1
|
De la Cadena A, Park J, Tehrani KF, Renteria CA, Monroy GL, Boppart SA. Simultaneous label-free autofluorescence multi-harmonic microscopy driven by the supercontinuum generated from a bulk nonlinear crystal. BIOMEDICAL OPTICS EXPRESS 2024; 15:491-505. [PMID: 38404303 PMCID: PMC10890845 DOI: 10.1364/boe.504832] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/08/2023] [Accepted: 12/01/2023] [Indexed: 02/27/2024]
Abstract
Nonlinear microscopy encompasses several imaging techniques that leverage laser technology to probe intrinsic molecules of biological specimens. These native molecules produce optical fingerprints that allow nonlinear microscopes to reveal the chemical composition and structure of cells and tissues in a label-free and non-destructive fashion, information that enables a plethora of applications, e.g., real-time digital histopathology or image-guided surgery. Because state-of-the-art lasers exhibit either a limited bandwidth or reduced wavelength tunability, nonlinear microscopes lack the spectral support to probe different biomolecules simultaneously, thus losing analytical potential. Therefore, a conventional nonlinear microscope requires multiple or tunable lasers to individually excite endogenous molecules, increasing both the cost and complexity of the system. A solution to this problem is supercontinuum generation, a nonlinear optical phenomenon that supplies broadband femtosecond radiation, granting a wide spectrum for concurrent molecular excitation. This study introduces a source for nonlinear multiphoton microscopy based on the supercontinuum generation from a yttrium aluminum garnet (YAG) crystal, an approach that allows simultaneous label-free autofluorescence multi-harmonic imaging of biological samples and offers a practical and compact alternative for the clinical translation of nonlinear microscopy. While this supercontinuum covered the visible spectrum (550-900 nm) and the near-infrared region (950-1200 nm), the pulses within 1030-1150 nm produced label-free volumetric chemical images of ex vivo chinchilla kidney, thus validating the supercontinuum from bulk crystals as a powerful source for multimodal nonlinear microscopy.
Collapse
Affiliation(s)
- Alejandro De la Cadena
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Jaena Park
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Kayvan F. Tehrani
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Carlos A. Renteria
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Guillermo L. Monroy
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Stephen A. Boppart
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA
- NIH/NIBIB Center for Label-free Imaging and Multiscale Biophotonics (CLIMB), University of Illinois Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
2
|
Müller C, Kaufmann M, Brandon MP, Cullen AA, Dietzek-Ivanšić B, Pryce MT. New Twist on the Light-Switch Effect: Controlling the Fate of Excited States with pH in a 4-Hydroxy-thiazol-extended Ruthenium(II) Dppz Complex. J Phys Chem A 2023; 127:10613-10620. [PMID: 38059354 DOI: 10.1021/acs.jpca.3c06179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
We present a pH-dependent study of the excited state dynamics of a novel Ru complex bearing a 4-hydroxy thiazol-substituted dppz (dipyridophenazine) ligand (RuTzOH) and its deprotonated form (RuTzO-). We combine steady-state and time-resolved absorption and emission spectroscopy with electrochemical investigations to characterize the excited state relaxation, which upon photoexcitation at 400 nm is determined by a multitude of initially populated MLCT states for both complexes. Subsequently, for RuTzOH, two long-lived excited states are populated, leading to dual emission from the complexes, a feature that vanishes upon deprotonation. Upon deprotonation, the electron density on the dppz moiety increases significantly, leading to rapid energy populating ligand-centered states and thus deactivating the initially excited MLCT states.
