1
|
Bouchama F, Mubashira K, Mas C, Le Roy A, Ebel C, Bourhis JM, Zemb T, Prevost S, Jamin M. Rabies Virus Phosphoprotein Exhibits Thermoresponsive Phase Separation with a Lower Critical Solution Temperature. J Mol Biol 2025; 437:168889. [PMID: 39645030 DOI: 10.1016/j.jmb.2024.168889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/06/2024] [Accepted: 11/29/2024] [Indexed: 12/09/2024]
Abstract
Rabies virus (RABV) generates membrane-less liquid organelles (Negri bodies) in the cytoplasm of its host cell, where genome transcription and replication and nucleocapsid assembly take place, but the mechanisms of their assembly and maturation remain to be explained. An essential component of the viral RNA synthesizing machine, the phosphoprotein (P), acts as a scaffold protein for the assembly of these condensates. This intrinsically disordered protein forms star-shaped dimers with N-terminal negatively charged flexible arms and C-terminal globular domains exhibiting a large dipole moment. Our study shows that in vitro self-association of RABV P drives a complex thermoresponsive phase separation with a lower critical solution temperature. Protein dimers assemble already below the saturation concentration, and condensation is driven by attractive conformation-specific interactions leading to reentrant liquid phase separation over a narrow range of salt concentration. We propose a minimal molecular model in which P can adopt three limit conformational states and the disordered N-terminal arms control the interactions between giant dipoles that is consistent with our observations.
Collapse
Affiliation(s)
- Fella Bouchama
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38000, Grenoble, France
| | - Khadeeja Mubashira
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38000, Grenoble, France
| | - Caroline Mas
- Université Grenoble Alpes, CNRS, CEA, EMBL, ISBG, 38000, Grenoble, France
| | - Aline Le Roy
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38000, Grenoble, France
| | - Christine Ebel
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38000, Grenoble, France
| | - Jean-Marie Bourhis
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38000, Grenoble, France
| | - Thomas Zemb
- Institut de Chimie Séparatives de Marcoule, CEA-CEA/CNRS/UM, 30290 Bagnols-sur-cèze, France
| | | | - Marc Jamin
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38000, Grenoble, France.
| |
Collapse
|
2
|
Omler A, Mutso M, Vaher M, Freitas JR, Taylor A, David CT, Moseley GW, Liu X, Merits A, Mahalingam S. Exploring Barmah Forest virus pathogenesis: molecular tools to investigate non-structural protein 3 nuclear localization and viral genomic determinants of replication. mBio 2024; 15:e0099324. [PMID: 38953633 PMCID: PMC11323547 DOI: 10.1128/mbio.00993-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 05/03/2024] [Indexed: 07/04/2024] Open
Abstract
Barmah Forest virus (BFV) is a mosquito-borne virus that causes arthralgia with accompanying rash, fever, and myalgia in humans. The virus is mainly found in Australia and has caused outbreaks associated with significant health concerns. As the sole representative of the Barmah Forest complex within the genus Alphavirus, BFV is not closely related genetically to other alphaviruses. Notably, basic knowledge of BFV molecular virology has not been well studied due to a lack of critical investigative tools such as an infectious clone. Here we describe the construction of an infectious BFV cDNA clone based on Genbank sequence and demonstrate that the clone-derived virus has in vitro and in vivo properties similar to naturally occurring virus, BFV field isolate 2193 (BFV2193-FI). A substitution in nsP4, V1911D, which was identified in the Genbank reference sequence, was found to inhibit virus rescue and replication. T1325P substitution in nsP2 selected during virus passaging was shown to be an adaptive mutation, compensating for the inhibitory effect of nsP4-V1911D. The two mutations were associated with changes in viral non-structural polyprotein processing and type I interferon (IFN) induction. Interestingly, a nuclear localization signal, active in mammalian but not mosquito cells, was identified in nsP3. A point mutation abolishing nsP3 nuclear localization attenuated BFV replication. This effect was more prominent in the presence of type I interferon signaling, suggesting nsP3 nuclear localization might be associated with IFN antagonism. Furthermore, abolishing nsP3 nuclear localization reduced virus replication in mice but did not significantly affect disease.IMPORTANCEBarmah Forest virus (BFV) is Australia's second most prevalent arbovirus, with approximately 1,000 cases reported annually. The clinical symptoms of BFV infection include rash, polyarthritis, arthralgia, and myalgia. As BFV is not closely related to other pathogenic alphaviruses or well-studied model viruses, our understanding of its molecular virology and mechanisms of pathogenesis is limited. There is also a lack of molecular tools essential for corresponding studies. Here we describe the construction of an infectious clone of BFV, variants harboring point mutations, and sequences encoding marker protein. In infected mammalian cells, nsP3 of BFV was located in the nuclei. This finding extends our understanding of the diverse mechanisms used by alphavirus replicase proteins to interact with host cells. Our novel observations highlight the complex synergy through which the viral replication machinery evolves to correct mutation errors within the viral genome.
Collapse
Affiliation(s)
- Ailar Omler
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
- Institute of Bioengineering, University of Tartu, Tartu, Estonia
| | - Margit Mutso
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Mihkel Vaher
- The Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Joseph R. Freitas
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
- Global Virus Network (GVN) Centre for Excellence in Arboviruses, Griffith University, Gold Coast, Queensland, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, Queensland, Australia
| | - Adam Taylor
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
- Global Virus Network (GVN) Centre for Excellence in Arboviruses, Griffith University, Gold Coast, Queensland, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, Queensland, Australia
| | - Cassandra T. David
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Gregory W. Moseley
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Xiang Liu
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
- Global Virus Network (GVN) Centre for Excellence in Arboviruses, Griffith University, Gold Coast, Queensland, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, Queensland, Australia
| | - Andres Merits
- Institute of Bioengineering, University of Tartu, Tartu, Estonia
| | - Suresh Mahalingam
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
- Global Virus Network (GVN) Centre for Excellence in Arboviruses, Griffith University, Gold Coast, Queensland, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
3
|
Donnelly CM, Stewart M, Roby JA, Sundaramoorthy V, Forwood JK. Structural Determination of the Australian Bat Lyssavirus Nucleoprotein and Phosphoprotein Complex. Viruses 2023; 16:33. [PMID: 38229694 PMCID: PMC7615531 DOI: 10.3390/v16010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/18/2024] Open
Abstract
Australian bat lyssavirus (ABLV) shows similar clinical symptoms as rabies, but there are currently no protein structures available for ABLV proteins. In lyssaviruses, the interaction between nucleoprotein (N) and phosphoprotein (N) in the absence of RNA generates a complex (N0P) that is crucial for viral assembly, and understanding the interface between these two proteins has the potential to provide insight into a key feature: the viral lifecycle. In this study, we used recombinant chimeric protein expression and X-ray crystallography to determine the structure of ABLV nucleoprotein bound to residues 1-40 of its phosphoprotein chaperone. Comparison of our results with the recently generated structure of RABV CVS-11 N0P demonstrated a highly conserved interface in this complex. Because the N0P interface is conserved in the lyssaviruses of phylogroup I, it is an attractive therapeutic target for multiple rabies-causing viral species.
