1
|
Hu J, Abulimiti Y, Wang H, Yang D, Wang X, Wang Y, Ji P. Thioredoxin: a key factor in cold tumor formation and a promising biomarker for immunotherapy resistance in NSCLC. Respir Res 2025; 26:179. [PMID: 40349025 PMCID: PMC12065251 DOI: 10.1186/s12931-025-03259-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 04/24/2025] [Indexed: 05/14/2025] Open
Abstract
Immune checkpoint blockade (ICB) therapy has shown promising clinical efficacy in cancer treatment, but only a subset of patients experience significant therapeutic responses. Tumor cells respond to internal and external stresses, such as hypoxia and nutrient deprivation, by activating the unfolded protein response (UPR) in the tumor microenvironment. This response helps maintain homeostasis, promoting malignant progression, chemotherapy resistance, and immune escape. In this study, single-cell RNA sequencing (scRNA-seq) data from non-small cell lung cancer (NSCLC) patients treated with ICB revealed upregulation of thioredoxin (TXN) expression in the epithelial tissues of LUAD (lung adenocarcinoma) and LUSC (lung squamous cell carcinoma) patients with minimal pathological remission. High TXN expression was also associated with "cold tumors," characterized by a lack of T cells and low levels of chemokine receptors and immunomodulators. Experimental results showed that TXN was highly expressed in NSCLC tissues, and its knockdown significantly inhibited the proliferation and migration of A549 and SK-MES-1 cells. Furthermore, TXN knockdown enhanced T-cell-mediated cytotoxicity against these tumor cells, suggesting that TXN contributes to immune escape in NSCLC by promoting tumor cell proliferation and migration while inhibiting immune killing. Notably, TXN knockdown also upregulated CD40 expression, indicating that TXN may regulate immune escape in lung cancer through CD40 modulation.
Collapse
MESH Headings
- Humans
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/immunology
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/therapy
- Lung Neoplasms/metabolism
- Lung Neoplasms/genetics
- Lung Neoplasms/drug therapy
- Lung Neoplasms/immunology
- Lung Neoplasms/pathology
- Lung Neoplasms/therapy
- Thioredoxins/genetics
- Thioredoxins/biosynthesis
- Thioredoxins/metabolism
- Drug Resistance, Neoplasm/physiology
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/biosynthesis
- Immunotherapy/methods
- Immunotherapy/trends
- Immune Checkpoint Inhibitors/therapeutic use
- Immune Checkpoint Inhibitors/pharmacology
- Female
- Male
- Tumor Microenvironment
- A549 Cells
- Cell Line, Tumor
Collapse
Affiliation(s)
- Jiayi Hu
- Department of Laboratory Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Yilimunuer Abulimiti
- Department of Laboratory Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Haiyang Wang
- Department of Laboratory Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Dianyu Yang
- Department of Laboratory Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Xu Wang
- Department of Laboratory Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Yang Wang
- Department of Laboratory Medicine, Second Affiliated Hospital of Xinjiang Medical University, Xinjiang, 830063, PR China.
| | - Ping Ji
- Department of Laboratory Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China.
| |
Collapse
|
2
|
Suri C, Pande B, Suhasini Sahithi L, Swarnkar S, Khelkar T, Verma HK. Metabolic crossroads: unravelling immune cell dynamics in gastrointestinal cancer drug resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2025; 8:7. [PMID: 40051496 PMCID: PMC11883236 DOI: 10.20517/cdr.2024.164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/15/2025] [Accepted: 01/20/2025] [Indexed: 03/09/2025]
Abstract
Metabolic reprogramming within the tumor microenvironment (TME) plays a critical role in driving drug resistance in gastrointestinal cancers (GI), particularly through the pathways of fatty acid oxidation and glycolysis. Cancer cells often rewire their metabolism to sustain growth and reshape the TME, creating conditions such as nutrient depletion, hypoxia, and acidity that impair antitumor immune responses. Immune cells within the TME also undergo metabolic alterations, frequently adopting immunosuppressive phenotypes that promote tumor progression and reduce the efficacy of therapies. The competition for essential nutrients, particularly glucose, between cancer and immune cells compromises the antitumor functions of effector immune cells, such as T cells. Additionally, metabolic by-products like lactate and kynurenine further suppress immune activity and promote immunosuppressive populations, including regulatory T cells and M2 macrophages. Targeting metabolic pathways such as fatty acid oxidation and glycolysis presents new opportunities to overcome drug resistance and improve therapeutic outcomes in GI cancers. Modulating these key pathways has the potential to reinvigorate exhausted immune cells, shift immunosuppressive cells toward antitumor phenotypes, and enhance the effectiveness of immunotherapies and other treatments. Future strategies will require continued research into TME metabolism, the development of novel metabolic inhibitors, and clinical trials evaluating combination therapies. Identifying and validating metabolic biomarkers will also be crucial for patient stratification and treatment monitoring. Insights into metabolic reprogramming in GI cancers may have broader implications across multiple cancer types, offering new avenues for improving cancer treatment.