Collapse
Affiliation(s)
- Carolin Müller
- Computer Chemistry Center, Nägelsbachstraße 25, Friedrich-Alexander-University Erlangen-Nuremberg, 91052 Erlangen, Germany
| | - Martin Kaufmann
- School of Chemical Sciences, Dublin City University, D09 V209 Dublin, Ireland
| | - Michael P Brandon
- School of Chemical Sciences, Dublin City University, D09 V209 Dublin, Ireland
| | - Aoibhin A Cullen
- School of Chemical Sciences, Dublin City University, D09 V209 Dublin, Ireland
| | - Benjamin Dietzek-Ivanšić
- Friedrich Schiller University Jena, Institute of Physical Chemistry and Abbe Center of Photonics, Helmholtzweg 4, 07743 Jena, Germany
- Leibniz Institute of Photonic Technology, Research Department Functional Interfaces, Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Mary T Pryce
- School of Chemical Sciences, Dublin City University, D09 V209 Dublin, Ireland
| |
Collapse
|
3
|
Keane PM, Zehe C, Poynton FE, Bright SA, Estayalo-Adrián S, Devereux SJ, Donaldson PM, Sazanovich IV, Towrie M, Botchway SW, Cardin CJ, Williams DC, Gunnlaugsson T, Long C, Kelly JM, Quinn SJ. Time-resolved infra-red studies of photo-excited porphyrins in the presence of nucleic acids and in HeLa tumour cells: insights into binding site and electron transfer dynamics. Phys Chem Chem Phys 2022; 24:27524-27531. [PMID: 36345709 DOI: 10.1039/d2cp04604k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Cationic porphyrins based on the 5,10,15,20-meso-(tetrakis-4-N-methylpyridyl) core (TMPyP4) have been studied extensively over many years due to their strong interactions with a variety of nucleic acid structures, and their potential use as photodynamic therapeutic agents and telomerase inhibitors. In this paper, the interactions of metal-free TMPyP4 and Pt(II)TMPyP4 with guanine-containing nucleic acids are studied for the first time using time-resolved infrared spectroscopy (TRIR). In D2O solution (where the metal-free form exists as D2TMPyP4) both compounds yielded similar TRIR spectra (between 1450-1750 cm-1) following pulsed laser excitation in their Soret B-absorption bands. Density functional theory calculations reveal that vibrations centred on the methylpyridinium groups are responsible for the dominant feature at ca. 1640 cm-1. TRIR spectra of D2TMPyP4 or PtTMPyP4 in the presence of guanosine 5'-monophosphate (GMP), double-stranded {d(GC)5}2 or {d(CGCAAATTTGCG)}2 contain negative-going signals, 'bleaches', indicative of binding close to guanine. TRIR signals for D2TMPyP4 or PtTMPyP bound to the quadruplex-forming cMYC sequence {d(TAGGGAGGG)}2T indicate that binding occurs on the stacked guanines. For D2TMPyP4 bound to guanine-containing systems, the TRIR signal at ca. 1640 cm-1 decays on the picosecond timescale, consistent with electron transfer from guanine to the singlet excited state of D2TMPyP4, although IR marker bands for the reduced porphyrin/oxidised guanine were not observed. When PtTMPyP is incorporated into HeLa tumour cells, TRIR studies show protein binding with time-dependent ps/ns changes in the amide absorptions demonstrating TRIR's potential for studying light-activated molecular processes not only with nucleic acids in solution but also in biological cells.
Collapse
Affiliation(s)
- Páraic M Keane
- School of Chemistry, Trinity College Dublin, Dublin 2, Ireland.
- School of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, UK
| | - Clara Zehe
- School of Chemistry, University College Dublin, Dublin 4, Ireland.
| | - Fergus E Poynton
- School of Chemistry, Trinity College Dublin, Dublin 2, Ireland.
- Trinity Biomedical Sciences Institute, The University of Dublin, Pearse St., Dublin 2, Ireland
| | - Sandra A Bright
- School of Chemistry, Trinity College Dublin, Dublin 2, Ireland.
- Trinity Biomedical Sciences Institute, The University of Dublin, Pearse St., Dublin 2, Ireland
| | - Sandra Estayalo-Adrián
- School of Chemistry, Trinity College Dublin, Dublin 2, Ireland.
- Trinity Biomedical Sciences Institute, The University of Dublin, Pearse St., Dublin 2, Ireland
| | | | - Paul M Donaldson
- STFC Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0QX, UK
| | - Igor V Sazanovich
- STFC Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0QX, UK
| | - Michael Towrie
- STFC Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0QX, UK
| | - Stanley W Botchway
- STFC Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0QX, UK
| | - Christine J Cardin
- School of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, UK
| | - D Clive Williams
- Trinity Biomedical Sciences Institute, The University of Dublin, Pearse St., Dublin 2, Ireland
| | - Thorfinnur Gunnlaugsson
- School of Chemistry, Trinity College Dublin, Dublin 2, Ireland.