Collapse
Affiliation(s)
- Camilla M. Donnelly
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; (C.M.D.); (J.A.R.)
- Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
- Diagnostics, Surveillance and Response, Australian Centre for Disease Preparedness, CSIRO, Geelong, VIC 3219, Australia;
| | - Murray Stewart
- MRC Laboratory of Molecular Biology, Francis Crick Ave., Cambridge Biomedical Campus, Cambridge CB2 0QH, UK;
| | - Justin A. Roby
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; (C.M.D.); (J.A.R.)
- Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Vinod Sundaramoorthy
- Diagnostics, Surveillance and Response, Australian Centre for Disease Preparedness, CSIRO, Geelong, VIC 3219, Australia;
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
| | - Jade K. Forwood
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; (C.M.D.); (J.A.R.)
- Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| |
Collapse
|
4
|
Sethi A, Rawlinson SM, Dubey A, Ang CS, Choi YH, Yan F, Okada K, Rozario AM, Brice AM, Ito N, Williamson NA, Hatters DM, Bell TDM, Arthanari H, Moseley GW, Gooley PR. Structural insights into the multifunctionality of rabies virus P3 protein. Proc Natl Acad Sci U S A 2023; 120:e2217066120. [PMID: 36989298 PMCID: PMC10083601 DOI: 10.1073/pnas.2217066120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 02/20/2023] [Indexed: 03/30/2023] Open
Abstract
Viruses form extensive interfaces with host proteins to modulate the biology of the infected cell, frequently via multifunctional viral proteins. These proteins are conventionally considered as assemblies of independent functional modules, where the presence or absence of modules determines the overall composite phenotype. However, this model cannot account for functions observed in specific viral proteins. For example, rabies virus (RABV) P3 protein is a truncated form of the pathogenicity factor P protein, but displays a unique phenotype with functions not seen in longer isoforms, indicating that changes beyond the simple complement of functional modules define the functions of P3. Here, we report structural and cellular analyses of P3 derived from the pathogenic RABV strain Nishigahara (Nish) and an attenuated derivative strain (Ni-CE). We identify a network of intraprotomer interactions involving the globular C-terminal domain and intrinsically disordered regions (IDRs) of the N-terminal region that characterize the fully functional Nish P3 to fluctuate between open and closed states, whereas the defective Ni-CE P3 is predominantly open. This conformational difference appears to be due to the single mutation N226H in Ni-CE P3. We find that Nish P3, but not Ni-CE or N226H P3, undergoes liquid-liquid phase separation and this property correlates with the capacity of P3 to interact with different cellular membrane-less organelles, including those associated with immune evasion and pathogenesis. Our analyses propose that discrete functions of a critical multifunctional viral protein depend on the conformational arrangements of distant individual domains and IDRs, in addition to their independent functions.
Collapse
Affiliation(s)
- Ashish Sethi
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC3010, Australia
| | - Stephen M. Rawlinson
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC3800, Australia
| | - Abhinav Dubey
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA02115
- Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA02115
| | - Ching-Seng Ang
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC3010, Australia
| | - Yoon Hee Choi
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC3010, Australia
| | - Fei Yan
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC3010, Australia
| | - Kazuma Okada
- Laboratory of Zoonotic Diseases, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu501-1193, Japan
| | | | - Aaron M. Brice
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC3010, Australia
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC3800, Australia
| | - Naoto Ito
- Laboratory of Zoonotic Diseases, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu501-1193, Japan
- Center for One Medicine Innovative Research, Institute for Advanced Study, Gifu University, Gifu501-1193, Japan
| | - Nicholas A. Williamson
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC3010, Australia
| | - Danny M. Hatters
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC3010, Australia
| | - Toby D. M. Bell
- School of Chemistry, Monash University, Clayton, VIC3800, Australia
| | - Haribabu Arthanari
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA02115
- Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA02115
| | - Gregory W. Moseley
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC3800, Australia
| | - Paul R. Gooley
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC3010, Australia
| |
Collapse
|
5
|
Brice AM, Rozario AM, Rawlinson SM, David CT, Wiltzer-Bach L, Jans DA, Ito N, Bell TDM, Moseley GW. Lyssavirus P Protein Isoforms Diverge Significantly in Subcellular Interactions Underlying Mechanisms of Interferon Antagonism. J Virol 2022; 96:e0139622. [PMID: 36222519 PMCID: PMC9599249 DOI: 10.1128/jvi.01396-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 11/20/2022] Open
Abstract
Viral hijacking of microtubule (MT)-dependent transport is well understood, but several viruses also express discrete MT-associated proteins (vMAPs), potentially to modulate MT-dependent processes in the host cell. Specific roles for vMAP-MT interactions include subversion of antiviral responses by P3, an isoform of the P protein of rabies virus (RABV; genus Lyssavirus), which mediates MT-dependent antagonism of interferon (IFN)-dependent signal transducers and activators of transcription 1 (STAT1) signaling. P3 also undergoes nucleocytoplasmic trafficking and inhibits STAT1-DNA binding, indicative of intranuclear roles in a multipronged antagonistic strategy. MT association/STAT1 antagonist functions of P3 correlate with pathogenesis, indicating potential as therapeutic targets. However, key questions remain, including whether other P protein isoforms interact with MTs, the relationship of these interactions with pathogenesis, and the extent of conservation of P3-MT interactions between diverse pathogenic lyssaviruses. Using super-resolution microscopy, live-cell imaging, and immune signaling analyses, we find that multiple P protein isoforms associate with MTs and that association correlates with pathogenesis. Furthermore, P3 proteins from different lyssaviruses exhibit variation in intracellular localization phenotypes that are associated with STAT1 antagonist function, whereby P3-MT association is conserved among lyssaviruses of phylogroup I but not phylogroup II, while nucleocytoplasmic localization varies between P3 proteins of the same phylogroup within both phylogroup I and II. Nevertheless, the divergent P3 proteins retain significant IFN antagonist function, indicative of adaptation to favor different inhibitory mechanisms, with MT interaction important to phylogroup I viruses. IMPORTANCE Lyssaviruses, including rabies virus, cause rabies, a progressive encephalomyelitis that is almost invariably fatal. There are no effective antivirals for symptomatic infection, and effective application of current vaccines is limited in areas of endemicity, such that rabies causes ~59,000 deaths per year. Viral subversion of host cell functions, including antiviral immunity, is critical to disease, and isoforms of the lyssavirus P protein are central to the virus-host interface underpinning immune evasion. Here, we show that specific cellular interactions of P protein isoforms involved in immune evasion vary significantly between different lyssaviruses, indicative of distinct strategies to evade immune responses. These findings highlight the diversity of the virus-host interface, an important consideration in the development of pan-lyssavirus therapeutic approaches.
