1
|
Abdelrazzak AB, O'Neill P, Hill MA. Influence of ionizing radiation and cell density on the kinetics of autocrine destruction and intercellular induction of apoptosis in precancerous cells. Sci Rep 2022; 12:7150. [PMID: 35505194 PMCID: PMC9065116 DOI: 10.1038/s41598-022-11253-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 04/19/2022] [Indexed: 11/09/2022] Open
Abstract
Intercellular induction of apoptosis (IIA) represents a well-defined signaling model by which precancerous cells are selectively eradicated through reactive oxygen/nitrogen species and cytokine signaling from neighbour normal cells. Previously, we demonstrated that the IIA process could be enhanced by exposure of normal cells to very low doses of ionizing radiation as a result of perturbing the intercellular signaling. In this study, we investigate the kinetic behaviour of both autocrine destruction (AD) and IIA as a function of cell density of both precancerous and normal cells using an insert co-culture system and how exposure of normal cells to ionizing radiation influence the kinetics of apoptosis induction in precancerous cells. Increasing the seeding density of transformed cells shifts the kinetics of AD towards earlier times with the response plateauing only at high seeding densities. Likewise, when co-culturing precancerous cells with normal cells, increasing the seeding density of either normal or precancerous cells also shifts the kinetics of IIA response towards earlier times and plateau only at higher seeding densities. Irradiation of normal cells prior to co-culture further enhances the kinetics of IIA response, with the degree of enhancement dependent on the relative cell densities. These results demonstrate the pivotal role of the cell seeding density of normal and precancerous cells in modulating both AD and IIA. These results further support the proposition that ionizing radiation could result in an enhancement in the rate of removal of precancerous cells through the IIA process.
Collapse
Affiliation(s)
- Abdelrazek B Abdelrazzak
- Spectroscopy Department, Physics Research Institute, National Research Centre, Cairo, 12622, Egypt.
| | - Peter O'Neill
- MRC Oxford Institute for Radiation Oncology, University of Oxford, Gray Laboratories, ORCRB, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Mark A Hill
- MRC Oxford Institute for Radiation Oncology, University of Oxford, Gray Laboratories, ORCRB, Roosevelt Drive, Oxford, OX3 7DQ, UK
| |
Collapse
|
2
|
Deng N, Li H, Li Y, Mo F, Wang M, Li Z, Chen X, Xu J, Chai R, Wang H. Physiological homeostasis alteration and cellular structure damage of Chlorella vulgaris exposed to silver nanoparticles with various microstructural morphologies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:26011-26020. [PMID: 35254620 DOI: 10.1007/s11356-022-19193-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
The toxicity of silver nanoparticles (AgNPs) with a single morphology to aquatic organisms has been well demonstrated in the past decade, but few studies have been carried out to evaluate the differences in toxicity among AgNPs with various microstructural morphologies. In this work, C. vulgaris was used as the tested organism to examine the differences in toxic effects among AgNSs, AgNCs, and AgPLs at concentrations of 0.5, 1.0, 2.0, and 5.0 mg/L. The results showed that the cell density and chlorophyll a content of C. vulgaris decreased when the dose of AgNPs was increased, while the inhibiting effects that were caused by AgPLs were stronger than those that were caused by AgNCs and AgNSs. Under short-term exposure to AgPLs, the ROS content was significantly higher than those under exposure to AgNCs and AgNSs, while the MDA content fluctuated without obvious regularity. The dose of AgPLs affected the antioxidative enzyme activity and lipid peroxidation more obviously than those of AgNSs and AgNCs. The superoxide dismutase and catalase contents in the former case were distinctly higher than those in the latter cases. Consequently, the cell apoptosis rate under exposure to AgPLs reached 83%, which was higher than those under exposure to AgNSs (50%) and AgNCs (71%). This work shows that the level of toxicity to C. vulgaris was in the order of AgPLs > AgNCs > AgNSs. The obtained results demonstrate that the microstructural morphologies of AgNPs determined their potential toxicity.
Collapse
Affiliation(s)
- Ningcan Deng
- School of Resources and Civil Engineering, Northeastern University, 3-11 Wenhua Road, Heping District, Shenyang, 110819, China
| | - Haibo Li
- School of Resources and Civil Engineering, Northeastern University, 3-11 Wenhua Road, Heping District, Shenyang, 110819, China.
| | - Yinghua Li
- School of Resources and Civil Engineering, Northeastern University, 3-11 Wenhua Road, Heping District, Shenyang, 110819, China.
| | - Fan Mo
- School of Resources and Civil Engineering, Northeastern University, 3-11 Wenhua Road, Heping District, Shenyang, 110819, China
| | - Mingshuai Wang
- School of Resources and Civil Engineering, Northeastern University, 3-11 Wenhua Road, Heping District, Shenyang, 110819, China
| | - Zhe Li
- School of Resources and Civil Engineering, Northeastern University, 3-11 Wenhua Road, Heping District, Shenyang, 110819, China
| | - Xi Chen
- School of Resources and Civil Engineering, Northeastern University, 3-11 Wenhua Road, Heping District, Shenyang, 110819, China
| | - Jianing Xu
- School of Resources and Civil Engineering, Northeastern University, 3-11 Wenhua Road, Heping District, Shenyang, 110819, China
| | - Rui Chai
- School of Resources and Civil Engineering, Northeastern University, 3-11 Wenhua Road, Heping District, Shenyang, 110819, China
| | - Hongxuan Wang
- School of Resources and Civil Engineering, Northeastern University, 3-11 Wenhua Road, Heping District, Shenyang, 110819, China
| |
Collapse
|
3
|
Kundrát P, Friedland W, Becker J, Eidemüller M, Ottolenghi A, Baiocco G. Analytical formulas representing track-structure simulations on DNA damage induced by protons and light ions at radiotherapy-relevant energies. Sci Rep 2020; 10:15775. [PMID: 32978459 PMCID: PMC7519066 DOI: 10.1038/s41598-020-72857-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/17/2020] [Indexed: 01/04/2023] Open
Abstract
Track structure based simulations valuably complement experimental research on biological effects of ionizing radiation. They provide information at the highest level of detail on initial DNA damage induced by diverse types of radiation. Simulations with the biophysical Monte Carlo code PARTRAC have been used for testing working hypotheses on radiation action mechanisms, for benchmarking other damage codes and as input for modelling subsequent biological processes. To facilitate such applications and in particular to enable extending the simulations to mixed radiation field conditions, we present analytical formulas that capture PARTRAC simulation results on DNA single- and double-strand breaks and their clusters induced in cells irradiated by ions ranging from hydrogen to neon at energies from 0.5 GeV/u down to their stopping. These functions offer a means by which radiation transport codes at the macroscopic scale could easily be extended to predict biological effects, exploiting a large database of results from micro-/nanoscale simulations, without having to deal with the coupling of spatial scales and running full track-structure calculations.