Collapse
Affiliation(s)
- Chahat Suri
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton AB T6G 1Z2, Canada
| | - Babita Pande
- Department of Physiology, All India Institute of Medical Sciences, Raipur 492099, India
| | | | | | - Tuneer Khelkar
- Department of Botany and Biotechnology, Govt. Kaktiya P G College, Jagdalpur 494001, India
| | - Henu Kumar Verma
- Department of Immunopathology, Institute of Lung Health and Immunity, Comprehensive Pneumology Center, Helmholtz Zentrum, Munich 85764, Germany
| |
Collapse
|
3
|
Kelly JJ, Newkirk SE, Chordia MD, Pires MM. Evaluation and In Situ Library Expansion of Small Molecule MHC-I Inducers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.31.635109. [PMID: 39975032 PMCID: PMC11838524 DOI: 10.1101/2025.01.31.635109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Immunotherapy has emerged as a powerful strategy for combating cancer by harnessing the patient immune system to recognize and eliminate malignant cells. The major histocompatibility complex class I (MHC-I) has a pivotal role in the recognition step. These surface proteins present cancer-specific neoantigens to CD8+ T cells, which triggers activation and T cell-mediated killing. However, cancer cells can often evade immune detection by downregulating MHC-I surface expression, which renders the immune response less effective. In turn, this resistance mechanism offers an opportunity to bolster MHC-I surface expression via therapeutic interventions. Here, we conducted an initial comprehensive evaluation of previously purported small molecule MHC-I inducers and identified heat shock protein 90 (Hsp90) inhibitors as privileged inducers of MHC-I surface expression. With a core scaffold in hand, we employed an in situ click chemistry-based derivatization strategy to generate 380 novel compounds in the same family. New agents from this library showed high levels of induction, with one of the triazole-based analogs, CliMB-325, also enhancing T cell activation and exhibiting lower toxicity, which could potentiate some immunotherapeutic modalities. Moreover, we demonstrated the potential of a click chemistry-based diversification strategy for the discovery of small molecules to counter immune evasion.
Collapse
Affiliation(s)
- Joey J. Kelly
- Department of Chemistry, University of Virginia, Charlottesville, VA, United States 22904
- Department of Microbiology, Immunology, and Cancer, University of Virginia, Charlottesville, VA, United States 22904
| | - Sarah E. Newkirk
- Department of Chemistry, University of Virginia, Charlottesville, VA, United States 22904
- Department of Microbiology, Immunology, and Cancer, University of Virginia, Charlottesville, VA, United States 22904
| | - Mahendra D. Chordia
- Department of Chemistry, University of Virginia, Charlottesville, VA, United States 22904
- Department of Microbiology, Immunology, and Cancer, University of Virginia, Charlottesville, VA, United States 22904
| | - Marcos M. Pires
- Department of Chemistry, University of Virginia, Charlottesville, VA, United States 22904
- Department of Microbiology, Immunology, and Cancer, University of Virginia, Charlottesville, VA, United States 22904
| |
Collapse
|
4
|
Tan S, Kim S, Kim Y. Targeting mitochondrial RNAs enhances the efficacy of the DNA-demethylating agents. Sci Rep 2024; 14:30767. [PMID: 39730484 DOI: 10.1038/s41598-024-80834-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 11/21/2024] [Indexed: 12/29/2024] Open
Abstract
Hypomethylating agents (HMAs) such as azacytidine and decitabine are FDA-approved chemotherapy drugs for hematologic malignancy. By inhibiting DNA methyltransferases, HMAs reactivate tumor suppressor genes (TSGs) and endogenous double-stranded RNAs (dsRNAs) that limit tumor growth and trigger apoptosis via viral mimicry. Yet, HMAs show limited effects in many solid tumors despite the strong induction of TSGs and dsRNAs. Here we show that targeting mitochondrial RNAs (mtRNAs) can enhance the HMA-mediated cell death in lung adenocarcinoma cells. We find that HMA treatment accompanies increased mtRNA levels and subsequent enhancement of metabolic activity, resulting in higher ATP production. Compromising the mitochondrial function by downregulating mature mtRNA expression increased cell death by HMAs. We further perform a CRISPR screening on mtRNA processing factors and find that mtRNA polymerase (POLRMT) and ElaC Ribonuclease Z 2 (ELAC2) depleted cells show increased sensitivity to HMAs by suppressing decitabine-triggered enhancement of ATP production. Moreover, we show that a small molecular inhibitor of POLRMT compromises the metabolic activity and synergistically enhances the cytotoxicity of HMAs. Our study unveils the insensitivity to HMAs through the elevation of mtRNAs and suggests mtRNA regulatory factors as potential synergistic targets to improve the therapeutic benefit of HMAs.