Collapse
Affiliation(s)
- Aaron M. Brice
- Viral Pathogenesis Laboratory, Department of Biochemistry and Molecular Biology, Bio21 Institute, The University of Melbourne, Melbourne, Victoria, Australia
- Viral Pathogenesis Laboratory, Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Ashley M. Rozario
- School of Chemistry, Monash University, Clayton, Victoria, Australia
| | - Stephen M. Rawlinson
- Viral Pathogenesis Laboratory, Department of Biochemistry and Molecular Biology, Bio21 Institute, The University of Melbourne, Melbourne, Victoria, Australia
- Viral Pathogenesis Laboratory, Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Cassandra T. David
- Viral Pathogenesis Laboratory, Department of Biochemistry and Molecular Biology, Bio21 Institute, The University of Melbourne, Melbourne, Victoria, Australia
- Viral Pathogenesis Laboratory, Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Linda Wiltzer-Bach
- Viral Pathogenesis Laboratory, Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - David A. Jans
- Nuclear Signaling Laboratory, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Naoto Ito
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
- United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Toby D. M. Bell
- School of Chemistry, Monash University, Clayton, Victoria, Australia
| | - Gregory W. Moseley
- Viral Pathogenesis Laboratory, Department of Biochemistry and Molecular Biology, Bio21 Institute, The University of Melbourne, Melbourne, Victoria, Australia
- Viral Pathogenesis Laboratory, Department of Microbiology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
6
|
Dhulipala S, Uversky VN. Looking at the Pathogenesis of the Rabies Lyssavirus Strain Pasteur Vaccins through a Prism of the Disorder-Based Bioinformatics. Biomolecules 2022; 12:1436. [PMID: 36291645 PMCID: PMC9599798 DOI: 10.3390/biom12101436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/28/2022] Open
Abstract
Rabies is a neurological disease that causes between 40,000 and 70,000 deaths every year. Once a rabies patient has become symptomatic, there is no effective treatment for the illness, and in unvaccinated individuals, the case-fatality rate of rabies is close to 100%. French scientists Louis Pasteur and Émile Roux developed the first vaccine for rabies in 1885. If administered before the virus reaches the brain, the modern rabies vaccine imparts long-lasting immunity to the virus and saves more than 250,000 people every year. However, the rabies virus can suppress the host's immune response once it has entered the cells of the brain, making death likely. This study aimed to make use of disorder-based proteomics and bioinformatics to determine the potential impact that intrinsically disordered protein regions (IDPRs) in the proteome of the rabies virus might have on the infectivity and lethality of the disease. This study used the proteome of the Rabies lyssavirus (RABV) strain Pasteur Vaccins (PV), one of the best-understood strains due to its use in the first rabies vaccine, as a model. The data reported in this study are in line with the hypothesis that high levels of intrinsic disorder in the phosphoprotein (P-protein) and nucleoprotein (N-protein) allow them to participate in the creation of Negri bodies and might help this virus to suppress the antiviral immune response in the host cells. Additionally, the study suggests that there could be a link between disorder in the matrix (M) protein and the modulation of viral transcription. The disordered regions in the M-protein might have a possible role in initiating viral budding within the cell. Furthermore, we checked the prevalence of functional disorder in a set of 37 host proteins directly involved in the interaction with the RABV proteins. The hope is that these new insights will aid in the development of treatments for rabies that are effective after infection.
