1
|
Tian Z, Han C, Xu L, Teng Z, Song W. MGCNSS: miRNA-disease association prediction with multi-layer graph convolution and distance-based negative sample selection strategy. Brief Bioinform 2024; 25:bbae168. [PMID: 38622356 PMCID: PMC11018511 DOI: 10.1093/bib/bbae168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/14/2024] [Accepted: 03/31/2024] [Indexed: 04/17/2024] Open
Abstract
Identifying disease-associated microRNAs (miRNAs) could help understand the deep mechanism of diseases, which promotes the development of new medicine. Recently, network-based approaches have been widely proposed for inferring the potential associations between miRNAs and diseases. However, these approaches ignore the importance of different relations in meta-paths when learning the embeddings of miRNAs and diseases. Besides, they pay little attention to screening out reliable negative samples which is crucial for improving the prediction accuracy. In this study, we propose a novel approach named MGCNSS with the multi-layer graph convolution and high-quality negative sample selection strategy. Specifically, MGCNSS first constructs a comprehensive heterogeneous network by integrating miRNA and disease similarity networks coupled with their known association relationships. Then, we employ the multi-layer graph convolution to automatically capture the meta-path relations with different lengths in the heterogeneous network and learn the discriminative representations of miRNAs and diseases. After that, MGCNSS establishes a highly reliable negative sample set from the unlabeled sample set with the negative distance-based sample selection strategy. Finally, we train MGCNSS under an unsupervised learning manner and predict the potential associations between miRNAs and diseases. The experimental results fully demonstrate that MGCNSS outperforms all baseline methods on both balanced and imbalanced datasets. More importantly, we conduct case studies on colon neoplasms and esophageal neoplasms, further confirming the ability of MGCNSS to detect potential candidate miRNAs. The source code is publicly available on GitHub https://github.com/15136943622/MGCNSS/tree/master.
Collapse
Affiliation(s)
- Zhen Tian
- School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou 450000, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou 324000, China
| | - Chenguang Han
- School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou 450000, China
| | - Lewen Xu
- School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou 450000, China
| | - Zhixia Teng
- College of Computer and Control Engineering, Northeast Forestry University, Harbin 150040, China
| | - Wei Song
- School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou 450000, China
| |
Collapse
|
2
|
pPe Op inhibits HGC-27 cell proliferation, migration and invasion by upregulating miR-30b-5p and down-regulating the Rac1/Cdc42 pathway. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1897-1908. [PMID: 36789688 PMCID: PMC10157518 DOI: 10.3724/abbs.2022193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Gastric cancer is the fifth most frequently occurring and the fourth most lethal malignant cancer worldwide. A bioactive protein (pPe Op) from Omphalia lapidescens exhibits significant inhibitory effects on gastric cancer cells. miRNA deep sequencing analysis shows that miR-30b-5p is significantly upregulated in HGC-27 cells treated with pPe Op. Verification results show that the expression level of miR-30b-5p is significantly increased in HGC-27 cells after pPe Op treatment. Additionally, miR-30b-5p is significantly downregulated in clinical gastric cancer tissues compared to that in adjacent normal tissues. Following pPe Op treatment and/or transfection with miR-30b-5p mimic, the proliferation, migration, and invasion of HGC-27 cells are significantly impaired. Immunofluorescence microscopy shows that pPe Op and/or miR-30b-5p destroy(s) microfilaments and microstructures and inhibit(s) the formation of pseudopodia. Bioinformatics analysis, dual-luciferase reporter assay, and western blot analysis confirm that miR-30b-5p downregulates Rac1/Cdc42 expression and activation by targeting RAB22A. Available data indicate that miR-30b-5p plays an anti-gastric cancer role in mediating pPe Op. pPe Op upregulates miR-30b-5p expression, which in turn inhibits RAB22A expression, resulting in a reduction in the expression and activation of Rac1 and Cdc42 and their downstream targets, thus destroying the cytoskeletal structure and inhibiting the proliferation, migration, and invasion of cancer cells.