Collapse
Affiliation(s)
- Stephanie Tan
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
| | - Sujin Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
| | - Yoosik Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea.
- Graduate School of Engineering Biology, KAIST, Daejeon, 34141, Korea.
- KAIST Institute for BioCentury, KAIST, Daejeon, 34141, Korea.
- KAIST Institute for Health Science and Technology (KIHST), KAIST, Daejeon, 34141, Korea.
| |
Collapse
|
5
|
Galassi C, Klapp V, Formenti SC, Demaria S, Galluzzi L. Immunologically relevant effects of radiation therapy on the tumor microenvironment. Essays Biochem 2023; 67:979-989. [PMID: 37199227 PMCID: PMC10543618 DOI: 10.1042/ebc20220248] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/06/2023] [Accepted: 04/21/2023] [Indexed: 05/19/2023]
Abstract
Focal radiation therapy (RT) has been successfully employed to clinically manage multiple types of cancer for more than a century. Besides being preferentially cytotoxic for malignant cells over their nontransformed counterparts, RT elicits numerous microenvironmental alterations that appear to factor into its therapeutic efficacy. Here, we briefly discuss immunostimulatory and immunosuppressive microenvironmental changes elicited by RT and their impact on tumor recognition by the host immune system.
Collapse
Affiliation(s)
- Claudia Galassi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Vanessa Klapp
- Tumor Stroma Interactions, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Silvia C. Formenti
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA
| |
Collapse
|
6
|
Ho V, Callaghan CM. The Role of Destrin Wnt/β-Catenin Signaling Pathway in Rectal Cancer Oncogenesis. Int J Radiat Oncol Biol Phys 2023; 117:211-213. [PMID: 37574236 DOI: 10.1016/j.ijrobp.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/02/2023] [Indexed: 08/15/2023]
Affiliation(s)
- Vincent Ho
- School of Medicine, Western Sydney University, Sydney, Australia.
| | | |
Collapse
|
7
|
Cao W, Chen G, Wu L, Yu KN, Sun M, Yang M, Jiang Y, Jiang Y, Xu Y, Peng S, Han W. Ionizing Radiation Triggers the Antitumor Immunity by Inducing Gasdermin E-Mediated Pyroptosis in Tumor Cells. Int J Radiat Oncol Biol Phys 2023; 115:440-452. [PMID: 35918054 DOI: 10.1016/j.ijrobp.2022.07.1841] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 01/11/2023]
Abstract
PURPOSE To understand pyroptosis induced by ionizing radiation and its implications for radiation therapy, we explored the involved factors, possible mechanisms of radiation-induced pyroptosis and consequent antitumor immunity. METHODS AND MATERIALS The occurrence of pyroptosis was assessed by cell morphology, lactate dehydrogenase release, Annexin V/PI staining and the cleavage of Gasdermin E (GSDME). Cell radiosensitivity was tested with MTT and colony survival assays. Xenograft tumor volume, Ki-67, CD8+ lymphocytes, and ELISA were used to evaluate the effect of GSDME on tumor suppression after irradiation. RESULTS Irradiation induced pyroptosis in GSDME high-expressing tumor cell lines covering lung, liver, breast, and glioma cancers. Cleavage of GSDME occurred in a dose- and time-dependent manner after irradiation, and pyroptosis could be induced by various kinds of irradiation. The combination of chemotherapy drugs for DNA damage (cisplatin or etoposide) or demethylation (decitabine or azacytidine) and irradiation significantly enhanced the occurrence of pyroptosis. Moreover, we revealed that the Caspase 9/Caspase 3/GSDME pathway was involved in irradiation-induced pyroptosis. Notably, enhanced tumor suppression was observed in Balb/c mice bearing GSDME-overexpressing 4T1 tumors compared with those bearing vector tumors for the promotion of antitumor immunity, which was manifested as distinctly elevated levels of cytotoxic T lymphocytes and release of the related cytokines rather than the direct effect of pyroptosis on tumor cell radiosensitivity. CONCLUSIONS As an immunogenic cell death caused by radiation, pyroptosis promotes antitumor immunity after irradiation. Our findings may provide new insights to improve the efficacy of tumor radiation therapy.