Collapse
Affiliation(s)
- Surya Dhulipala
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Protein Research Group, Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Moscow Region, Russia
| |
Collapse
|
7
|
Liu X, Nawaz Z, Guo C, Ali S, Naeem MA, Jamil T, Ahmad W, Siddiq MU, Ahmed S, Asif Idrees M, Ahmad A. Rabies Virus Exploits Cytoskeleton Network to Cause Early Disease Progression and Cellular Dysfunction. Front Vet Sci 2022; 9:889873. [PMID: 35685339 PMCID: PMC9172992 DOI: 10.3389/fvets.2022.889873] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/14/2022] [Indexed: 11/17/2023] Open
Abstract
Rabies virus (RABV) is a cunning neurotropic pathogen and causes top priority neglected tropical diseases in the developing world. The genome of RABV consists of nucleoprotein (N), phosphoprotein (P), matrix protein (M), glycoprotein (G), and RNA polymerase L protein (L), respectively. The virus causes neuronal dysfunction instead of neuronal cell death by deregulating the polymerization of the actin and microtubule cytoskeleton and subverts the associated binding and motor proteins for efficient viral progression. These binding proteins mainly maintain neuronal structure, morphology, synaptic integrity, and complex neurophysiological pathways. However, much of the exact mechanism of the viral-cytoskeleton interaction is yet unclear because several binding proteins of the actin-microtubule cytoskeleton are involved in multifaceted pathways to influence the retrograde and anterograde axonal transport of RABV. In this review, all the available scientific results regarding cytoskeleton elements and their possible interactions with RABV have been collected through systematic methodology, and thereby interpreted to explain sneaky features of RABV. The aim is to envisage the pathogenesis of RABV to understand further steps of RABV progression inside the cells. RABV interacts in a number of ways with the cell cytoskeleton to produce degenerative changes in the biochemical and neuropathological trails of neurons and other cell types. Briefly, RABV changes the gene expression of essential cytoskeleton related proteins, depolymerizes actin and microtubules, coordinates the synthesis of inclusion bodies, manipulates microtubules and associated motors proteins, and uses actin for clathrin-mediated entry in different cells. Most importantly, the P is the most intricate protein of RABV that performs complex functions. It artfully operates the dynein motor protein along the tracks of microtubules to assist the replication, transcription, and transport of RABV until its egress from the cell. New remedial insights at subcellular levels are needed to counteract the destabilization of the cytoskeleton under RABV infection to stop its life cycle.
Collapse
Affiliation(s)
- Xilin Liu
- Department of Hand Surgery, Presidents' Office of China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zeeshan Nawaz
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Caixia Guo
- Department of Hand Surgery, Presidents' Office of China-Japan Union Hospital of Jilin University, Changchun, China
| | - Sultan Ali
- Faculty of Veterinary Science, Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Ahsan Naeem
- Department of Basic Sciences, University College of Veterinary and Animal Sciences, Narowal, Pakistan
| | - Tariq Jamil
- Department of Clinical Sciences, Section of Epidemiology and Public Health, College of Veterinary and Animal Sciences, Jhang, Pakistan
| | - Waqas Ahmad
- Department of Clinical Sciences, University College of Veterinary and Animal Sciences, Narowal, Pakistan
| | - Muhammad Usman Siddiq
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Sarfraz Ahmed
- Department of Basic Sciences, University College of Veterinary and Animal Sciences, Narowal, Pakistan
| | - Muhammad Asif Idrees
- Department of Pathobiology, University College of Veterinary and Animal Sciences, Narowal, Pakistan
| | - Ali Ahmad
- Department of Pathobiology, University College of Veterinary and Animal Sciences, Narowal, Pakistan
| |
Collapse
|
8
|
Manokaran G, Audsley MD, Funakoda H, David CT, Garnham KA, Rawlinson SM, Deffrasnes C, Ito N, Moseley GW. Deactivation of the antiviral state by rabies virus through targeting and accumulation of persistently phosphorylated STAT1. PLoS Pathog 2022; 18:e1010533. [PMID: 35576230 PMCID: PMC9135343 DOI: 10.1371/journal.ppat.1010533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 05/26/2022] [Accepted: 04/19/2022] [Indexed: 12/25/2022] Open
Abstract
Antagonism of the interferon (IFN)-mediated antiviral state is critical to infection by rabies virus (RABV) and other viruses, and involves interference in the IFN induction and signaling pathways in infected cells, as well as deactivation of the antiviral state in cells previously activated by IFN. The latter is required for viral spread in the host, but the precise mechanisms involved and roles in RABV pathogenesis are poorly defined. Here, we examined the capacity of attenuated and pathogenic strains of RABV that differ only in the IFN-antagonist P protein to overcome an established antiviral state. Importantly, P protein selectively targets IFN-activated phosphorylated STAT1 (pY-STAT1), providing a molecular tool to elucidate specific roles of pY-STAT1. We find that the extended antiviral state is dependent on a low level of pY-STAT1 that appears to persist at a steady state through ongoing phosphorylation/dephosphorylation cycles, following an initial IFN-induced peak. P protein of pathogenic RABV binds and progressively accumulates pY-STAT1 in inactive cytoplasmic complexes, enabling recovery of efficient viral replication over time. Thus, P protein-pY-STAT1 interaction contributes to ‘disarming’ of the antiviral state. P protein of the attenuated RABV is defective in this respect, such that replication remains suppressed over extended periods in cells pre-activated by IFN. These data provide new insights into the nature of the antiviral state, indicating key roles for residual pY-STAT1 signaling. They also elucidate mechanisms of viral deactivation of antiviral responses, including specialized functions of P protein in selective targeting and accumulation of pY-STAT1. Following viral infection, the host activates multiple antiviral defenses. The ability of viruses to overcome these defenses is critical to disease. The earliest antiviral response involves the production of interferon messenger molecules. Interferons act on infected cells to inhibit viral proliferation, as well as on non-infected cells to establish an antiviral state before infection and so limit viral spread through the host organism. Many strategies used by viruses to overcome the former are well understood, but mechanisms important to the latter, and their importance to disease, are less well defined. In this study, we investigated how rabies virus overcomes a pre-established antiviral state in target cells. We found that the capacity to disable the antiviral state correlates with the ability to cause disease, and involves binding of a viral protein to cellular signaling proteins, which our data indicate are responsible for the maintenance of a prolonged antiviral state. This advances our understanding of antiviral responses, and identifies a key step in lethal infection by rabies virus that causes approximately 60,000 human deaths per year. The findings may contribute to new approaches for the development of vaccines or antivirals.
Collapse
Affiliation(s)
- Gayathri Manokaran
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Michelle D. Audsley
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Haruka Funakoda
- Laboratory of Zoonotic Diseases, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Cassandra T. David
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Katherine A. Garnham
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Stephen M. Rawlinson
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Celine Deffrasnes
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Naoto Ito
- Laboratory of Zoonotic Diseases, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
- * E-mail: (NI); (GWM)
| | - Gregory W. Moseley
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
- * E-mail: (NI); (GWM)
| |
Collapse
|
9
|
Molecular Basis of Functional Effects of Phosphorylation of the C-Terminal Domain of the Rabies Virus P Protein. J Virol 2022; 96:e0011122. [DOI: 10.1128/jvi.00111-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Rabies virus P protein is a multifunctional protein with critical roles in replication and manipulation of host-cell processes, including subversion of immunity. This functional diversity involves interactions of several P protein isoforms with the cell nucleus and microtubules.