Collapse
|
3
|
Chen J, Lin J, Hu Y, Ye M, Yao L, Wu L, Zhang W, Wang M, Deng T, Guo F, Huang Y, Zhu B, Wang D. RNADisease v4.0: an updated resource of RNA-associated diseases, providing RNA-disease analysis, enrichment and prediction. Nucleic Acids Res 2022; 51:D1397-D1404. [PMID: 36134718 PMCID: PMC9825423 DOI: 10.1093/nar/gkac814] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 02/06/2023] Open
Abstract
Numerous studies have shown that RNA plays an important role in the occurrence and development of diseases, and RNA-disease associations are not limited to noncoding RNAs in mammals but also exist for protein-coding RNAs. Furthermore, RNA-associated diseases are found across species including plants and nonmammals. To better analyze diseases at the RNA level and facilitate researchers in exploring the pathogenic mechanism of diseases, we decided to update and change MNDR v3.0 to RNADisease v4.0, a repository for RNA-disease association (http://www.rnadisease.org/ or http://www.rna-society.org/mndr/). Compared to the previous version, new features include: (i) expanded data sources and categories of species, RNA types, and diseases; (ii) the addition of a comprehensive analysis of RNAs from thousands of high-throughput sequencing data of cancer samples and normal samples; (iii) the addition of an RNA-disease enrichment tool and (iv) the addition of four RNA-disease prediction tools. In summary, RNADisease v4.0 provides a comprehensive and concise data resource of RNA-disease associations which contains a total of 3 428 058 RNA-disease entries covering 18 RNA types, 117 species and 4090 diseases to meet the needs of biological research and lay the foundation for future therapeutic applications of diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Le Wu
- Department of Bioinformatics, Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wenhai Zhang
- Department of Bioinformatics, Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Meiyi Wang
- Department of Bioinformatics, Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Tingting Deng
- Department of Bioinformatics, Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Feng Guo
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yan Huang
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Bofeng Zhu
- Correspondence may also be addressed to Bofeng Zhu. Tel: +86 20 61648787; Fax: +86 20 61648787;
| | - Dong Wang
- To whom correspondence should be addressed. Tel: +86 20 61648279; Fax: +86 20 61648279;
| |
Collapse
|
4
|
Xiang J, Zhang J, Zhao Y, Wu FX, Li M. Biomedical data, computational methods and tools for evaluating disease-disease associations. Brief Bioinform 2022; 23:6522999. [PMID: 35136949 DOI: 10.1093/bib/bbac006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/12/2022] Open
Abstract
In recent decades, exploring potential relationships between diseases has been an active research field. With the rapid accumulation of disease-related biomedical data, a lot of computational methods and tools/platforms have been developed to reveal intrinsic relationship between diseases, which can provide useful insights to the study of complex diseases, e.g. understanding molecular mechanisms of diseases and discovering new treatment of diseases. Human complex diseases involve both external phenotypic abnormalities and complex internal molecular mechanisms in organisms. Computational methods with different types of biomedical data from phenotype to genotype can evaluate disease-disease associations at different levels, providing a comprehensive perspective for understanding diseases. In this review, available biomedical data and databases for evaluating disease-disease associations are first summarized. Then, existing computational methods for disease-disease associations are reviewed and classified into five groups in terms of the usages of biomedical data, including disease semantic-based, phenotype-based, function-based, representation learning-based and text mining-based methods. Further, we summarize software tools/platforms for computation and analysis of disease-disease associations. Finally, we give a discussion and summary on the research of disease-disease associations. This review provides a systematic overview for current disease association research, which could promote the development and applications of computational methods and tools/platforms for disease-disease associations.
