1
|
Lyu H, Sugita N, Komatsu S, Wakasugi M, Yokoseki A, Yoshihara A, Kobayashi T, Sato K, Kawashima H, Onodera O, Narita I, Tabeta K. UCP2 polymorphisms, daily step count, and number of teeth associated with all-cause mortality risk in Sado City: A hospital-based cohort study. Heliyon 2024; 10:e32512. [PMID: 38952382 PMCID: PMC11215260 DOI: 10.1016/j.heliyon.2024.e32512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 05/13/2024] [Accepted: 06/05/2024] [Indexed: 07/03/2024] Open
Abstract
Objective Uncoupling protein 2 (UCP2) is an ion/anion transporter in the mitochondrial inner membrane that plays a crucial role in immune response, regulation of oxidative stress, and cellular metabolism. UCP2 polymorphisms are linked to chronic inflammation, obesity, diabetes, heart disease, exercise efficiency, and longevity. Daily step count and number of teeth are modifiable factors that reduce mortality risk, although the role of UCP2 in this mechanism is unknown. This study aimed to assess the possible effects of UCP2 polymorphisms on the association between daily step count and number of teeth with all-cause mortality. Methods This study was conducted as a cohort project involving adult Japanese outpatients at Sado General Hospital (PROST). The final number of participants was 875 (mean age: 69 y). All-cause mortality during thirteen years (from June 2008 to August 2021) was recorded. The functional UCP2 genotypes rs659366 and rs660339 were identified using the Japonica Array®. Survival analyses were performed using multivariate Cox proportional hazard models. Results There were 161 deaths (mean observation period: 113 months). Age, sex, daily step count, and the number of teeth were significantly associated with mortality. In females, UCP2 polymorphisms were associated with mortality independent of other factors (rs659366 GA compared to GG + AA; HR = 2.033, p = 0.019, rs660339 C T compared to CC + TT; HR = 1.911, p = 0.029). Multivariate models, with and without UCP2 genotypes, yielded similar results. The interaction terms between UCP2 genotype and daily step count or number of teeth were not significantly associated with mortality. Conclusion The effects of UCP2 polymorphisms on the association between daily step count or the number of teeth and all-cause mortality were not statistically significant. In females, UCP2 polymorphisms were significantly associated with all-cause mortality. Our findings confirmed the importance of physical activity and oral health and suggested a role of UCP2 in mortality risk independently with those factors.
Collapse
Affiliation(s)
- Han Lyu
- Division of Periodontology, Department of Oral Biological Science, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Noriko Sugita
- Division of Periodontology, Department of Oral Biological Science, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | | | - Minako Wakasugi
- Department of Inter-Organ Communication Research, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Akio Yokoseki
- Department of Inter-Organ Communication Research, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Akihiro Yoshihara
- Division of Oral Science and Health Promotion, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Tetsuo Kobayashi
- Division of Periodontology, Department of Oral Biological Science, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
- General Dentistry and Clinical Education Unit, Faculty of Dentistry & Medical and Dental Hospital, Niigata University, Niigata, Japan
| | | | - Hiroyuki Kawashima
- Division of Orthopedic Surgery, Niigata University Graduate School of Medical and Dental Science, Niigata, Japan
| | - Osamu Onodera
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Ichiei Narita
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Koichi Tabeta
- Division of Periodontology, Department of Oral Biological Science, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| |
Collapse
|
2
|
Papasavva M, Vikelis M, Siokas V, Katsarou MS, Dermitzakis EV, Raptis A, Kalliantasi A, Dardiotis E, Drakoulis N. Variability in oxidative stress-related genes ( SOD2, CAT, GPX1, GSTP1, NOS3, NFE2L2, and UCP2) and susceptibility to migraine clinical phenotypes and features. Front Neurol 2023; 13:1054333. [PMID: 36698892 PMCID: PMC9868718 DOI: 10.3389/fneur.2022.1054333] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/13/2022] [Indexed: 01/11/2023] Open
Abstract
Introduction Migraine is a complex disorder with genetic and environmental inputs. Cumulative evidence implicates oxidative stress (OS) in migraine pathophysiology while genetic variability may influence an individuals' oxidative/antioxidant capacity. Aim of the current study was to investigate the impact of eight common OS-related genetic variants [rs4880 (SOD2), rs1001179 (CAT), rs1050450 (GPX1), rs1695 (GSTP1), rs1138272 (GSTP1), rs1799983 (NOS3), rs6721961 (NFE2L2), rs660339 (UCP2)] in migraine susceptibility and clinical features in a South-eastern European Caucasian population. Methods Genomic DNA samples from 221 unrelated migraineurs and 265 headache-free controls were genotyped for the selected genetic variants using real-time PCR (melting curve analysis). Results Although allelic and genotypic frequency distribution analysis did not support an association between migraine susceptibility and the examined variants in the overall population, subgroup analysis indicated significant correlation between NOS3 rs1799983 and migraine susceptibility in males. Furthermore, significant associations of CAT rs1001179 and GPX1 rs1050450 with disease age-at-onset and migraine attack duration, respectively, were revealed. Lastly, variability in the CAT, GSTP1 and UCP2 genes were associated with sleep/weather changes, alcohol consumption and physical exercise, respectively, as migraine triggers. Discussion Hence, the current findings possibly indicate an association of OS-related genetic variants with migraine susceptibility and clinical features, further supporting the involvement of OS and genetic susceptibility in migraine.