Collapse
|
10
|
Rozario AM, Duwé S, Elliott C, Hargreaves RB, Moseley GW, Dedecker P, Whelan DR, Bell TDM. Nanoscale characterization of drug-induced microtubule filament dysfunction using super-resolution microscopy. BMC Biol 2021; 19:260. [PMID: 34895240 PMCID: PMC8665533 DOI: 10.1186/s12915-021-01164-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 10/11/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The integrity of microtubule filament networks is essential for the roles in diverse cellular functions, and disruption of its structure or dynamics has been explored as a therapeutic approach to tackle diseases such as cancer. Microtubule-interacting drugs, sometimes referred to as antimitotics, are used in cancer therapy to target and disrupt microtubules. However, due to associated side effects on healthy cells, there is a need to develop safer drug regimens that still retain clinical efficacy. Currently, many questions remain open regarding the extent of effects on cellular physiology of microtubule-interacting drugs at clinically relevant and low doses. Here, we use super-resolution microscopies (single-molecule localization and optical fluctuation based) to reveal the initial microtubule dysfunctions caused by nanomolar concentrations of colcemid. RESULTS We identify previously undetected microtubule (MT) damage caused by clinically relevant doses of colcemid. Short exposure to 30-80 nM colcemid results in aberrant microtubule curvature, with a trend of increased curvature associated to increased doses, and curvatures greater than 2 rad/μm, a value associated with MT breakage. Microtubule fragmentation was detected upon treatment with ≥ 100 nM colcemid. Remarkably, lower doses (< 20 nM after 5 h) led to subtle but significant microtubule architecture remodelling characterized by increased curvature and suppression of microtubule dynamics. CONCLUSIONS Our results support the emerging hypothesis that microtubule-interacting drugs induce non-mitotic effects in cells, and establish a multi-modal imaging assay for detecting and measuring nanoscale microtubule dysfunction. The sub-diffraction visualization of these less severe precursor perturbations compared to the established antimitotic effects of microtubule-interacting drugs offers potential for improved understanding and design of anticancer agents.
Collapse
Affiliation(s)
- Ashley M Rozario
- School of Chemistry, Monash University, Clayton, 3800, Australia
| | - Sam Duwé
- Biomedical Research Institute, Hasselt University, 3590, Diepenbeek, Belgium
| | - Cade Elliott
- School of Chemistry, Monash University, Clayton, 3800, Australia
| | | | - Gregory W Moseley
- Department of Microbiology, Monash Biomedicine Discovery Institute, Clayton, 3800, Australia
| | - Peter Dedecker
- Department of Chemistry, KU Leuven, 3001, Leuven, Belgium
| | - Donna R Whelan
- La Trobe Institute for Molecular Science, La Trobe University, Bendigo, 3552, Australia.
| | - Toby D M Bell
- School of Chemistry, Monash University, Clayton, 3800, Australia.
| |
Collapse
|
11
|
Brice AM, Watts E, Hirst B, Jans DA, Ito N, Moseley GW. Implication of the nuclear trafficking of rabies virus P3 protein in viral pathogenicity. Traffic 2021; 22:482-489. [PMID: 34622522 DOI: 10.1111/tra.12821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/27/2021] [Accepted: 10/04/2021] [Indexed: 11/27/2022]
Abstract
Although the majority of viruses of the family Mononegvirales replicate exclusively in the host cell cytoplasm, many of these viruses encode proteins that traffic between the nucleus and cytoplasm, which is believed to enable accessory functions in modulating the biology of the infected host cell. Among these, the P3 protein of rabies virus localizes to the nucleus through the activity of several specific nuclear localization and nuclear export signals. The major defined functions of P3 are in evasion of interferon (IFN)-mediated antiviral responses, including through inhibition of DNA-binding by IFN-activated STAT1. P3 also localizes to nucleoli and promyelocytic leukemia (PML) nuclear bodies, and interacts with nucleolin and PML protein, indicative of several intranuclear roles. The relationship of P3 nuclear localization with pathogenicity, however, is unresolved. We report that nucleocytoplasmic localization of P3 proteins from a pathogenic RABV strain, Nishigahara (Ni) and a non-pathogenic Ni-derived strain, Ni-CE, differs significantly, with nuclear accumulation defective for Ni-CE-P3. Molecular mapping indicates that altered localization derives from a coordinated effect, including two residue substitutions that independently disable nuclear localization and augment nuclear export signals, collectively promoting nuclear exclusion. Intriguingly, this appears to relate to effects on protein conformation or regulatory mechanisms, rather than direct modification of defined trafficking signal sequences. These data provide new insights into the role of regulated nuclear trafficking of a viral protein in the pathogenicity of a virus that replicates in the cytoplasm.