Collapse
Affiliation(s)
- Wei Cao
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, P. R. China; University of Science and Technology of China, Hefei, P. R. China
| | - Guodong Chen
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, P. R. China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, P. R. China
| | - Lijun Wu
- Institute of Physical Science and Information Technology, Anhui University
| | - K N Yu
- Department of Physics, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, P.R. China; State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, P.R. China
| | - Mingyu Sun
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, P. R. China; School of Basic Medical Science, Anhui Medical University, Hefei, Anhui, P. R. China
| | - Miaomiao Yang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, P. R. China
| | - Yanyi Jiang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, P. R. China
| | - Yuan Jiang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, P. R. China
| | - Yuan Xu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, P. R. China; University of Science and Technology of China, Hefei, P. R. China
| | - Shengjie Peng
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, P. R. China; University of Science and Technology of China, Hefei, P. R. China
| | - Wei Han
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, P. R. China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, P. R. China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions and School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, P. R. China.
| |
Collapse
|
8
|
dos Reis FD, Jerónimo C, Correia MP. Epigenetic modulation and prostate cancer: Paving the way for NK cell anti-tumor immunity. Front Immunol 2023; 14:1152572. [PMID: 37090711 PMCID: PMC10113550 DOI: 10.3389/fimmu.2023.1152572] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/06/2023] [Indexed: 04/25/2023] Open
Abstract
Immunoepigenetics is a growing field, as there is mounting evidence on the key role played by epigenetic mechanisms in the regulation of tumor immune cell recognition and control of immune cell anti-tumor responses. Moreover, it is increasingly acknowledgeable a tie between epigenetic regulation and prostate cancer (PCa) development and progression. PCa is intrinsically a cold tumor, with scarce immune cell infiltration and low inflammatory tumor microenvironment. However, Natural Killer (NK) cells, main anti-tumor effector immune cells, have been frequently linked to improved PCa prognosis. The role that epigenetic-related mechanisms might have in regulating both NK cell recognition of PCa tumor cells and NK cell functions in PCa is still mainly unknown. Epigenetic modulating drugs have been showing boundless therapeutic potential as anti-tumor agents, however their role in immune cell regulation and recognition is scarce. In this review, we focused on studies addressing modulation of epigenetic mechanisms involved in NK cell-mediated responses, including both the epigenetic modulation of tumor cell NK ligand expression and NK cell receptor expression and function in different tumor models, highlighting studies in PCa. The integrated knowledge from diverse epigenetic modulation mechanisms promoting NK cell-mediated immunity in various tumor models might open doors for the development of novel epigenetic-based therapeutic options for PCa management.