Collapse
Affiliation(s)
- Ju Xiang
- School of Computer Science and Engineering, Central South University, China
| | - Jiashuai Zhang
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Yichao Zhao
- School of Computer Science and Engineering, Central South University, China
| | - Fang-Xiang Wu
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Min Li
- Division of Biomedical Engineering and Department of Mechanical Engineering at University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
5
|
Ding P, Ouyang W, Luo J, Kwoh CK. Heterogeneous information network and its application to human health and disease. Brief Bioinform 2021; 21:1327-1346. [PMID: 31566212 DOI: 10.1093/bib/bbz091] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/29/2019] [Accepted: 06/30/2019] [Indexed: 12/11/2022] Open
Abstract
The molecular components with the functional interdependencies in human cell form complicated biological network. Diseases are mostly caused by the perturbations of the composite of the interaction multi-biomolecules, rather than an abnormality of a single biomolecule. Furthermore, new biological functions and processes could be revealed by discovering novel biological entity relationships. Hence, more and more biologists focus on studying the complex biological system instead of the individual biological components. The emergence of heterogeneous information network (HIN) offers a promising way to systematically explore complicated and heterogeneous relationships between various molecules for apparently distinct phenotypes. In this review, we first present the basic definition of HIN and the biological system considered as a complex HIN. Then, we discuss the topological properties of HIN and how these can be applied to detect network motif and functional module. Afterwards, methodologies of discovering relationships between disease and biomolecule are presented. Useful insights on how HIN aids in drug development and explores human interactome are provided. Finally, we analyze the challenges and opportunities for uncovering combinatorial patterns among pharmacogenomics and cell-type detection based on single-cell genomic data.
Collapse
Affiliation(s)
- Pingjian Ding
- School of Computer Science, University of South China, Hengyang, China
| | - Wenjue Ouyang
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Jiawei Luo
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Chee-Keong Kwoh
- School of Computer Science and Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
6
|
Ding P, Liang C, Ouyang W, Li G, Xiao Q, Luo J. Inferring Synergistic Drug Combinations Based on Symmetric Meta-Path in a Novel Heterogeneous Network. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:1562-1571. [PMID: 31714232 DOI: 10.1109/tcbb.2019.2951557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Combinatorial drug therapy is a promising way for treating cancers, which can reduce drug side effects and improve drug efficacy. However, due to the large-scale combinatorial space, it is difficult to quickly and effectively identify novel synergistic drug combinations for further implementing combinatorial drug therapy. The computational method of fusing multi-source knowledge is a time- and cost-efficient strategy to infer synergistic drug combinations for testing. However, for the existing computational methods of inferring synergistic drug combinations, it still remains a challenging to effectively combine multi-source information to achieve the desired results. Hence, in this study, we developed a novel Inference method of Synergistic Drug Combinations based on Symmetric Meta-Path (ISDCSMP), which can systematically and accurately prioritize synergistic drug combinations in a novel drug-target heterogeneous network integrating multi-source information. In the experiment, ISDCSMP outperformed the state-of-the-art methods in terms of AUC and precision on the benchmark dataset in five-fold cross validation. Moreover, we further illustrated performances of different ways for obtaining the combination coefficients, and analyzed the influences of the maximum meta-path length. The performances of various single meta-paths were described in five-fold cross validation. Finally, we confirmed the practical usefulness of ISDCSMP with the predicted novel synergistic drug combinations. The source code of ISDCSMP is available at https://github.com/KDDing/ISDCSMP.
Collapse
|
7
|
Zhu Q, Fan Y, Pan X. Fusing Multiple Biological Networks to Effectively Predict miRNA-disease Associations. Curr Bioinform 2021. [DOI: 10.2174/1574893615999200715165335] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
MicroRNAs (miRNAs) are a class of endogenous non-coding RNAs with
about 22 nucleotides, and they play a significant role in a variety of complex biological processes.
Many researches have shown that miRNAs are closely related to human diseases. Although the
biological experiments are reliable in identifying miRNA-disease associations, they are timeconsuming
and costly.
Objective:
Thus, computational methods are urgently needed to effectively predict miRNA-disease
associations.
Methods:
In this paper, we proposed a novel method, BIRWMDA, based on a bi-random walk
model to predict miRNA-disease associations. Specifically, in BIRWMDA, the similarity network
fusion algorithm is used to combine the multiple similarity matrices to obtain a miRNA-miRNA
similarity matrix and a disease-disease similarity matrix, then the miRNA-disease associations were
predicted by the bi-random walk model.
