1
|
Luo Y, Jiang Y, Chen L, Li C, Wang Y. Applications of protein engineering in the microbial synthesis of plant triterpenoids. Synth Syst Biotechnol 2022; 8:20-32. [PMID: 36381964 PMCID: PMC9634032 DOI: 10.1016/j.synbio.2022.10.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/26/2022] Open
Abstract
Triterpenoids are a class of natural products widely used in fields related to medicine and health due to their biological activities such as hepatoprotection, anti-inflammation, anti-viral, and anti-tumor. With the advancement in biotechnology, microorganisms have been used as cell factories to produce diverse natural products. Despite the significant progress that has been made in the construction of microbial cell factories for the heterogeneous biosynthesis of triterpenoids, the industrial production of triterpenoids employing microorganisms has been stymied due to the shortage of efficient enzymes as well as the low expression and low catalytic activity of heterologous proteins in microbes. Protein engineering has been demonstrated as an effective way for improving the specificity, catalytic activity, and stability of the enzyme, which can be employed to overcome these challenges. This review summarizes the current progress in the studies of Oxidosqualene cyclases (OSCs), cytochrome P450s (P450s), and UDP-glycosyltransferases (UGTs), the key enzymes in the triterpenoids synthetic pathway. The main obstacles restricting the efficient catalysis of these key enzymes are analyzed, the applications of protein engineering for the three key enzymes in the microbial synthesis of triterpenoids are systematically reviewed, and the challenges and prospects of protein engineering are also discussed.
Collapse
Affiliation(s)
- Yan Luo
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Yaozhu Jiang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Linhao Chen
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Chun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China,Key Laboratory for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Ying Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China,Corresponding author.
| |
Collapse
|
2
|
Wang J, Guo Y, Yin X, Wang X, Qi X, Xue Z. Diverse triterpene skeletons are derived from the expansion and divergent evolution of 2,3-oxidosqualene cyclases in plants. Crit Rev Biochem Mol Biol 2021; 57:113-132. [PMID: 34601979 DOI: 10.1080/10409238.2021.1979458] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Triterpenoids are one of the largest groups of secondary metabolites and exhibit diverse structures, which are derived from C30 skeletons that are biosynthesized via the isoprenoid pathway by cyclization of 2,3-oxidosqualene. Triterpenoids have a wide range of biological activities, and are used in functional foods, drugs, and as industrial materials. Due to the low content levels in their native plants and limited feasibility and efficiency of chemical synthesis, heterologous biosynthesis of triterpenoids is the most promising strategy. Herein, we classified 121 triterpene alcohols/ketones according to their conformation and ring numbers, among which 51 skeletons have been experimentally characterized as the products of oxidosqualene cyclases (OSCs). Interestingly, 24 skeletons that have not been reported from nature source were generated by OSCs in heterologous expression. Comprehensive evolutionary analysis of the identified 152 OSCs from 75 species in 25 plant orders show that several pentacyclic triterpene synthases repeatedly originated in multiple plant lineages. Comparative analysis of OSC catalytic reaction revealed that stabilization of intermediate cations, steric hindrance, and conformation of active center amino acid residues are primary factors affecting triterpene formation. Optimization of OSC could be achieved by changing of side-chain orientations of key residues. Recently, methods, such as rationally design of pathways, regulation of metabolic flow, compartmentalization engineering, etc., were introduced in improving chassis for the biosynthesis of triterpenoids. We expect that extensive study of natural variation of large number of OSCs and catalytical mechanism will provide basis for production of high level of triterpenoids by application of synthetic biology strategies.
Collapse
Affiliation(s)
- Jing Wang
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Harbin, PR China.,Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, PR China.,Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, PR China
| | - Yanhong Guo
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Harbin, PR China.,Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, PR China
| | - Xue Yin
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Harbin, PR China.,Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, PR China
| | - Xiaoning Wang
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Xiaoquan Qi
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, PR China
| | - Zheyong Xue
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Harbin, PR China.,Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, PR China
| |
Collapse
|
3
|
Yin J, Yang J, Ma H, Liang T, Li Y, Xiao J, Tian H, Xu Z, Zhan Y. Expression characteristics and function of CAS and a new beta-amyrin synthase in triterpenoid synthesis in birch (Betula platyphylla Suk.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 294:110433. [PMID: 32234222 DOI: 10.1016/j.plantsci.2020.110433] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 01/29/2020] [Accepted: 01/31/2020] [Indexed: 06/11/2023]
Abstract
Triterpenoids produced by the secondary metabolism of Betula platyphylla Suk. exhibit important pharmacological activities, such as tumor inhibition, anti-HIV, and defense against pathogens, but the yield of natural synthesis is low, which is insufficient to meet people's needs. In this study, we identified two OSC genes of birch, named as BpCAS and Bpβ-AS, respectively. The expression of BpCAS and Bpβ-AS were higher levels in roots and in stems, respectively, and they induced expression in response to methyl jasmonate (MeJA), gibberellin (GA3), abscisic acid (ABA), ethylene and mechanical damage. The function of the two genes in the triterpene synthesis of birch was identified by reverse genetics. The inhibition of Bpβ-AS gene positively regulates synthesis of betulinic acid. BpCAS interference can significantly promote the upregulation of lupeol synthase gene (BPW) and β-amyrin synthase gene(BPY), and conversion of 2,3-oxidosqualene to the downstream products betulinic acid and oleanolic acid. This study provided a basis for the genetic improvement of triterpenoid synthesis in birch through genetic engineering. The obtained transgenic birch and suspension cells served as material resources for birch triterpenoid applications in further.