Collapse
Affiliation(s)
- Maria Papasavva
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece,*Correspondence: Maria Papasavva ✉
| | | | - Vasileios Siokas
- Laboratory of Neurogenetics, Department of Neurology, University Hospital of Larissa, Larissa, Greece,Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Martha-Spyridoula Katsarou
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Athanasios Raptis
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Aikaterini Kalliantasi
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Efthimios Dardiotis
- Laboratory of Neurogenetics, Department of Neurology, University Hospital of Larissa, Larissa, Greece,Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Nikolaos Drakoulis
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece,Nikolaos Drakoulis ✉
| |
Collapse
|
3
|
Protsenko E, Rehkopf D, Prather AA, Epel E, Lin J. Are long telomeres better than short? Relative contributions of genetically predicted telomere length to neoplastic and non-neoplastic disease risk and population health burden. PLoS One 2020; 15:e0240185. [PMID: 33031470 PMCID: PMC7544094 DOI: 10.1371/journal.pone.0240185] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/22/2020] [Indexed: 12/22/2022] Open
Abstract
Background Mendelian Randomization (MR) studies exploiting single nucleotide polymorphisms (SNPs) predictive of leukocyte telomere length (LTL) have suggested that shorter genetically determined telomere length (gTL) is associated with increased risks of degenerative diseases, including cardiovascular and Alzheimer’s diseases, while longer gTL is associated with increased cancer risks. These varying directions of disease risk have long begged the question: when it comes to telomeres, is it better to be long or short? We propose to operationalize and answer this question by considering the relative impact of long gTL vs. short gTL on disease incidence and burden in a population. Methods and findings We used odds ratios (OR) of disease associated with gTL from a recently published MR meta-analysis to approximate the relative contributions of gTL to the incidence and burden of neoplastic and non-neoplastic disease in a European population. We obtained incidence data of the 9 cancers associated with long gTL and 4 non-neoplastic diseases associated with short gTL from the Institute of Health Metrics (IHME). Incidence rates of individual cancers from SEER, a database of United States cancer records, were used to weight the ORs in order to align with the available IHME data. These data were used to estimate the excess incidences due to long vs. short gTL, expressed as per 100,000 persons per standard deviation (SD) change in gTL. To estimate the population disease burden, we used the Disability Adjusted Life Years (DALY) metric from the IHME, a measure of overall disease burden that accounts for both mortality and morbidity, and similarly calculated the excess DALY associated with long vs. short gTL. Results Our analysis shows that, despite the markedly larger ORs of neoplastic disease, the large incidence of degenerative diseases causes the excess incidence attributable to gTL to balance that of neoplastic diseases. Long gTL is associated with an excess incidence of 94.04 cases/100,000 persons/SD (45.49–168.84, 95%CI) from the 9 cancer, while short gTL is associated with an excess incidence of 121.49 cases/100,000 persons/SD (48.40–228.58, 95%CI) from the 4 non-neoplastic diseases. When considering disease burden using the DALY metric, long gTL is associated with an excess 1255.25 DALYs/100,000 persons/SD (662.71–2163.83, 95%CI) due to the 9 cancers, while short gTL is associated with an excess 1007.75 DALYs/100,000 persons/SD (411.63–1847.34, 95%CI) due to 4 non-neoplastic diseases. Conclusions Our results show that genetically determined long and short telomere length are associated with disease risk and burden of approximately equal magnitude. These results provide quantitative estimates of the relative impact of genetically-predicted short vs. long TL in a human population, and provide evidence in support of the cancer-aging paradox, wherein human telomere length is balanced by opposing evolutionary forces acting to minimize both neoplastic and non-neoplastic diseases. Importantly, our results indicate that odds ratios alone can be misleading in different clinical scenarios, and disease risk should be assessed from both an individual and population level in order to draw appropriate conclusions about the risk factor’s role in human health.