Results:
To evaluate the performance of BIRWMDA, we ran the leave-one-out cross-validation and
5-fold cross-validation, and their corresponding AUCs were 0.9303 and 0.9223 ± 0.00067,
respectively. To further demonstrate the effectiveness of the BIRWMDA, from the perspective of
exploring disease-related miRNAs, we conducted three case studies of breast neoplasms, prostate
neoplasms and gastric neoplasms, where 48, 50 and 50 out of the top 50 predicted miRNAs were
confirmed by literature, respectively. From the perspective of exploring miRNA-related diseases, we
conducted two case studies of hsa-mir-21 and hsa-mir-155, where 7 and 5 out of the top 10 predicted
diseases were confirmed by literatures, respectively.
Conclusion:
The fusion of multiple biological networks could effectively predict miRNA-diseases
associations. We expected BIRWMDA to serve as a biological tool for mining potential miRNAdisease
associations.
Collapse
Affiliation(s)
- Qingqi Zhu
- School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin, China
| | - Yongxian Fan
- School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin, China
| | - Xiaoyong Pan
- Institute of Image Processing and Recognition, Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai, China
| |
Collapse
|
8
|
Chu Y, Wang X, Dai Q, Wang Y, Wang Q, Peng S, Wei X, Qiu J, Salahub DR, Xiong Y, Wei DQ. MDA-GCNFTG: identifying miRNA-disease associations based on graph convolutional networks via graph sampling through the feature and topology graph. Brief Bioinform 2021; 22:6261915. [PMID: 34009265 DOI: 10.1093/bib/bbab165] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/02/2021] [Accepted: 04/08/2021] [Indexed: 11/13/2022] Open
Abstract
Accurate identification of the miRNA-disease associations (MDAs) helps to understand the etiology and mechanisms of various diseases. However, the experimental methods are costly and time-consuming. Thus, it is urgent to develop computational methods towards the prediction of MDAs. Based on the graph theory, the MDA prediction is regarded as a node classification task in the present study. To solve this task, we propose a novel method MDA-GCNFTG, which predicts MDAs based on Graph Convolutional Networks (GCNs) via graph sampling through the Feature and Topology Graph to improve the training efficiency and accuracy. This method models both the potential connections of feature space and the structural relationships of MDA data. The nodes of the graphs are represented by the disease semantic similarity, miRNA functional similarity and Gaussian interaction profile kernel similarity. Moreover, we considered six tasks simultaneously on the MDA prediction problem at the first time, which ensure that under both balanced and unbalanced sample distribution, MDA-GCNFTG can predict not only new MDAs but also new diseases without known related miRNAs and new miRNAs without known related diseases. The results of 5-fold cross-validation show that the MDA-GCNFTG method has achieved satisfactory performance on all six tasks and is significantly superior to the classic machine learning methods and the state-of-the-art MDA prediction methods. Moreover, the effectiveness of GCNs via the graph sampling strategy and the feature and topology graph in MDA-GCNFTG has also been demonstrated. More importantly, case studies for two diseases and three miRNAs are conducted and achieved satisfactory performance.