Collapse
Affiliation(s)
- Aaron M Brice
- Viral Pathogenesis Laboratory, Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Ericka Watts
- Viral Pathogenesis Laboratory, Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Bevan Hirst
- Viral Pathogenesis Laboratory, Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - David A Jans
- Nuclear Signaling Laboratory, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Naoto Ito
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, and United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Gregory W Moseley
- Viral Pathogenesis Laboratory, Department of Microbiology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
12
|
Definition of the immune evasion-replication interface of rabies virus P protein. PLoS Pathog 2021; 17:e1009729. [PMID: 34237115 PMCID: PMC8291714 DOI: 10.1371/journal.ppat.1009729] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 07/20/2021] [Accepted: 06/18/2021] [Indexed: 12/24/2022] Open
Abstract
Rabies virus phosphoprotein (P protein) is a multifunctional protein that plays key roles in replication as the polymerase cofactor that binds to the complex of viral genomic RNA and the nucleoprotein (N protein), and in evading the innate immune response by binding to STAT transcription factors. These interactions are mediated by the C-terminal domain of P (PCTD). The colocation of these binding sites in the small globular PCTD raises the question of how these interactions underlying replication and immune evasion, central to viral infection, are coordinated and, potentially, coregulated. While direct data on the binding interface of the PCTD for STAT1 is available, the lack of direct structural data on the sites that bind N protein limits our understanding of this interaction hub. The PCTD was proposed to bind via two sites to a flexible loop of N protein (Npep) that is not visible in crystal structures, but no direct analysis of this interaction has been reported. Here we use Nuclear Magnetic Resonance, and molecular modelling to show N protein residues, Leu381, Asp383, Asp384 and phosphor-Ser389, are likely to bind to a ‘positive patch’ of the PCTD formed by Lys211, Lys214 and Arg260. Furthermore, in contrast to previous predictions we identify a single site of interaction on the PCTD by this Npep. Intriguingly, this site is proximal to the defined STAT1 binding site that includes Ile201 to Phe209. However, cell-based assays indicate that STAT1 and N protein do not compete for P protein. Thus, it appears that interactions critical to replication and immune evasion can occur simultaneously with the same molecules of P protein so that the binding of P protein to activated STAT1 can potentially occur without interrupting interactions involved in replication. These data suggest that replication complexes might be directly involved in STAT1 antagonism. For viruses to infect cells and generate progeny, they must be able to mediate replication, while simultaneously evading the innate immune system. Viruses with small genomes often achieve this through multifunctional proteins that have roles in both replication and immune evasion, such as the phosphoprotein (P protein) of rabies virus. P protein is an essential cofactor in genome replication and transcription, dependent on the well-folded C-terminal domain (PCTD), which binds to the nucleoprotein (N protein) when complexed with RNA. The PCTD can also bind and antagonize signal transducers and activators of transcription (STAT) proteins, that are essential for activating antiviral mechanisms. Here we show using Nuclear Magnetic Resonance spectroscopy and cell-based assays, that the STAT1-binding and N-binding interfaces are proximal but, nevertheless, it appears that the same molecule of PCTD can simultaneously bind STAT1 and N protein. These data suggest that P-protein-STAT1 interaction, critical to immune evasion, can occur without interrupting interactions underlying replication, and so replication complexes might be directly involved in STAT1 antagonism.
Collapse
|
13
|
Abstract
Viruses are obligatory intracellular parasites that use cell proteins to take the control of the cell functions in order to accomplish their life cycle. Studying the viral-host interactions would increase our knowledge of the viral biology and mechanisms of pathogenesis. Studies on pathogenesis mechanisms of lyssaviruses, which are the causative agents of rabies, have revealed some important host protein partners for viral proteins, especially for most studied species, i.e. RABV. In this review article, the key physical lyssavirus-host protein interactions, their contributions to rabies infection, and their exploitation are discussed to improve the knowledge about rabies pathogenesis.
Collapse
|
14
|
Hossain MA, Larrous F, Rawlinson SM, Zhan J, Sethi A, Ibrahim Y, Aloi M, Lieu KG, Mok YF, Griffin MDW, Ito N, Ose T, Bourhy H, Moseley GW, Gooley PR. Structural Elucidation of Viral Antagonism of Innate Immunity at the STAT1 Interface. Cell Rep 2020; 29:1934-1945.e8. [PMID: 31722208 DOI: 10.1016/j.celrep.2019.10.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 07/16/2019] [Accepted: 10/03/2019] [Indexed: 12/24/2022] Open
Abstract
To evade immunity, many viruses express interferon antagonists that target STAT transcription factors as a major component of pathogenesis. Because of a lack of direct structural data, these interfaces are poorly understood. We report the structural analysis of full-length STAT1 binding to an interferon antagonist of a human pathogenic virus. The interface revealed by transferred cross-saturation NMR is complex, involving multiple regions in both the viral and cellular proteins. Molecular mapping analysis, combined with biophysical characterization and in vitro/in vivo functional assays, indicates that the interface is significant in disease caused by a pathogenic field-strain lyssavirus, with critical roles for contacts between the STAT1 coiled-coil/DNA-binding domains and specific regions within the viral protein. These data elucidate the potentially complex nature of IFN antagonist/STAT interactions, and the spatial relationship of protein interfaces that mediate immune evasion and replication, providing insight into how viruses can regulate these essential functions via single multifunctional proteins.
Collapse
Affiliation(s)
- Md Alamgir Hossain
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Florence Larrous
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia; Unité Lyssavirus, Epidémiologie et Neuropathologie - CNR de la RAGE, Institut Pasteur, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - Stephen M Rawlinson
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton Campus, VIC 3800, Australia
| | - Jingyu Zhan
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Ashish Sethi
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Youssef Ibrahim
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Maria Aloi
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton Campus, VIC 3800, Australia
| | - Kim G Lieu
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton Campus, VIC 3800, Australia
| | - Yee-Foong Mok
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Michael D W Griffin
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Naoto Ito
- Laboratory of Zoonotic Diseases, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Toyoyuki Ose
- Faculty of Advanced Life Science, Hokkaido University, 060-0810 Sapporo, Japan
| | - Hervé Bourhy
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia; Unité Lyssavirus, Epidémiologie et Neuropathologie - CNR de la RAGE, Institut Pasteur, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - Gregory W Moseley
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia; Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton Campus, VIC 3800, Australia.
| | - Paul R Gooley
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
15
|
Sugiyama A, Nomai T, Jiang X, Minami M, Yao M, Maenaka K, Ito N, Gooley PR, Moseley GW, Ose T. Structural comparison of the C-terminal domain of functionally divergent lyssavirus P proteins. Biochem Biophys Res Commun 2020; 529:507-512. [PMID: 32703459 DOI: 10.1016/j.bbrc.2020.05.195] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 05/26/2020] [Indexed: 12/22/2022]
Abstract
Lyssavirus P protein is a multifunctional protein that interacts with numerous host-cell proteins. The C-terminal domain (CTD) of P is important for inhibition of JAK-STAT signaling enabling the virus to evade host immunity. Several regions on the surface of rabies virus P are reported to interact with host factors. Among them, an extended, discrete hydrophobic patch of P CTD is notable. Although structures of P CTD of two strains of rabies virus, and of mokola virus have been solved, the structure of P CTD for Duvenhage virus, which is functionally divergent from these species for immune evasion function, is not known. Here, we analyze the structures of P CTD of Duvenhage and of a distinct rabies virus strain to gain further insight on the nature and potential function of the hydrophobic surface. Molecular contacts in crystals suggest that the hydrophobic patch is important to intermolecular interactions with other proteins, which differ between the lyssavirus species.