Collapse
Affiliation(s)
- Filipa D. dos Reis
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), Porto, Portugal
- Master Program in Oncology, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), Porto, Portugal
- Department of Pathology and Molecular Immunology, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Porto, Portugal
| | - Margareta P. Correia
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), Porto, Portugal
- Department of Pathology and Molecular Immunology, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Porto, Portugal
- *Correspondence: Margareta P. Correia,
| |
Collapse
|
9
|
Carlson PM, Patel RB, Birstler J, Rodriquez M, Sun C, Erbe AK, Bates AM, Marsh I, Grudzinski J, Hernandez R, Pieper AA, Feils AS, Rakhmilevich AL, Weichert JP, Bednarz BP, Sondel PM, Morris ZS. Radiation to all macroscopic sites of tumor permits greater systemic antitumor response to in situ vaccination. J Immunother Cancer 2023; 11:e005463. [PMID: 36639155 PMCID: PMC9843201 DOI: 10.1136/jitc-2022-005463] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2022] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND The antitumor effects of external beam radiation therapy (EBRT) are mediated, in part, by an immune response. We have reported that a single fraction of 12 Gy EBRT combined with intratumoral anti-GD2 hu14.18-IL2 immunocytokine (IC) generates an effective in situ vaccine (ISV) against GD2-positive murine tumors. This ISV is effective in eradicating single tumors with sustained immune memory; however, it does not generate an adequate abscopal response against macroscopic distant tumors. Given the immune-stimulatory capacity of radiation therapy (RT), we hypothesized that delivering RT to all sites of disease would augment systemic antitumor responses to ISV. METHODS We used a syngeneic B78 murine melanoma model consisting of a 'primary' flank tumor and a contralateral smaller 'secondary' flank tumor, treated with 12 Gy EBRT and intratumoral IC immunotherapy to the primary and additional EBRT to the secondary tumor. As a means of delivering RT to all sites of disease, both known and occult, we also used a novel alkylphosphocholine analog, NM600, conjugated to 90Y as a targeted radionuclide therapy (TRT). Tumor growth, overall survival, and cause of death were measured. Flow cytometry was used to evaluate immune population changes in both tumors. RESULTS Abscopal effects of local ISV were amplified by delivering as little as 2-6 Gy of EBRT to the secondary tumor. When the primary tumor ISV regimen was delivered in mice receiving 12 Gy EBRT to the secondary tumor, we observed improved overall survival and more disease-free mice with immune memory compared with either ISV or 12 Gy EBRT alone. Similarly, TRT combined with ISV resulted in improved overall survival and a trend towards reduced tumor growth rates when compared with either treatment alone. Using flow cytometry, we identified an influx of CD8+ T cells with a less exhausted phenotype in both the ISV-targeted primary and the distant secondary tumor following the combination of secondary tumor EBRT or TRT with primary tumor ISV. CONCLUSIONS We report a novel use for low-dose RT, not as a direct antitumor modality but as an immunomodulator capable of driving and expanding antitumor immunity against metastatic tumor sites following ISV.
Collapse
Affiliation(s)
- Peter M Carlson
- Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ravi B Patel
- Radiation Oncology, University of Pittsburgh Medical Center Health System, Pittsburgh, Pennsylvania, USA
| | - Jen Birstler
- Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Matthew Rodriquez
- Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Claire Sun
- Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Amy K Erbe
- Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Amber M Bates
- Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ian Marsh
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Joseph Grudzinski
- Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Alexander A Pieper
- Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Arika S Feils
- Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Alexander L Rakhmilevich
- Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jamey P Weichert
- Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Bryan P Bednarz
- Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Paul M Sondel
- Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Zachary S Morris
- Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
10
|
Alexandraki A, Strati K. Decitabine Treatment Induces a Viral Mimicry Response in Cervical Cancer Cells and Further Sensitizes Cells to Chemotherapy. Int J Mol Sci 2022; 23:ijms232214042. [PMID: 36430521 PMCID: PMC9692951 DOI: 10.3390/ijms232214042] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 11/16/2022] Open
Abstract
PURPOSE To investigate the anti-cancer, chemosensitizing and/or immunomodulating effects of decitabine (DAC) to be used as a potential therapeutic agent for the treatment of cervical cancer (CC). METHODS Cervical cancer cell lines were treated with low doses of DAC treatment used as a single agent or in combination with chemotherapy. End-point in vitro assays were developed as indicators of the anti-cancer and/or immunomodulating effects of DAC treatment in CC cells. These assays include cell viability, cell cycle analysis, apoptosis, induction of a viral-mimicry response pathway, expression of MHC-class I and PD-L1 and chemosensitivity. RESULTS High and low doses of DAC treatment induced reduction in cell viability in HeLa (HPV18+), CaSki (HPV16+) and C33A (HPV-) cells. Specifically, a time-dependent reduction in cell viability of HeLa and CaSki cells was observed accompanied by robust cell cycle arrest at G2/M phase and alterations in the cell cycle distribution. Decrease in cell viability was also observed in a non-transformed immortal keratinocyte (HaCat) suggesting a non-cancer specific target effect. DAC treatment also triggered a viral mimicry response through long-term induction of cytoplasmic double-stranded RNA (dsRNA) and activation of downstream IFN-related genes in both HPV+ and HPV- cells. In addition, DAC treatment increased the number of CC cells expressing MHC-class I and PD-L1. Furthermore, DAC significantly increased the proportion of early and late apoptotic CC cells quantified using FACS. Our combination treatments showed that low dose DAC treatment sensitizes cells to chemotherapy. CONCLUSIONS Low doses of DAC treatment promotes robust induction of a viral mimicry response, immunomodulating and chemosensitizing effects in CC, indicating its promising therapeutic role in CC in vitro.