Collapse
Affiliation(s)
- Yanyi Chu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, China
| | - Xuhong Wang
- School of Electronic, Information and Electrical Engineering (SEIEE), Shanghai Jiao Tong University, China
| | - Qiuying Dai
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, China
| | - Yanjing Wang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, China
| | - Qiankun Wang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, China
| | - Shaoliang Peng
- College of Computer Science and Electronic Engineering, Hunan University, China
| | | | | | - Dennis Russell Salahub
- Department of Chemistry, University of Calgary, Fellow Royal Society of Canada and Fellow of the American Association for the Advancement of Science, China
| | - Yi Xiong
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Research Laboratory of Metabolic & Developmental Sciences and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Dong-Qing Wei
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Research Laboratory of Metabolic & Developmental Sciences and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| |
Collapse
|
9
|
Li J, Zhang S, Wan Y, Zhao Y, Shi J, Zhou Y, Cui Q. MISIM v2.0: a web server for inferring microRNA functional similarity based on microRNA-disease associations. Nucleic Acids Res 2020; 47:W536-W541. [PMID: 31069374 PMCID: PMC6602518 DOI: 10.1093/nar/gkz328] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 04/14/2019] [Accepted: 04/25/2019] [Indexed: 01/11/2023] Open
Abstract
MicroRNAs (miRNAs) are one class of important small non-coding RNA molecules and play critical roles in health and disease. Therefore, it is important and necessary to evaluate the functional relationship of miRNAs and then predict novel miRNA-disease associations. For this purpose, here we developed the updated web server MISIM (miRNA similarity) v2.0. Besides a 3-fold increase in data content compared with MISIM v1.0, MISIM v2.0 improved the original MISIM algorithm by implementing both positive and negative miRNA-disease associations. That is, the MISIM v2.0 scores could be positive or negative, whereas MISIM v1.0 only produced positive scores. Moreover, MISIM v2.0 achieved an algorithm for novel miRNA-disease prediction based on MISIM v2.0 scores. Finally, MISIM v2.0 provided network visualization and functional enrichment analysis for functionally paired miRNAs. The MISIM v2.0 web server is freely accessible at http://www.lirmed.com/misim/.
Collapse
Affiliation(s)
- Jianwei Li
- Institute of Computational Medicine, School of Artificial Intelligence, Hebei University of Technology, Tianjin 300401, China.,Department of Biomedical Informatics, Department of Physiology and Pathophysiology, Center for Noncoding RNA Medicine, MOE Key Lab of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University, 38 Xueyuan Rd, Beijing 100191, China
| | - Shan Zhang
- Institute of Computational Medicine, School of Artificial Intelligence, Hebei University of Technology, Tianjin 300401, China
| | - Yanping Wan
- Institute of Computational Medicine, School of Artificial Intelligence, Hebei University of Technology, Tianjin 300401, China
| | - Yingshu Zhao
- Institute of Computational Medicine, School of Artificial Intelligence, Hebei University of Technology, Tianjin 300401, China
| | - Jiangcheng Shi
- Department of Biomedical Informatics, Department of Physiology and Pathophysiology, Center for Noncoding RNA Medicine, MOE Key Lab of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University, 38 Xueyuan Rd, Beijing 100191, China
| | - Yuan Zhou
- Department of Biomedical Informatics, Department of Physiology and Pathophysiology, Center for Noncoding RNA Medicine, MOE Key Lab of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University, 38 Xueyuan Rd, Beijing 100191, China
| | - Qinghua Cui
- Department of Biomedical Informatics, Department of Physiology and Pathophysiology, Center for Noncoding RNA Medicine, MOE Key Lab of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University, 38 Xueyuan Rd, Beijing 100191, China.,Sanbo Brain Institute, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| |
Collapse
|
10
|
Chen X, Xie D, Zhao Q, You ZH. MicroRNAs and complex diseases: from experimental results to computational models. Brief Bioinform 2019; 20:515-539. [PMID: 29045685 DOI: 10.1093/bib/bbx130] [Citation(s) in RCA: 423] [Impact Index Per Article: 70.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/13/2017] [Indexed: 12/22/2022] Open
Abstract
Plenty of microRNAs (miRNAs) were discovered at a rapid pace in plants, green algae, viruses and animals. As one of the most important components in the cell, miRNAs play a growing important role in various essential and important biological processes. For the recent few decades, amounts of experimental methods and computational models have been designed and implemented to identify novel miRNA-disease associations. In this review, the functions of miRNAs, miRNA-target interactions, miRNA-disease associations and some important publicly available miRNA-related databases were discussed in detail. Specially, considering the important fact that an increasing number of miRNA-disease associations have been experimentally confirmed, we selected five important miRNA-related human diseases and five crucial disease-related miRNAs and provided corresponding introductions. Identifying disease-related miRNAs has become an important goal of biomedical research, which will accelerate the understanding of disease pathogenesis at the molecular level and molecular tools design for disease diagnosis, treatment and prevention. Computational models have become an important means for novel miRNA-disease association identification, which could select the most promising miRNA-disease pairs for experimental validation and significantly reduce the time and cost of the biological experiments. Here, we reviewed 20 state-of-the-art computational models of predicting miRNA-disease associations from different perspectives. Finally, we summarized four important factors for the difficulties of predicting potential disease-related miRNAs, the framework of constructing powerful computational models to predict potential miRNA-disease associations including five feasible and important research schemas, and future directions for further development of computational models.
