1
|
Song S, Hwang CW. Microbial degradation of the benzimidazole fungicide carbendazim by Bacillus velezensis HY-3479. Int Microbiol 2024; 27:797-805. [PMID: 37710143 DOI: 10.1007/s10123-023-00427-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/30/2023] [Accepted: 08/25/2023] [Indexed: 09/16/2023]
Abstract
Carbendazim (methyl benzimidazol-2-ylcarbamate: MBC) is a fungicide of the benzimidazole group that is widely used in the cultivation of pepper, ginseng, and many other crops. To remove the remnant carbendazim, many rhizobacteria are used as biodegradation agents. A bacterial strain of soil-isolated Bacillus velezensis HY-3479 was found to be capable of degrading MBC in M9 minimal medium supplemented with 250 mg/L carbendazim. The strain had a significantly higher degradation efficiency compared to the control strain Bacillus subtilis KACC 15590 in high-performance liquid chromatography (HPLC) analysis, and HY-3479 had the best degradation efficiency of 76.99% at 48 h. In gene expression analysis, upregulation of carbendazim-degrading genes (mheI, hdx) was observed in the strain. HY-3479 was able to use MBC as the sole source of carbon and nitrogen, but the addition of 12.5 mM NH4NO3 significantly increased the degradation efficiency. HPLC analysis showed that the degradation efficiency increased to 87.19% when NH4NO3 was added. Relative gene expression of mheI and hdx also increased for samples with NH4NO3 supplementation. The enzyme activity of the carbendazim-degrading enzyme and the 2-aminobenzimidazole-degrading enzyme was found to be highly present in the HY-3479 strain. It is the first reported B. velezensis strain to biodegrade carbendazim (MBC). The biodegradation activity of strain HY-3479 may be developed as a useful means for bioremediation and used as a potential microbial agent in sustainable agriculture.
Collapse
Affiliation(s)
- Suyoung Song
- Department of Advanced Convergence, Handong Global University, Pohang, 37554, South Korea
| | - Cher-Won Hwang
- Department of Global Leadership School, Handong Global University, Pohang, 37554, South Korea.
| |
Collapse
|
2
|
Karjee P, Mandal S, Debnath B, Namdev N, Punniyamurthy T. Expedient (3+3)-annulation of in situ generated azaoxyallyl cations with diaziridines. Chem Commun (Camb) 2023. [PMID: 37317582 DOI: 10.1039/d3cc02136j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Efficient annulation of in situ formed azaoxyallyl cations using a base has been accomplished with diaziridines to provide 1,2,4-triazines at room temperature. The substrate scope, scale up, functional group tolerance and transition-metal free reaction conditions are the important practical features.
Collapse
Affiliation(s)
- Pallab Karjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | - Santu Mandal
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | - Bijoy Debnath
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | - Nirali Namdev
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | | |
Collapse
|
3
|
Behera S, Das S. Potential and prospects of Actinobacteria in the bioremediation of environmental pollutants: Cellular mechanisms and genetic regulations. Microbiol Res 2023; 273:127399. [PMID: 37150049 DOI: 10.1016/j.micres.2023.127399] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/22/2023] [Accepted: 04/30/2023] [Indexed: 05/09/2023]
Abstract
Increasing industrialization and anthropogenic activities have resulted in the release of a wide variety of pollutants into the environment including pesticides, polycyclic aromatic hydrocarbons (PAHs), and heavy metals. These pollutants pose a serious threat to human health as well as to the ecosystem. Thus, the removal of these compounds from the environment is highly important. Mitigation of the environmental pollution caused by these pollutants via bioremediation has become a promising approach nowadays. Actinobacteria are a group of eubacteria mostly known for their ability to produce secondary metabolites. The morphological features such as spore formation, filamentous growth, higher surface area to volume ratio, and cellular mechanisms like EPS secretion, and siderophore production in Actinobacteria render higher resistance and biodegradation ability. In addition, these bacteria possess several oxidoreductase systems (oxyR, catR, furA, etc.) which help in bioremediation. Actinobacteria genera including Arthrobacter, Rhodococcus, Streptomyces, Nocardia, Microbacterium, etc. have shown great potential for the bioremediation of various pollutants. In this review, the bioremediation ability of these bacteria has been discussed in detail. The utilization of various genera of Actinobacteria for the biodegradation of organic pollutants, including pesticides and PAHs, and inorganic pollutants like heavy metals has been described. In addition, the cellular mechanisms in these microbes which help to withstand oxidative stress have been discussed. Finally, this review explores the Actinobacteria mediated strategies and recent technologies such as the utilization of mixed cultures, cell immobilization, plant-microbe interaction, utilization of biosurfactants and nanoparticles, etc., to enhance the bioremediation of various environmental pollutants.