Collapse
Affiliation(s)
- Aoi Sugiyama
- Faculty of Advanced Life Science, Hokkaido University, Kita-10, Nishi-8, Kita-ku, Sapporo, 060-0810, Japan
| | - Tomo Nomai
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan
| | - Xinxin Jiang
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan
| | - Miku Minami
- Faculty of Advanced Life Science, Hokkaido University, Kita-10, Nishi-8, Kita-ku, Sapporo, 060-0810, Japan
| | - Min Yao
- Faculty of Advanced Life Science, Hokkaido University, Kita-10, Nishi-8, Kita-ku, Sapporo, 060-0810, Japan
| | - Katsumi Maenaka
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan
| | - Naoto Ito
- Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Paul R Gooley
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Gregory W Moseley
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton Campus, Victoria, 3800, Australia
| | - Toyoyuki Ose
- Faculty of Advanced Life Science, Hokkaido University, Kita-10, Nishi-8, Kita-ku, Sapporo, 060-0810, Japan; Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan; PRESTO, Japan Science and Technology Agency, 4-1-8, Honcho Kawaguchi, Saitama, 332-0012, Japan.
| |
Collapse
|
16
|
Rozario AM, Zwettler F, Duwé S, Hargreaves RB, Brice A, Dedecker P, Sauer M, Moseley GW, Whelan DR, Bell TDM. ‘Live and Large’: Super-Resolution Optical Fluctuation Imaging (SOFI) and Expansion Microscopy (ExM) of Microtubule Remodelling by Rabies Virus P Protein. Aust J Chem 2020. [DOI: 10.1071/ch19571] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The field of super-resolution microscopy continues to progress rapidly, both in terms of evolving techniques and methodologies as well as in the development of new multi-disciplinary applications. Two current drivers of innovation are increasing the possible resolution gain and application in live samples. Super-resolution optical fluctuation imaging (SOFI) is well suited to live samples while expansion microscopy (ExM) enables obtainment of sub-diffraction information via conventional imaging. In this Highlight we provide a brief outline of these methods and report results from application of SOFI and ExM in our on-going study into microtubule remodelling by rabies virus P proteins. We show that MT bundles in live cells transfected with rabies virus P3 protein can be visualised using SOFI in a time-lapse fashion for up to half an hour and can be expanded using current Pro-ExM protocols and imaged using conventional microscopy.
Collapse
|
17
|
Guo Y, Duan M, Wang X, Gao J, Guan Z, Zhang M. Early events in rabies virus infection—Attachment, entry, and intracellular trafficking. Virus Res 2019; 263:217-225. [DOI: 10.1016/j.virusres.2019.02.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 01/28/2019] [Accepted: 02/13/2019] [Indexed: 12/20/2022]
|
18
|
Zhan J, Hossain MA, Sethi A, Ose T, Moseley GW, Gooley PR. 1H, 15N and 13C resonance assignments of the C-terminal domain of the P protein of the Nishigahara strain of rabies virus. BIOMOLECULAR NMR ASSIGNMENTS 2019; 13:5-8. [PMID: 30238347 DOI: 10.1007/s12104-018-9841-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 09/14/2018] [Indexed: 06/08/2023]
Abstract
The C-terminal domain of the P protein of rabies virus is a multifunctional domain that interacts with both viral and host cell proteins. Here we report the 1H, 13C and 15N chemical shift assignments of this domain from P protein of the Nishigahara strain of rabies virus, a pathogenic laboratory strain well established for studies of virulence functions of rabies virus proteins, including P protein. The data and secondary structure analysis are in good agreement with the reported predominantly helical structure of the same domain from the CVS strain of rabies solved by crystallography. These assignments will enable future solution studies of the interactions of the P protein with viral and host proteins, and the effects of post-translational modifications.
Collapse
Affiliation(s)
- Jingyu Zhan
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Md Alamgir Hossain
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Ashish Sethi
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Toyoyuki Ose
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Gregory W Moseley
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton Campus, Clayton, VIC, 3800, Australia
| | - Paul R Gooley
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, 3010, Australia.
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
19
|
The Effect of Permethrin Resistance on Aedes aegypti Transcriptome Following Ingestion of Zika Virus Infected Blood. Viruses 2018; 10:v10090470. [PMID: 30200481 PMCID: PMC6165428 DOI: 10.3390/v10090470] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/24/2018] [Accepted: 08/26/2018] [Indexed: 01/02/2023] Open
Abstract
Aedes aegypti (L.) is the primary vector of many emerging arboviruses. Insecticide resistance among mosquito populations is a consequence of the application of insecticides for mosquito control. We used RNA-sequencing to compare transcriptomes between permethrin resistant and susceptible strains of Florida Ae. aegypti in response to Zika virus infection. A total of 2459 transcripts were expressed at significantly different levels between resistant and susceptible Ae. aegypti. Gene ontology analysis placed these genes into seven categories of biological processes. The 863 transcripts were expressed at significantly different levels between the two mosquito strains (up/down regulated) more than 2-fold. Quantitative real-time PCR analysis was used to validate the Zika-infection response. Our results suggested a highly overexpressed P450, with AAEL014617 and AAEL006798 as potential candidates for the molecular mechanism of permethrin resistance in Ae. aegypti. Our findings indicated that most detoxification enzymes and immune system enzymes altered their gene expression between the two strains of Ae. aegypti in response to Zika virus infection. Understanding the interactions of arboviruses with resistant mosquito vectors at the molecular level allows for the possible development of new approaches in mitigating arbovirus transmission. This information sheds light on Zika-induced changes in insecticide resistant Ae. aegypti with implications for mosquito control strategies.