Collapse
Affiliation(s)
- Xing Chen
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China
| | - Di Xie
- School of Mathematics, Liaoning University
| | - Qi Zhao
- School of Mathematics, Liaoning University
| | - Zhu-Hong You
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Science
| |
Collapse
|
11
|
Luo J, Pan C, Xiang G, Yin Y. A Novel Cluster-Based Computational Method to Identify miRNA Regulatory Modules. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2019; 16:681-687. [PMID: 29993835 DOI: 10.1109/tcbb.2018.2824805] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The identification of miRNA regulatory modules can help decipher miRNAs combinatorial regulation effects on the pathogenesis underlying complex diseases, especially in cancer. By integrating miRNA/mRNA expression profiles and sequence-based predicted target site information, we develop a novel cluster-based computational method named CoModule for identifying miRNA regulatory modules (MRMs). The ultimate goal of CoModule is to detect the MRMs, in which the miRNAs in each module are expected to present cooperative mechanisms in regulating their targets mRNAs. Here, the co-expression of miRNAs are believed to present cooperative regulatory relationship, therefore, the critical step of CoModule is first to partition the miRNAs with similar expression into a cluster by employing rough set clustering. After gaining credible miRNA clusters, the targets of regulator are naturally added into corresponding clusters to produce the final miRNA regulatory modules. We apply this present method to ovarian cancer datasets and make a comparison with the other two existing prominent approaches. The results indicate that the modules identified by CoModule perform better than the other two methods ranging from the topological aspects to the biological function. Survival analysis detects a number of prognostic modules with statistical significance, which can help reveal the potential diagnostic for ovarian cancer.
Collapse
|
12
|
Che K, Guo M, Wang C, Liu X, Chen X. Predicting MiRNA-Disease Association by Latent Feature Extraction with Positive Samples. Genes (Basel) 2019; 10:genes10020080. [PMID: 30682853 PMCID: PMC6410147 DOI: 10.3390/genes10020080] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/18/2019] [Accepted: 01/18/2019] [Indexed: 11/16/2022] Open
Abstract
In discovering disease etiology and pathogenesis, the associations between MicroRNAs (miRNAs) and diseases play a critical role. Given known miRNA-disease associations (MDAs), how to uncover potential MDAs is an important problem. To solve this problem, most of the existing methods regard known MDAs as positive samples and unknown ones as negative samples, and then predict possible MDAs by iteratively revising the negative samples. However, simply viewing unknown MDAs as negative samples introduces erroneous information, which may result in poor predication performance. To avoid such defects, we present a novel method using only positive samples to predict MDAs by latent features extraction (LFEMDA). We design a new approach to construct the miRNAs similarity matrix. LFEMDA integrates the disease similarity matrix, the known MDAs and the miRNAs similarity matrix to identify potential MDAs. By introducing miRNAs and diseases knowledge as the auxiliary variables, the method can converge to give the optimal solution in each iteration. We conduct experiments on high-association diseases and new diseases datasets, in which our method shows better performance than that of other methods. We also carry out a case study on breast neoplasms to further demonstrate the capacity of our method in uncovering potential MDAs.
Collapse
Affiliation(s)
- Kai Che
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China.
| | - Maozu Guo
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China.