Collapse
Affiliation(s)
- Pavel Kundrát
- Institute of Radiation Medicine, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany.,Department of Radiation Dosimetry, Nuclear Physics Institute CAS, Prague, Czech Republic
| | - Werner Friedland
- Institute of Radiation Medicine, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Janine Becker
- Institute of Radiation Medicine, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Markus Eidemüller
- Institute of Radiation Medicine, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Andrea Ottolenghi
- Radiation Biophysics and Radiobiology Group, Physics Department, University of Pavia, Pavia, Italy
| | - Giorgio Baiocco
- Radiation Biophysics and Radiobiology Group, Physics Department, University of Pavia, Pavia, Italy.
| |
Collapse
|
4
|
Azimzade Y, Saberi AA, Sahimi M. Effect of heterogeneity and spatial correlations on the structure of a tumor invasion front in cellular environments. Phys Rev E 2019; 100:062409. [PMID: 31962455 DOI: 10.1103/physreve.100.062409] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Indexed: 06/10/2023]
Abstract
Analysis of invasion front has been widely used to decipher biological properties, as well as the growth dynamics of the corresponding populations. Likewise, the invasion front of tumors has been investigated, from which insights into the biological mechanisms of tumor growth have been gained. We develop a model to study how tumors' invasion front depends on the relevant properties of a cellular environment. To do so, we develop a model based on a nonlinear reaction-diffusion equation, the Fisher-Kolmogorov-Petrovsky-Piskunov equation, to model tumor growth. Our study aims to understand how heterogeneity in the cellular environment's stiffness, as well as spatial correlations in its morphology, the existence of both of which has been demonstrated by experiments, affects the properties of tumor invasion front. It is demonstrated that three important factors affect the properties of the front, namely the spatial distribution of the local diffusion coefficients, the spatial correlations between them, and the ratio of the cells' duplication rate and their average diffusion coefficient. Analyzing the scaling properties of tumor invasion front computed by solving the governing equation, we show that, contrary to several previous claims, the invasion front of tumors and cancerous cell colonies cannot be described by the well-known models of kinetic growth, such as the Kardar-Parisi-Zhang equation.
Collapse
Affiliation(s)
- Youness Azimzade
- Department of Physics, University of Tehran, Tehran 14395-547, Iran
| | - Abbas Ali Saberi
- Department of Physics, University of Tehran, Tehran 14395-547, Iran
- Institut für Theoretische Physik, Universitat zu Köln, 50937 Köln, Germany
| | - Muhammad Sahimi
- Mork Family Department of Chemical Engineering Materials Science, University of Southern California, Los Angeles, California 90089-1211, USA
| |
Collapse
|
5
|
Kundrát P, Friedland W. MECHANISTIC MODELING PREDICTS ANTI-CARCINOGENIC RADIATION EFFECTS ON INTERCELLULAR SIGNALING IN VITRO TURN PRO-CARCINOGENIC IN VIVO. RADIATION PROTECTION DOSIMETRY 2019; 183:223-227. [PMID: 30535337 DOI: 10.1093/rpd/ncy225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 11/13/2018] [Indexed: 06/09/2023]
Abstract
Oncogenic transformed cells represent an in vitro system mimicking early-stage carcinogenesis. These precancerous cells are subject to a selective removal via apoptosis induced by neighbor cells. By modulating the underpinning intercellular signaling mediated by cytokines and reactive oxygen/nitrogen species, ionizing radiation enhances this removal of precancerous cells in vitro, at doses from a few mGy to a few Gy. However, epidemiological data demonstrate that radiation exposure induces cancer, at least above 100 mGy. Mechanistic modeling of the given anti-carcinogenic process explains this discrepancy: The model reproduces in vitro data on apoptosis and its enhancement by radiation. For in vivo-like conditions with signal lifetimes shorter and cell densities higher than in vitro, radiation is predicted to reduce this anti-carcinogenic mechanism. Early-stage lesions that would be turned dormant or completely removed may grow large and escape this control mechanism upon irradiation.
Collapse
Affiliation(s)
- Pavel Kundrát
- Institute of Radiation Protection, Department of Radiation Sciences, Helmholtz Zentrum München, Neuherberg, Germany
| | - Werner Friedland
- Institute of Radiation Protection, Department of Radiation Sciences, Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
6
|
Averbeck D, Salomaa S, Bouffler S, Ottolenghi A, Smyth V, Sabatier L. Progress in low dose health risk research. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2018; 776:46-69. [DOI: 10.1016/j.mrrev.2018.04.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 12/11/2022]
|