Collapse
|
20
|
Rawlinson SM, Zhao T, Rozario AM, Rootes CL, McMillan PJ, Purcell AW, Woon A, Marsh GA, Lieu KG, Wang LF, Netter HJ, Bell TDM, Stewart CR, Moseley GW. Viral regulation of host cell biology by hijacking of the nucleolar DNA-damage response. Nat Commun 2018; 9:3057. [PMID: 30076298 PMCID: PMC6076271 DOI: 10.1038/s41467-018-05354-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 06/28/2018] [Indexed: 12/11/2022] Open
Abstract
Recent studies indicate that nucleoli play critical roles in the DNA-damage response (DDR) via interaction of DDR machinery including NBS1 with nucleolar Treacle protein, a key mediator of ribosomal RNA (rRNA) transcription and processing. Here, using proteomics, confocal and single molecule super-resolution imaging, and infection under biosafety level-4 containment, we show that this nucleolar DDR pathway is targeted by infectious pathogens. We find that the matrix proteins of Hendra virus and Nipah virus, highly pathogenic viruses of the Henipavirus genus in the order Mononegavirales, interact with Treacle and inhibit its function, thereby silencing rRNA biogenesis, consistent with mimicking NBS1–Treacle interaction during a DDR. Furthermore, inhibition of Treacle expression/function enhances henipavirus production. These data identify a mechanism for viral modulation of host cells by appropriating the nucleolar DDR and represent, to our knowledge, the first direct intranucleolar function for proteins of any mononegavirus. Many RNA viruses that replicate in the cytoplasm express proteins that localize to nucleoli, but the nucleolar functions remain largely unknown. Here, the authors show that the Henipavirus matrix protein mimics an endogenous Treacle partner of the DNA-damage response, resulting in suppression of rRNA biogenesis.
Collapse
Affiliation(s)
- Stephen M Rawlinson
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia.,Department of Biochemistry and Molecular Biology, Bio21 Institute, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Tianyue Zhao
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia.,Department of Biochemistry and Molecular Biology, Bio21 Institute, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Ashley M Rozario
- School of Chemistry, Monash University, Clayton, Victoria, 3800, Australia
| | - Christina L Rootes
- CSIRO Health & Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, 3220, Australia
| | - Paul J McMillan
- Department of Biochemistry and Molecular Biology, Bio21 Institute, The University of Melbourne, Melbourne, Victoria, 3010, Australia.,Biological Optical Microscopy Platform, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Anthony W Purcell
- Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
| | - Amanda Woon
- Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
| | - Glenn A Marsh
- CSIRO Health & Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, 3220, Australia
| | - Kim G Lieu
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Hans J Netter
- Victorian Infectious Diseases Reference Laboratory, Melbourne Health, The Peter Doherty Institute, Victoria, 3000, Australia
| | - Toby D M Bell
- School of Chemistry, Monash University, Clayton, Victoria, 3800, Australia
| | - Cameron R Stewart
- CSIRO Health & Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, 3220, Australia
| | - Gregory W Moseley
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia. .,Department of Biochemistry and Molecular Biology, Bio21 Institute, The University of Melbourne, Melbourne, Victoria, 3010, Australia.
| |
Collapse
|
21
|
|
22
|
A Conserved Leucine Zipper Motif in Gammaherpesvirus ORF52 Is Critical for Distinct Microtubule Rearrangements. J Virol 2017; 91:JVI.00304-17. [PMID: 28615210 PMCID: PMC5553167 DOI: 10.1128/jvi.00304-17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/12/2017] [Indexed: 11/20/2022] Open
Abstract
Productive viral infection often depends on the manipulation of the cytoskeleton. Herpesviruses, including rhesus monkey rhadinovirus (RRV) and its close homolog, the oncogenic human gammaherpesvirus Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8 (KSHV/HHV8), exploit microtubule (MT)-based retrograde transport to deliver their genomes to the nucleus. Subsequently, during the lytic phase of the life cycle, the maturing viral particles undergo orchestrated translocation to specialized regions within the cytoplasm, leading to tegumentation, secondary envelopment, and then egress. As a result, we hypothesized that RRV might induce changes in the cytoskeleton at both early and late stages of infection. Using confocal imaging, we found that RRV infection led to the thickening and acetylation of MTs emanating from the MT-organizing center (MTOC) shortly after viral entry and more pronounced and diffuse MT reorganization during peak stages of lytic gene expression and virion production. We subsequently identified open reading frame 52 (ORF52), a multifunctional and abundant tegument protein, as being the only virally encoded component responsible for these cytoskeletal changes. Mutational and modeling analyses indicated that an evolutionarily conserved, truncated leucine zipper motif near the N terminus as well as a strictly conserved arginine residue toward the C terminus of ORF52 play critical roles in its ability to rearrange the architecture of the MT cytoskeleton. Taken together, our findings combined with data from previous studies describing diverse roles for ORF52 suggest that it likely binds to different cellular components, thereby allowing context-dependent modulation of function. IMPORTANCE A thorough understanding of the processes governing viral infection includes knowledge of how viruses manipulate their intracellular milieu, including the cytoskeleton. Altering the dynamics of actin or MT polymerization, for example, is a common strategy employed by viruses to ensure efficient entry, maturation, and egress as well as the avoidance of antiviral defenses through the sequestration of key cellular factors. We found that infection with RRV, a homolog of the human pathogen KSHV, led to perinuclear wrapping by acetylated MT bundles and identified ORF52 as the viral protein underlying these changes. Remarkably, incoming virions were able to supply sufficient ORF52 to induce MT thickening and acetylation near the MTOC, potentially aiding in the delivery viral genomes to the nucleus. Although the function of MT alterations during late stages of infection requires further study, ORF52 shares functional and structural similarities with alphaherpesvirus VP22, underscoring the evolutionary importance of MT cytoskeletal manipulations for this virus family.
Collapse
|