Collapse
|
11
|
Can the New and Old Drugs Exert an Immunomodulatory Effect in Acute Myeloid Leukemia? Cancers (Basel) 2021; 13:cancers13164121. [PMID: 34439275 PMCID: PMC8393879 DOI: 10.3390/cancers13164121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/11/2021] [Accepted: 08/14/2021] [Indexed: 12/30/2022] Open
Abstract
Simple Summary The advent of novel immunotherapeutic strategies has revealed the importance of immune dysregulation and of a tolerogenic microenvironment for acute myeloid leukemia (AML) fitness. We reviewed the “off-target” effects on the immune system of different drugs used in the treatment of AML to explore the advantages of this unexpected interaction. Abstract Acute myeloid leukemia (AML) is considered an immune-suppressive neoplasm capable of evading immune surveillance through cellular and environmental players. Increasing knowledge of the immune system (IS) status at diagnosis seems to suggest ever more attention of the crosstalk between the leukemic clone and its immunologic counterpart. During the last years, the advent of novel immunotherapeutic strategies has revealed the importance of immune dysregulation and suppression for leukemia fitness. Considering all these premises, we reviewed the “off-target” effects on the IS of different drugs used in the treatment of AML, focusing on the main advantages of this interaction. The data reported support the idea that a successful therapeutic strategy should consider tailored approaches for performing leukemia eradication by both direct blasts killing and the engagement of the IS.
Collapse
|
12
|
Decitabine Downregulates TIGAR to Induce Apoptosis and Autophagy in Myeloid Leukemia Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8877460. [PMID: 33532040 PMCID: PMC7836025 DOI: 10.1155/2021/8877460] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/20/2020] [Accepted: 01/08/2021] [Indexed: 12/20/2022]
Abstract
Decitabine (DAC) is a well-known DNA methyltransferase inhibitor, which has been widely used for the treatment of acute myeloid leukemia (AML). However, in addition to hypomethylation, DAC in AML is also involved in cell metabolism, apoptosis, and immunity. The TP53-induced glycolysis and apoptosis regulator (TIGAR) functions to inhabit glycolysis and protect cancer cells from reactive oxygen species- (ROS-) associated apoptosis. Our previous study revealed that TIGAR is highly expressed in myeloid leukemia cell lines and AML primary cells and associated with poor prognosis in adult patients with cytogenetically normal AML. In the present study, it was found that in a time- and concentration-dependent manner, DAC downregulates the TIGAR expression, induces ROS production, and promotes apoptosis in HL-60 and K562 cells. However, blocking the glycolytic pathway partially reversed the combined effects of DAC and TIGAR knockdown on apoptosis, ROS production, and cell cycle arrest, indicating that DAC induced apoptosis through the glycolytic pathway. Furthermore, TIGAR also has a negative impact on autophagy, while DAC treatment upregulates autophagy-related proteins LC3, Beclin-1, ATG3, and ATG-5, downregulates p62, and promotes the formation of autophagosomes, indicating that DAC may activate autophagy by downregulating TIGAR. Taken together, DAC plays an unmethylated role in inducing apoptosis and activating autophagy in myeloid leukemia by downregulating TIGAR.
Collapse
|
13
|
Rodriguez-Ruiz ME, Vitale I, Harrington KJ, Melero I, Galluzzi L. Immunological impact of cell death signaling driven by radiation on the tumor microenvironment. Nat Immunol 2020; 21:120-134. [PMID: 31873291 DOI: 10.1038/s41590-019-0561-4] [Citation(s) in RCA: 249] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 11/14/2019] [Indexed: 12/12/2022]
Abstract
Therapeutic irradiation of the tumor microenvironment causes differential activation of pro-survival and pro-death pathways in malignant, stromal, endothelial and immune cells, hence causing a profound cellular and biological reconfiguration via multiple, non-redundant mechanisms. Such mechanisms include the selective elimination of particularly radiosensitive cell types and consequent loss of specific cellular functions, the local release of cytokines and danger signals by dying radiosensitive cells, and altered cytokine secretion by surviving radioresistant cells. Altogether, these processes create chemotactic and immunomodulatory cues for incoming and resident immune cells. Here we discuss how cytoprotective and cytotoxic signaling modules activated by radiation in specific cell populations reshape the immunological tumor microenvironment.