Collapse
Affiliation(s)
- Jing Yin
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, 150040, China; College of Life Science, Northeast Forestry University, Harbin, 150040, China; State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang, 150040, China
| | - Jie Yang
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Hongsi Ma
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Tian Liang
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Ying Li
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Jialei Xiao
- College of Life Science, Northeast Agricultural University, Harbin, 150010, China
| | - Hongmei Tian
- Forest Botanical Garden of Heilongjiang Province, Harbin, China
| | - Zhiqiang Xu
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Yaguang Zhan
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, 150040, China; College of Life Science, Northeast Forestry University, Harbin, 150040, China; State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang, 150040, China.
| |
Collapse
|
4
|
Ladhari A, Chappell J. Unravelling triterpene biosynthesis through functional characterization of an oxidosqualene cyclase (OSC) from Cleome arabica L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 144:73-84. [PMID: 31561200 DOI: 10.1016/j.plaphy.2019.09.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/09/2019] [Accepted: 09/20/2019] [Indexed: 06/10/2023]
Abstract
Cleome arabica is a medicinal plant contains diverse bioactive compounds and terpenoids are the major components. However, the isolation and purification of the active triterpenes from this plant involve long and complicated procedures. The present work investigates the triterpenes profiles of different tissues, besides that, describes the isolation, heterologous expression and functional characterization of C. arabica gene coding for triterpenes synthases. The phytochemical investigation through GC-MS revealed significant accumulation of pentacyclic triterpenes in leaves and siliques at mature stage compared to the stems and roots of C. arabica. Among the pentacyclic triterpenes, the lupeol reached the highest level of 320 μg/g DW in leaves at maturity stage compared to the other tissues. The biosynthesis of a pentacyclic triterpene was investigated through isolation and cloning of a full-length oxidosqualene cyclase cDNA (CaOSC) from mature leaves of C. arabica. The bioinformatic analyses revealed that CaOSC was highly homologous with the characterized lupeol synthases and shared 79.3% identity to camelliol C synthase from A. thaliana. Heterologous expression of CaOSC gene in Saccharomyces cerevisiae synthesized lupeol as a single product. The lupeol biosynthesis was exponentially increased after induction through the fermentation process reaching the maximum of 2.33 μg/ml for 240 h. Furthermore, organ-specific expression of lupeol gene was exactly matched the accumulation pattern in different tissues of C. arabica during phenological cycle. Thus, the identified CaOSC will be useful in enhancing triterpene yield for industrial purposes.
Collapse
Affiliation(s)
- Afef Ladhari
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, 40536, USA.