Collapse
Affiliation(s)
- Shivananda Behera
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela 769 008, Odisha, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela 769 008, Odisha, India.
| |
Collapse
|
4
|
Aldas-Vargas A, Poursat BAJ, Sutton NB. Potential and limitations for monitoring of pesticide biodegradation at trace concentrations in water and soil. World J Microbiol Biotechnol 2022; 38:240. [PMID: 36261779 PMCID: PMC9581840 DOI: 10.1007/s11274-022-03426-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022]
Abstract
Pesticides application on agricultural fields results in pesticides being released into the environment, reaching soil, surface water and groundwater. Pesticides fate and transformation in the environment depend on environmental conditions as well as physical, chemical and biological degradation processes. Monitoring pesticides biodegradation in the environment is challenging, considering that traditional indicators, such as changes in pesticides concentration or identification of pesticide metabolites, are not suitable for many pesticides in anaerobic environments. Furthermore, those indicators cannot distinguish between biotic and abiotic pesticide degradation processes. For that reason, the use of molecular tools is important to monitor pesticide biodegradation-related genes or microorganisms in the environment. The development of targeted molecular (e.g., qPCR) tools, although laborious, allowed biodegradation monitoring by targeting the presence and expression of known catabolic genes of popular pesticides. Explorative molecular tools (i.e., metagenomics & metatranscriptomics), while requiring extensive data analysis, proved to have potential for screening the biodegradation potential and activity of more than one compound at the time. The application of molecular tools developed in laboratory and validated under controlled environments, face challenges when applied in the field due to the heterogeneity in pesticides distribution as well as natural environmental differences. However, for monitoring pesticides biodegradation in the field, the use of molecular tools combined with metadata is an important tool for understanding fate and transformation of the different pesticides present in the environment.
Collapse
Affiliation(s)
- Andrea Aldas-Vargas
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 EV, Wageningen, The Netherlands
| | - Baptiste A J Poursat
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 EV, Wageningen, The Netherlands
| | - Nora B Sutton
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 EV, Wageningen, The Netherlands.
| |
Collapse
|
5
|
Ma Q, Tan H, Song J, Li M, Wang Z, Parales RE, Li L, Ruan Z. Effects of long-term exposure to the herbicide nicosulfuron on the bacterial community structure in a factory field. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119477. [PMID: 35598816 DOI: 10.1016/j.envpol.2022.119477] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/27/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
This study aims to investigate the effects of long-term nicosulfuron residue on an herbicide factory ecosystem. High-throughput sequencing was used to investigate the environmental microbial community structure and interactions. The results showed that the main contributor to the differences in the microbial community structure was the sample type, followed by oxygen content, pH and nicosulfuron residue concentration. Regardless of the presence or absence of nicosulfuron, soil, sludge, and sewage were dominated by groups of Bacteroidetes, Actinobacteria, and Proteobacteria. Long-term exposure to nicosulfuron increased alpha diversity of bacteria and archaea but significantly decreased the abundance of Bacteroidetes and Acidobateria compared to soils without nicosulfuron residue. A total of 81 possible nicosulfuron-degrading bacterial genera, e.g., Rhodococcus, Chryseobacterium, Thermomonas, Stenotrophomonas, and Bacillus, were isolated from the nicosulfuron factory environmental samples through culturomics. The co-occurrence network analysis indicated that the keystone taxa were Rhodococcus, Stenotrophomonas, Nitrospira, Terrimonas, and Nitrosomonadaceae_MND1. The strong ecological relationship between microorganisms with the same network module was related to anaerobic respiration, the carbon and nitrogen cycle, and the degradation of environmental contaminants. Synthetic community (SynCom), which provides an effective top-down approach for the critical degradation strains obtained, enhanced the degradation efficiency of nicosulfuron. The results indicated that Rhodococcus sp. was the key genus in the environment of long-term nicosulfuron exposure.
