The doubling time varied by a factor of 3 from well oxygenated tumors to the most severely hypoxic tumors of HNSCC. To obtain the doubling times and CSC proportions clinically observed in HNSCC, the model predicts a CSC symmetric division probability of approximately 2% before treatment. To obtain the doubling times clinically observed during treatment when accelerated repopulation is occurring, the model predicts a CSC symmetric division probability of approximately 50%, which also results in CSC proportions of 30-35% during this time.
Collapse
Affiliation(s)
- Jake C Forster
- Department of Physics, University of Adelaide, North Terrace, Adelaide, South Australia, 5005, Australia. .,Department of Medical Physics, Royal Adelaide Hospital, North Terrace, Adelaide, South Australia, 5000, Australia.
| | - Michael J J Douglass
- Department of Physics, University of Adelaide, North Terrace, Adelaide, South Australia, 5005, Australia.,Department of Medical Physics, Royal Adelaide Hospital, North Terrace, Adelaide, South Australia, 5000, Australia
| | - Wendy M Harriss-Phillips
- Department of Physics, University of Adelaide, North Terrace, Adelaide, South Australia, 5005, Australia.,Department of Medical Physics, Royal Adelaide Hospital, North Terrace, Adelaide, South Australia, 5000, Australia
| | - Eva Bezak
- Department of Physics, University of Adelaide, North Terrace, Adelaide, South Australia, 5005, Australia.,Sansom Institute for Health Research and the School of Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
11
|
Marcu LG, Marcu D. The effect of targeted therapy on recruited cancer stem cells in a head and neck carcinoma model. Cell Prolif 2017; 50. [PMID: 28857306 DOI: 10.1111/cpr.12380] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 08/04/2017] [Indexed: 01/15/2023] Open
Abstract
OBJECTIVE Head and neck cancers (HNC) are known for their repopulation ability driven by cancer stem cells (CSCs). While a small fraction of CSCs proliferates, there are quiescent CSCs that are long-lived and reside outside the cell cycle. Recruitment of quiescent CSCs into the cycle occurs as a response to cell loss and their proliferation may lead to treatment failure. Therefore, CSCs require a more targeted approach to be destroyed. An agent that sensitizes CSC response to treatment is all-trans-retinoic acid (ATRA). The aim of this work is to assess the impact of ATRA combined with radiotherapy on HNC and to analyse the interplay between these agents and cell recruitment. METHODS An in silico model is employed to grow a HNC consisting of all cancer cell lineages, with biologically valid kinetic and dynamic parameters. The fate of both cycling and quiescent cancer stem cells is assessed. The Linear Quadratic model is used to simulate radiotherapy, while cellular recruitment and the effects of ATRA on cancer stem cells are modelled based on literature data. RESULTS A Dose Enhancement Factor (DEF) was determined in order to undertake a quantitative assessment of the effect of ATRA on tumour control. Without recruitment, DEF for the tumour population is 1.06, indicating a slight radiosensitizing effect. Yet, when CSCs are being recruited, the dose enhancement factor is significantly greater (DEF = 1.89). Radiation-induced cell arrest and CSC sensitization by ATRA significantly decreases the dose required for CSC eradication in the cycling population. However, the tumour as a whole is not notably affected as the quiescent cells appear to dictate the shape of the survival curve. CONCLUSIONS The model shows that ATRA exhibits a powerful effect on CSCs when combined with radiotherapy. However, the more radioresistant quiescent cell population should not be ignored, as it can be a potential threat to treatment outcome when cells are recruited into the cell cycle.
Collapse
Affiliation(s)
- Loredana G Marcu
- Faculty of Science, University of Oradea, Romania.,School of Health Sciences, University of South Australia, SA, Australia
| | - David Marcu
- Faculty of Science, University of Oradea, Romania
| |
Collapse
|