| | - Joseph Chappell
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, 40536, USA
| |
Collapse
|
5
|
Sun W, Qin L, Xue H, Yu Y, Ma Y, Wang Y, Li C. Novel trends for producing plant triterpenoids in yeast. Crit Rev Biotechnol 2019; 39:618-632. [DOI: 10.1080/07388551.2019.1608503] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Wentao Sun
- Department of Biochemical Engineering, Institute for Synthetic Biosystem, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Lei Qin
- Department of Biochemical Engineering, Institute for Synthetic Biosystem, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Haijie Xue
- Department of Biochemical Engineering, Institute for Synthetic Biosystem, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Yang Yu
- Department of Biochemical Engineering, Institute for Synthetic Biosystem, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Yihua Ma
- The High School Affiliated to Renmin University of China, Beijing, China
| | - Ying Wang
- Department of Biochemical Engineering, Institute for Synthetic Biosystem, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Chun Li
- Department of Biochemical Engineering, Institute for Synthetic Biosystem, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
6
|
Grimplet J, Ibáñez S, Baroja E, Tello J, Ibáñez J. Phenotypic, Hormonal, and Genomic Variation Among Vitis vinifera Clones With Different Cluster Compactness and Reproductive Performance. FRONTIERS IN PLANT SCIENCE 2018; 9:1917. [PMID: 30666262 PMCID: PMC6330345 DOI: 10.3389/fpls.2018.01917] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 12/10/2018] [Indexed: 05/09/2023]
Abstract
Previous studies showed that the number of berries is a major component of the compactness level of the grapevine clusters. Variation in number of fruits is regulated by events occurring in the fruitset, but also before during the flower formation and pollination, through factors like the initial number of flowers or the gametic viability. Therefore, the identification of the genetic bases of this variation would provide an invaluable knowledge of the grapevine reproductive development and useful tools for managing yield and cluster compactness. We performed the phenotyping of four clones (two compact and two loose clones) of the Tempranillo cultivar with reproducible different levels of cluster compactness over seasons. Measures of reproductive performance included flower number per inflorescence, berry number per cluster, fruitset, coulure, and millerandage indices. Besides, their levels of several hormones during the inflorescence and flower development were determined, and their transcriptomes were evaluated at critical time points (just before the start and at the end of flowering). For some key reproductive traits, like number of berries per cluster and number of seeds per berry, clones bearing loose clusters showed differences with the compact clones and also differed from each other, indicating that each one follows different paths to produce loose clusters. Variation between clones was observed for abscisic acid and gibberellins levels at particular development stages, and differences in GAs could be related to phenotypic differences. Likewise, various changes between clones were found at the transcriptomic level, mostly just before the start of flowering. Several of the differentially expressed genes between one of the loose clones and the compact clones are known to be over-expressed in pollen, and many of them were related to cell wall modification processes or to the phenylpropanoids metabolism. We also found polymorphisms between clones in candidate genes that could be directly involved in the variation of the compactness level.
Collapse
|
7
|
Lu Y, Zhou J, Hu T, Zhang Y, Su P, Wang J, Gao W, Huang L. A multifunctional oxidosqualene cyclase from Tripterygium regelii that produces both α- and β-amyrin. RSC Adv 2018; 8:23516-23521. [PMID: 35540266 PMCID: PMC9081704 DOI: 10.1039/c8ra03468k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 06/16/2018] [Indexed: 11/21/2022] Open
Abstract
Tripterygium regelii is a rich source of triterpenoids, containing many types of triterpenes with high chemical diversity and interesting pharmacological properties. The cDNA of the multifunctional oxidosqualene cyclase (TrOSC, GenBank accession number: MH161182), consisting of a 2289 bp open reading frame and coding for 762 amino acids, was cloned from the stems and roots of Tripterygium regelii. Phylogenetic analysis using OSC genes from other plants suggested that TrOSC might be a mixed-amyrin synthase. The coding sequence was cloned into the expression vector pYES2 and transformed into the yeast Saccharomyces cerevisiae. The resulting products were analysed by GC-MS. Surprisingly, although it showed 76% sequence identity to lupeol synthase from Ricinus communis, TrOSC was found to be a multifunctional triterpene synthase producing both α- and β-amyrin, the precursors of ursane and oleanane type triterpenes, respectively. qRT-PCR analysis revealed that the transcript of TrOSC accumulated mainly in roots and stems. Taken together, our findings contribute to the knowledge of key genes in the pentacyclic triterpene biosynthesis pathway. A multifunctional oxidosqualene cyclase was cloned from Tripterygium regelii and identified as a mixed-amyrin synthase, which can produce both α- and β-amyrin.![]()
Collapse
Affiliation(s)
- Yun Lu
- School of Traditional Chinese Medicine
- Capital Medical University
- Beijing 100069
- China
| | - Jiawei Zhou
- School of Traditional Chinese Medicine
- Capital Medical University
- Beijing 100069
- China
| | - Tianyuan Hu
- School of Traditional Chinese Medicine
- Capital Medical University
- Beijing 100069
- China
| | - Yifeng Zhang
- School of Traditional Chinese Medicine
- Capital Medical University
- Beijing 100069
- China
- State Key Laboratory of Dao-di Herbs
| | - Ping Su
- State Key Laboratory of Dao-di Herbs
- National Resource Center for Chinese MateriaMedica
- China Academy of ChineseMedical Sciences
- Beijing
- China
| | - Jiadian Wang
- School of Traditional Chinese Medicine
- Capital Medical University
- Beijing 100069
- China
- State Key Laboratory of Dao-di Herbs
| | - Wei Gao
- School of Traditional Chinese Medicine
- Capital Medical University
- Beijing 100069
- China
- Beijing Key Lab of TCM Collateral Disease Theory Research
| | - Luqi Huang
- State Key Laboratory of Dao-di Herbs
- National Resource Center for Chinese MateriaMedica
- China Academy of ChineseMedical Sciences
- Beijing
- China
| |
Collapse
|