Collapse
Affiliation(s)
- Qingyun Ma
- CAAS-CIAT Joint Laboratory in Advanced Technologies for Sustainable Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China; State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, PR China
| | - Hao Tan
- CAAS-CIAT Joint Laboratory in Advanced Technologies for Sustainable Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Jinlong Song
- Chinese Academy of Fishery Sciences, Beijing, 100141, PR China
| | - Miaomiao Li
- CAAS-CIAT Joint Laboratory in Advanced Technologies for Sustainable Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Zhiye Wang
- Key Laboratory of Microbial Resources Exploitation and Application of Gansu Province, Institute of Biology, Gansu Academy of Sciences, Lanzhou, 730000, PR China
| | - Rebecca E Parales
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA, USA
| | - Lin Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, PR China
| | - Zhiyong Ruan
- CAAS-CIAT Joint Laboratory in Advanced Technologies for Sustainable Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China; College of Resources and Environment, Tibet Agricultural and Animal Husbandry University, Linzhi, 860000, PR China; College of Life Sciences, Yantai University, Yantai, 264005, PR China.
| |
Collapse
|
6
|
Anwar S, Wahla AQ, Ali T, Khaliq S, Imran A, Tawab A, Afzal M, Iqbal S. Biodegradation and Subsequent Toxicity Reduction of Co-contaminants Tribenuron Methyl and Metsulfuron Methyl by a Bacterial Consortium B2R. ACS OMEGA 2022; 7:19816-19827. [PMID: 35721981 PMCID: PMC9202245 DOI: 10.1021/acsomega.2c01583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
AllyMax is a widely used herbicide formulation in wheat-rice cropping areas of the world. The residues of its active ingredients, tribenuron methyl (TBM) and metsulfuron methyl (MET), persist in soil and water as co-contaminants, and cause serious threats to nontarget organisms. This study was performed to assess the potential of a bacterial consortium for the degradation and detoxification of TBM and MET individually and as co-contaminants. A bacterial consortium (B2R), comprising Bacillus cereus SU-1, Bacillus velezensis OS-2, and Rhodococcus rhodochrous AQ1, capable of degrading TBM and MET in liquid cultures was developed. Biodegradation of TBM and MET was optimized using the Taguchi design of experiment. Optimum degradation of both TBM and MET was obtained at pH 7 and 37 °C. Regarding media composition, optimum degradation of TBM and MET was obtained in minimal salt medium (MSM) supplemented with glucose, and MSM without glucose, respectively. The consortium simultaneously degraded TBM and MET (94.8 and 80.4%, respectively) in cultures containing the formulation AllyMax, where TBM and MET existed as co-contaminants at 2.5 mg/L each. Mass spectrometry analysis confirmed that during biodegradation, TBM and MET were metabolized into simpler compounds. Onion (Allium cepa) root inhibition and Comet assays revealed that the bacterial consortium B2R detoxified TBM and MET separately and as co-contaminants. The consortium B2R can potentially be used for the remediation of soil and water co-contaminated with TBM and MET.