- School of Electrical and Information Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
- Beijing Key Laboratory of Intelligent Processing for Building Big Data, Beijing 100044, China.
| | - Chunyu Wang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China.
| | - Xiaoyan Liu
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China.
| | - Xi Chen
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China.
| |
Collapse
|
13
|
Lee B, Ahn SY, Park C, Moon JJ, Lee JH, Luo D, Um SH, Shin SW. Revealing the Presence of a Symbolic Sequence Representing Multiple Nucleotides Based on K-Means Clustering of Oligonucleotides. Molecules 2019; 24:molecules24020348. [PMID: 30669407 PMCID: PMC6359743 DOI: 10.3390/molecules24020348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 11/16/2022] Open
Abstract
In biological systems, a few sequence differences diversify the hybridization profile of nucleotides and enable the quantitative control of cellular metabolism in a cooperative manner. In this respect, the information required for a better understanding may not be in each nucleotide sequence, but representative information contained among them. Existing methodologies for nucleotide sequence design have been optimized to track the function of the genetic molecule and predict interaction with others. However, there has been no attempt to extract new sequence information to represent their inheritance function. Here, we tried to conceptually reveal the presence of a representative sequence from groups of nucleotides. The combined application of the K-means clustering algorithm and the social network analysis theorem enabled the effective calculation of the representative sequence. First, a “common sequence” is made that has the highest hybridization property to analog sequences. Next, the sequence complementary to the common sequence is designated as a ‘representative sequence’. Based on this, we obtained a representative sequence from multiple analog sequences that are 8–10-bases long. Their hybridization was empirically tested, which confirmed that the common sequence had the highest hybridization tendency, and the representative sequence better alignment with the analogs compared to a mere complementary.
Collapse
Affiliation(s)
- Byoungsang Lee
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Gyeonggi-do, South Korea.
| | - So Yeon Ahn
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Gyeonggi-do, South Korea.
| | - Charles Park
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| | - James J Moon
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Jung Heon Lee
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Gyeonggi-do, South Korea.
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Gyeonggi-do, South Korea.
| | - Dan Luo
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14850, USA.
| | - Soong Ho Um
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Gyeonggi-do, South Korea.
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Gyeonggi-do, South Korea.
| | - Seung Won Shin
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Gyeonggi-do, South Korea.
| |
Collapse
|
14
|
Luo J, Ding P, Liang C, Chen X. Semi-supervised prediction of human miRNA-disease association based on graph regularization framework in heterogeneous networks. Neurocomputing 2018. [DOI: 10.1016/j.neucom.2018.03.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
15
|
Luo J, Yin Y, Pan C, Xiang G, Tu NH. Identifying Functional Modules in Co-Regulatory Networks Through Overlapping Spectral Clustering. IEEE Trans Nanobioscience 2018; 17:134-144. [DOI: 10.1109/tnb.2018.2805846] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
Liu Y, Luo J, Ding P. Inferring MicroRNA Targets Based on Restricted Boltzmann Machines. IEEE J Biomed Health Inform 2018; 23:427-436. [PMID: 29993787 DOI: 10.1109/jbhi.2018.2814609] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Predicting the miRNA-target interactions (MTIs) is a critical task for elucidating mechanistic roles of miRNAs in pathophysiology. However, most existing techniques have a higher false positive because the precise miRNA target mechanisms are poorly known. Considering that ensemble methods can take advantage of the complementary knowledge in different methods, we propose an alternative optimization framework, Inferring MiRNA Targets based on Restricted Boltzmann Machines (IMTRBM), to enhance the accuracy of previous prediction results. First, the proposed method directly constructs a weighted MTI network though the results predicted by individual methods and each miRNA target pair is weighted based on the frequency appearing in these results. Second, we transform the miRNA-target prediction problem into a complete bipartite graph model, named restricted Boltzmann machine, and utilize a practical learning procedure to train our model and make predictions. Our results show that the algorithm outperforms individual miRNA-target prediction approach in the number of validated miRNA targets at cutoffs of top list. Moreover, our framework can tolerate the decrease and increase of predicted MTIs and even discover new miRNA targets, which have been a challenge to predict for any individual methods. Finally, for the miRNAs that are not appearing in IMTRBM, we design a new method to supplement IMTRBM based on the intuition that similar miRNAs have similar functions, which also achieves a comparable result. The source code of IMTRBM is available at https://github.com/liuying201705/IMTRBM.