Collapse
Affiliation(s)
| | - David Rehkopf
- Stanford Department of Primary Care and Population Health, Stanford, CA, United States of America
| | - Aric A. Prather
- UCSF Department of Psychiatry, San Francisco, CA, United States of America
| | - Elissa Epel
- UCSF Department of Psychiatry, San Francisco, CA, United States of America
| | - Jue Lin
- UCSF Department of Biochemistry and Biophysics, San Francisco, CA, United States of America
- * E-mail:
| |
Collapse
|
4
|
Novel insights of elevated systemic levels of bisphenol-A (BPA) linked to poor glycemic control, accelerated cellular senescence and insulin resistance in patients with type 2 diabetes. Mol Cell Biochem 2019; 458:171-183. [DOI: 10.1007/s11010-019-03540-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 04/12/2019] [Indexed: 12/15/2022]
|
5
|
Abstract
Telomere length measurement is increasingly recognized as a clinical gauge for age-related disease risk. There are several methods for studying blood telomere length (BTL) as a clinical biomarker. The first is an observational study approach, which directly measures telomere lengths using either cross-sectional or longitudinal patient cohorts and compares them to a population of age- and sex-matched individuals. These direct traceable measurements can be considered reflective of an individual's current health or disease state. Escalating interest in personalized medicine, access to high-throughput genotyping and resulting acquisition of large volumes of genetic data corroborates the second method, Mendelian randomization (MR). MR employs telomere length-associated genetic variants to indicate predisposition to disease risk based on the genomic composition of the individual. When assessed from cells in the bloodstream, telomeres can show variation from their genetically predisposed lengths due to environmental-induced changes. These alterations in telomere length act as an indicator of cellular health, which, in turn, can provide disease risk status. Overall, BTL measurement is a dynamic marker of biological health and well-being that together with genetically defined telomere lengths can provide insights into improved healthcare for the individual.
Collapse
|
6
|
Zhou Y, Hambly BD, McLachlan CS. FTO associations with obesity and telomere length. J Biomed Sci 2017; 24:65. [PMID: 28859657 PMCID: PMC5580219 DOI: 10.1186/s12929-017-0372-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 08/23/2017] [Indexed: 12/16/2022] Open
Abstract
This review examines the biology of the Fat mass- and obesity-associated gene (FTO), and the implications of genetic association of FTO SNPs with obesity and genetic aging. Notably, we focus on the role of FTO in the regulation of methylation status as possible regulators of weight gain and genetic aging. We present a theoretical review of the FTO gene with a particular emphasis on associations with UCP2, AMPK, RBL2, IRX3, CUX1, mTORC1 and hormones involved in hunger regulation. These associations are important for dietary behavior regulation and cellular nutrient sensing via amino acids. We suggest that these pathways may also influence telomere regulation. Telomere length (TL) attrition may be influenced by obesity-related inflammation and oxidative stress, and FTO gene-involved pathways. There is additional emerging evidence to suggest that telomere length and obesity are bi-directionally associated. However, the role of obesity risk-related genotypes and associations with TL are not well understood. The FTO gene may influence pathways implicated in regulation of TL, which could help to explain some of the non-consistent relationship between weight phenotype and telomere length that is observed in population studies investigating obesity.
Collapse
Affiliation(s)
- Yuling Zhou
- Rural Clinical School, University of New South Wales, Sydney, 2052, Australia
| | - Brett D Hambly
- Discipline of Pathology and Bosch Institute, University of Sydney, Sydney, Australia
| | - Craig S McLachlan
- Rural Clinical School, University of New South Wales, Sydney, 2052, Australia.
| |
Collapse
|
7
|
Katsarou MS, Giakoumaki M, Papadimitriou A, Demertzis N, Androutsopoulos V, Drakoulis N. Genetically driven antioxidant capacity in a Caucasian Southeastern European population. Mech Ageing Dev 2017; 172:1-5. [PMID: 28844971 DOI: 10.1016/j.mad.2017.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/19/2017] [Indexed: 01/31/2023]
Abstract
Previous studies have underlined the function of specific xenobiotic metabolizing phase-I or phase-II enzymes and endogenous antioxidant-related enzymes in the reduction and/or progression of oxidative stress and consequently the incidence of several diseases. In the present study, 10 polymorphic variants (rs4880, rs1799895, rs660339, rs1050450, rs1001179, rs28665122, rs1695, rs1138272, rs1051740 and rs2234922) were investigated in 1132 individuals of a Caucasian Southeastern European population. The frequency distribution of alleles and genotypes was compared to data of European (Northern, Central, Northwestern and Southwestern) and Global populations, extracted from the ensembl genome browser. The allele frequencies in the case of rs1051740 were similar to the frequencies noted in the global population. The majority of the present study allelic polymorphisms showed similar frequency distribution to those of the European or the Global populations (0.88≤OR≤1.14). The rs1051740 polymorphism demonstrated similar to the Global population frequencies (OR=1.09). In conclusion, observed distributions of the polymorphisms studied in the Southeastern population demonstrate a positive impact (rs4880, rs1799895, rs660339, rs28665122) and a negative impact (rs1050450, rs1138272, rs109179, rs1695) against oxidative stress when compared to other population groups.
Collapse
Affiliation(s)
- Martha-Spyridoula Katsarou
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771, Athens, Greece
| | - Maria Giakoumaki
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771, Athens, Greece
| | - Andriana Papadimitriou
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771, Athens, Greece
| | - Nikolaos Demertzis
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771, Athens, Greece
| | - Vasileios Androutsopoulos
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771, Athens, Greece
| | - Nikolaos Drakoulis
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771, Athens, Greece.
| |
Collapse
|
8
|
Dato S, De Rango F, Crocco P, Passarino G, Rose G. Pleiotropic effects of UCP2–UCP3 variability on leucocyte telomere length and glucose homeostasis. Biogerontology 2017; 18:347-355. [DOI: 10.1007/s10522-017-9690-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 03/06/2017] [Indexed: 01/06/2023]
|