Collapse
Affiliation(s)
- Samina Anwar
- Soil
& Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College,
Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Pakistan
| | - Abdul Qadeer Wahla
- Soil
& Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College,
Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Pakistan
| | - Tayyaba Ali
- Department
of Zoology, Government College University, Allama Iqbal Road, Faisalabad 38000, Pakistan
| | - Shazia Khaliq
- Industrial
Biotechnology Division, National Institute
for Biotechnology and Genetic Engineering College, Pakistan Institute
of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Pakistan
| | - Asma Imran
- Soil
& Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College,
Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Pakistan
| | - Abdul Tawab
- Health
Biotechnology Division, National Institute
for Biotechnology and Genetic Engineering College, Pakistan Institute
of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Pakistan
| | - Muhammad Afzal
- Soil
& Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College,
Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Pakistan
| | - Samina Iqbal
- Soil
& Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College,
Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Pakistan
| |
Collapse
|
7
|
Malla MA, Dubey A, Kumar A, Yadav S. Metagenomic analysis displays the potential predictive biodegradation pathways of the persistent pesticides in agricultural soil with a long record of pesticide usage. Microbiol Res 2022; 261:127081. [DOI: 10.1016/j.micres.2022.127081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 05/13/2022] [Accepted: 05/24/2022] [Indexed: 12/29/2022]
|
8
|
Abstract
Pesticides are applied in agricultural fields for controlling pest population to achieve crop protection. But they cause damage to nontarget organisms and affect the quality of environment including water, air and soil. The present study has been designed to test the efficiency of Pseudomonas stutzerion the degradation of malathion. The bacterial strain was subjected to 50, 100, 150 and 200 ppm of malathion in minimal broth for 30 hours and changes in orthophosphate levels, pH and turbidity were monitored for every six hours. Efficiency of free and immobilized cells were compared for orthophosphate release. Influence of different sugars on degradation was also compared. Degradation of 150 ppm of malathion was confirmed with UV-Visible spectrophotometric analysis and HPLC analysis. The data were subjected to two way analysis of variance and the results are discussed.
Collapse
Affiliation(s)
- Vaishali S
- PG Department of Microbiology, The American College, Madurai, Tamil Nadu, India
| | - Surendran A
- PG & Research Department of Zoology, The American College, Madurai, Tamil Nadu, India
| | - Thatheyus A.J
- PG & Research Department of Zoology, The American College, Madurai, Tamil Nadu, India
| |
Collapse
|
9
|
Fang H, Zhang H, Han L, Mei J, Ge Q, Long Z, Yu Y. Exploring bacterial communities and biodegradation genes in activated sludge from pesticide wastewater treatment plants via metagenomic analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:1206-1216. [PMID: 30267917 DOI: 10.1016/j.envpol.2018.09.080] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/14/2018] [Accepted: 09/17/2018] [Indexed: 06/08/2023]
Abstract
Activated sludge (AS) has been regarded as the main driver in the removal of organic pollutants such as pesticides due to a high diversity and abundance of microorganisms. However, little is known about the biodegradation genes (BDGs) and pesticide degradation genes (PDGs) harbored in the AS from wastewater treatment plants (WWTPs). In this study, we explored the bacterial communities and BDGs/PDGs in the AS from five WWTPs affiliated with pesticide factories across four consecutive seasons based on high-throughput sequencing. The AS in pesticide WWTPs exhibited unique bacterial taxa at the genus level. Furthermore, a total of 17 BDGs and 68 PDGs were explored with a corresponding average relative abundance of 0.002-0.046% and 2.078-7.143% in each AS sample, respectively, and some BDGs/PDGs clusters were also identified in the AS. The bacterial communities and BDGs/PDGs were season-dependent, and the total variations of 50.4% and 76.8% were jointly explained by environmental variables (pesticide types, wastewater characteristics, and temperature). In addition, network analysis and distribution patterns suggested that the potential hosts of BDGs/PDGs were Thauera, Stenotrophomonas, Mycobacterium, Hyphomicrobium, Allochromatium, Ralstonia, and Dechloromonas. Our findings demonstrated the linkages of bacterial communities and BDGs/PDGs in the AS, and depended on the seasons and the pesticide wastewater characteristics.
Collapse
Affiliation(s)
- Hua Fang
- Institute of Pesticide and Environmental Toxicology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Houpu Zhang
- Institute of Pesticide and Environmental Toxicology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Lingxi Han
- Institute of Pesticide and Environmental Toxicology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jiajia Mei
- Institute of Pesticide and Environmental Toxicology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Qiqing Ge
- Institute of Pesticide and Environmental Toxicology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Zhengnan Long
- Institute of Pesticide and Environmental Toxicology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yunlong Yu
- Institute of Pesticide and Environmental Toxicology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|