Collapse
|
17
|
Ding P, Luo J, Liang C, Xiao Q, Cao B. Human disease MiRNA inference by combining target information based on heterogeneous manifolds. J Biomed Inform 2018; 80:26-36. [PMID: 29481877 DOI: 10.1016/j.jbi.2018.02.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 02/11/2018] [Accepted: 02/21/2018] [Indexed: 12/12/2022]
Abstract
The emergence of network medicine has provided great insight into the identification of disease-related molecules, which could help with the development of personalized medicine. However, the state-of-the-art methods could neither simultaneously consider target information and the known miRNA-disease associations nor effectively explore novel gene-disease associations as a by-product during the process of inferring disease-related miRNAs. Computational methods incorporating multiple sources of information offer more opportunities to infer disease-related molecules, including miRNAs and genes in heterogeneous networks at a system level. In this study, we developed a novel algorithm, named inference of Disease-related MiRNAs based on Heterogeneous Manifold (DMHM), to accurately and efficiently identify miRNA-disease associations by integrating multi-omics data. Graph-based regularization was utilized to obtain a smooth function on the data manifold, which constitutes the main principle of DMHM. The novelty of this framework lies in the relatedness between diseases and miRNAs, which are measured via heterogeneous manifolds on heterogeneous networks integrating target information. To demonstrate the effectiveness of DMHM, we conducted comprehensive experiments based on HMDD datasets and compared DMHM with six state-of-the-art methods. Experimental results indicated that DMHM significantly outperformed the other six methods under fivefold cross validation and de novo prediction tests. Case studies have further confirmed the practical usefulness of DMHM.
Collapse
Affiliation(s)
- Pingjian Ding
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410083, China
| | - Jiawei Luo
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410083, China.
| | - Cheng Liang
- School of Information Science and Engineering, Shandong Normal University, Jinan 250014, China
| | - Qiu Xiao
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410083, China
| | - Buwen Cao
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410083, China
| |
Collapse
|
18
|
Xiao Q, Luo J, Liang C, Cai J, Ding P. A graph regularized non-negative matrix factorization method for identifying microRNA-disease associations. Bioinformatics 2017; 34:239-248. [PMID: 28968779 DOI: 10.1093/bioinformatics/btx545] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 07/21/2017] [Accepted: 08/31/2017] [Indexed: 01/22/2023] Open
Abstract
MOTIVATION MicroRNAs (miRNAs) play crucial roles in post-transcriptional regulations and various cellular processes. The identification of disease-related miRNAs provides great insights into the underlying pathogenesis of diseases at a system level. However, most existing computational approaches are biased towards known miRNA-disease associations, which is inappropriate for those new diseases or miRNAs without any known association information. RESULTS In this study, we propose a new method with graph regularized non-negative matrix factorization in heterogeneous omics data, called GRNMF, to discover potential associations between miRNAs and diseases, especially for new diseases and miRNAs or those diseases and miRNAs with sparse known associations. First, we integrate the disease semantic information and miRNA functional information to estimate disease similarity and miRNA similarity, respectively. Considering that there is no available interaction observed for new diseases or miRNAs, a preprocessing step is developed to construct the interaction score profiles that will assist in prediction. Next, a graph regularized non-negative matrix factorization framework is utilized to simultaneously identify potential associations for all diseases. The results indicated that our proposed method can effectively prioritize disease-associated miRNAs with higher accuracy compared with other recent approaches. Moreover, case studies also demonstrated the effectiveness of GRNMF to infer unknown miRNA-disease associations for those novel diseases and miRNAs. AVAILABILITY AND IMPLEMENTATION The code of GRNMF is freely available at https://github.com/XIAO-HN/GRNMF/. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Qiu Xiao
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Jiawei Luo
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Cheng Liang
- College of Information Science and Engineering, Shandong Normal University, Jinan, China
| | - Jie Cai
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Pingjian Ding
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| |
Collapse
|