Collapse
Affiliation(s)
- Maria Esperanza Rodriguez-Ruiz
- Department of Radiation Oncology, University of Navarra Clinic, Pamplona, Spain
- Centro de Investigación Médica Aplicada (CIMA), Pamplona, Spain
| | - Ilio Vitale
- IIGM-Italian Institute for Genomic Medicine, c/o IRCCS Candiolo, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Kevin J Harrington
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
- The Royal Marsden Hospital/Institute of Cancer Research National Institute for Health Biomedical Research Centre, London, UK
| | - Ignacio Melero
- Department of Radiation Oncology, University of Navarra Clinic, Pamplona, Spain
- Centro de Investigación Médica Aplicada (CIMA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA.
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA.
- Université de Paris, Paris, France.
| |
Collapse
|
14
|
Huang W, Fan Y, Cheng X, Liang H, Pan H, Xiao T, Chen M, Guan J. A preliminary Study on the Effect of Head and Neck Chemoradiotherapy on Systematic Immunity. Dose Response 2019; 17:1559325819884186. [PMID: 31695581 PMCID: PMC6820191 DOI: 10.1177/1559325819884186] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 09/06/2019] [Accepted: 09/24/2019] [Indexed: 12/24/2022] Open
Abstract
Background This study was designed initially to explore the effect of chemoradiotherapy on patients diagnosed with head and neck cancer (HNC) with respect to the alteration of systematic immunity. Methods We did a retrospective study enrolling patients received concurrent chemoradiotherapy (CCRT), with or without induction chemotherapy (IC). Blood tests were performed before IC, before and after CCRT. Flow cytometric analysis and turbidimetric inhibition immunoassay were used for detection. Results A total number of 58 patients were included from April 1, 2018, to March 31, 2019. Levels of immunoglobulins (Ig), including IgA, IgG, and IgM, declined after 2 to 3 cycles of IC and CCRT, respectively. Serum level of total hemolytic complement (CH50) increased (P < .001) after IC, but kept stably post-CCRT. Natural killer (NK) cells decreased (P < .01) after IC and enhanced (P < .001) post-CCRT. The number of CD3+CD4+ T cells got increased (P < .01) after IC and decreased (P < .001) post-CCRT. Consistently, both IC and CCRT induced the increase in CD3+CD8+ T cells significantly (P < .001 vs P < .01). Conclusion Both radiotherapy (RT) and chemotherapy (CT) induced dual effect of immune response. Concurrent chemoradiotherapy created an active immune response based on the effect induced by IC, suggesting that RT exerted a potential function on mobilizing immune system.
Collapse
Affiliation(s)
- Weiqiang Huang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yao Fan
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaoya Cheng
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Huazhen Liang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Hua Pan
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ting Xiao
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Min Chen
- Department of Radiation Oncology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Jian Guan
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
15
|
Kim B, Pena CD, Auguste DT. Targeted Lipid Nanoemulsions Encapsulating Epigenetic Drugs Exhibit Selective Cytotoxicity on CDH1–/FOXM1+ Triple Negative Breast Cancer Cells. Mol Pharm 2019; 16:1813-1826. [DOI: 10.1021/acs.molpharmaceut.8b01065] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Bumjun Kim
- Department of Biomedical Engineering, The City College of New York, 160 Convent Avenue, New York, New York 10031, United States
| | - Caroline D. Pena
- Department of Biomedical Engineering, The City College of New York, 160 Convent Avenue, New York, New York 10031, United States
| | - Debra T. Auguste
- Department of Biomedical Engineering, The City College of New York, 160 Convent Avenue, New York, New York 10031, United States
| |
Collapse
|
16
|
Lhuillier C, Vanpouille-Box C, Galluzzi L, Formenti SC, Demaria S. Emerging biomarkers for the combination of radiotherapy and immune checkpoint blockers. Semin Cancer Biol 2018; 52:125-134. [PMID: 29258856 PMCID: PMC6004231 DOI: 10.1016/j.semcancer.2017.12.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 12/11/2017] [Accepted: 12/13/2017] [Indexed: 12/19/2022]
Abstract
Over the past few years, multiple immune checkpoint blockers (ICBs) have achieved unprecedented clinical success and have been approved by regulatory agencies for the treatment of an increasing number of malignancies. However, only a limited fraction of patients responds to ICBs employed as a standalone intervention, calling for the development of combinatorial regimens. Radiation therapy (RT) stands out as a very promising candidate for this purpose. Indeed, RT mediates antineoplastic effects not only by cytotoxic and cytostatic mechanisms, but also by modulating immunological functions, both locally (within the irradiated field) and systemically. As combinatorial regimens involving RT and ICBs are being developed and clinically tested at an accelerating pace, it is paramount to identify biomarkers that reliably predict the likelihood of individual patients to respond. Here, we discuss emerging biomarkers that may potentially predict the response of cancer patients to RT plus ICBs.
Collapse
Affiliation(s)
- Claire Lhuillier
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | | | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA; Sandra and Edward Meyer Cancer Center, New York, NY, USA
| | - Silvia Chiara Formenti
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA; Sandra and Edward Meyer Cancer Center, New York, NY, USA
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA; Sandra and Edward Meyer Cancer Center, New York, NY, USA; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
17
|
Wennerberg E, Vanpouille-Box C, Bornstein S, Yamazaki T, Demaria S, Galluzzi L. Immune recognition of irradiated cancer cells. Immunol Rev 2018; 280:220-230. [PMID: 29027232 DOI: 10.1111/imr.12568] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ionizing irradiation has been extensively employed for the clinical management of solid tumors, with therapeutic or palliative intents, for decades. Until recently, radiation therapy (RT) was believed to mediate antineoplastic activity mostly (if not only) as a consequence of cancer cell-intrinsic effects. Indeed, the macromolecular damage imposed to malignant cells by RT initiates one or multiple signal transduction cascades that drive a permanent proliferative arrest (cellular senescence) or regulated cell death. Both these phenomena show a rather linear dose-response correlation. However, RT also mediates consistent immunological activity, not only as an "on-target effect" originating within irradiated cancer cells, but also as an "off-target effect" depending on the interaction between RT and stromal, endothelial, and immune components of the tumor microenvironment. Interestingly, the immunological activity of RT does not exhibit linear dose-response correlation. Here, we discuss the mechanisms whereby RT alters the capacity of the immune system to recognize and eliminate irradiated cancer cells, either as an "on-target" or as on "off-target" effect. In particular, we discuss the antagonism between the immunostimulatory and immunosuppressive effects of RT as we delineate combinatorial strategies to boost the former at the expenses of the latter.
Collapse
Affiliation(s)
- Erik Wennerberg
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | | | - Sophia Bornstein
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Takahiro Yamazaki
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA.,Université Paris Descartes/Paris V, Paris, France
| |
Collapse
|
18
|
Niu C, Li M, Zhu S, Chen Y, Zhou L, Xu D, Li W, Cui J, Liu Y, Chen J. Decitabine Inhibits Gamma Delta T Cell Cytotoxicity by Promoting KIR2DL2/3 Expression. Front Immunol 2018; 9:617. [PMID: 29632540 PMCID: PMC5879086 DOI: 10.3389/fimmu.2018.00617] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 03/12/2018] [Indexed: 12/25/2022] Open
Abstract
Gamma delta (γδ) T cells, which possess potent cytotoxicity against a wide range of cancer cells, have become a potential avenue for adoptive immunotherapy. Decitabine (DAC) has been reported to enhance the immunogenicity of tumor cells, thereby reinstating endogenous immune recognition and tumor lysis. However, DAC has also been demonstrated to have direct effects on immune cells. In this study, we report that DAC inhibits γδ T cell proliferation. In addition, DAC increases the number of KIR2DL2/3-positive γδ T cells, which are less cytotoxic than the KIR2DL2/3-negative γδ T cells. We found that DAC upregulated KIR2DL2/3 expression in KIR2DL2/3-negative γδ T cells by inhibiting KIR2DL2/3 promoter methylation, which enhances the binding of KIR2DL2/3 promoter to Sp-1 and activates KIR2DL2/3 gene expression. Our data demonstrated that DAC can inhibit the function of human γδ T cells at both cellular and molecular levels, which confirms and extrapolates the results of previous studies showing that DAC can negatively regulate the function of NK cells and αβ T cells of the immune system.
Collapse
Affiliation(s)
- Chao Niu
- Department of Translational Medicine, The First Hospital of Jilin University, Changchun, China.,Department of Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Min Li
- Department of Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Shan Zhu
- Department of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Yongchong Chen
- Department of Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Lei Zhou
- Department of Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Dongsheng Xu
- Department of Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Wei Li
- Department of Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Jiuwei Cui
- Department of Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Yongjun Liu
- Department of Translational Medicine, The First Hospital of Jilin University, Changchun, China.,Sanofi Research and Development, Cambridge, MA, United States
| | - Jingtao Chen
- Department of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|