- Trinity Biomedical Sciences Institute, The University of Dublin, Pearse St., Dublin 2, Ireland
| | - Conor Long
- School of Chemical Sciences, Dublin City University, Dublin 9, Ireland.
| | - John M Kelly
- School of Chemistry, Trinity College Dublin, Dublin 2, Ireland.
| | - Susan J Quinn
- School of Chemistry, University College Dublin, Dublin 4, Ireland.
| |
Collapse
|
4
|
Yin C, Wang Z, Ding X, Chen X, Wang J, Yang E, Wang W, Martin LL, Sun D. Crystalline ruthenium polypyridine nanoparticles: a targeted treatment of bacterial infection with multifunctional antibacterial, adhesion and surface-anchoring photosensitizer properties. J Mater Chem B 2021; 9:3808-3825. [PMID: 33979422 DOI: 10.1039/d1tb00103e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photodynamic antibacterial therapy employs nanocomposites as an alternative to traditional antibiotics for the treatment of bacterial infections. However, many of these antibacterial materials are less effective towards bacteria than traditional drugs, either due to poor specificity or antibacterial activity. This can result in needless and excessive drug use in treatments. This paper describes a multifunctional drug delivery nanoparticle (MDD-NP), Sph-Ru-MMT@PZ, based on the nanostructured-form of [Ru(bpy)2dppz] (PF6)2 (Sph-Ru), which has adhesive properties towards its microbial targets as well as surface-anchoring photosensitizer effects. The design and construction of MDD-NP is based on the adhesive properties of the outer layers of montmorillonite (MMT), which allows Sph-Ru-MMT@PZ to successfully reach its bacterial target; the outer layer of the E. coli. In addition, under 670 nm red irradiation therapy (R-IT), the surface-anchoring properties use the photosensitizer phthalocyanine zinc (PZ) to destroy the bacteria by producing reactive oxygen species (ROS) which causes cell lysis of E. coli. More importantly, Sph-Ru-MMT@PZ has no fluorescence response to live E. coli with intact cell membranes but selectively stained and demonstrated fluorescence during membrane damage of early-stage cells as well as exposure of nuclear materials at late-stage of cell lysis. Sph-Ru-MMT@PZ showed beneficial and synergistic anti-infective effects in vivo by inhibiting the E. coli infection-induced inflammatory response and eventually promoting wound healing in mice. This new strategy for high precision antibacterial therapy towards specific targets, provides an exciting opportunity for the application of multifunctional nanocomposites towards microbial infections.
Collapse
Affiliation(s)
- Chenyang Yin
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| | - Zekun Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| | - Xiaoyuan Ding
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| | - Xiaoqing Chen
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| | - Jingyuan Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| | - Endong Yang
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| | - Weiyun Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| | - Lisandra L Martin
- School of Chemistry, Monash University, Clayton 3800, Victoria, Australia.
| | - Dongdong Sun
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
5
|
Müller C, Isakov D, Rau S, Dietzek B. Influence of the Protonation State on the Excited-State Dynamics of Ruthenium(II) Complexes with Imidazole π-Extended Dipyridophenazine Ligands. J Phys Chem A 2021; 125:5911-5921. [PMID: 34190563 DOI: 10.1021/acs.jpca.1c03856] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Ruthenium(II) complexes, like [(tbbpy)2Ru(dppz)]2+ (Ru-dppz; tbbpy = 4,4'-di-tert-butyl-2,2'-bipyridine, dppz = dipyrido-[3,2-a:2',3'-c]phenazine), have emerged as suitable photosensitizers in photoredox catalysis. Since then, there has been ongoing interest in the design of π-extended Ru-dppz systems with red-shifted visible absorption maxima and sufficiently long-lived excited states independent of the solvent or pH value. Herein, we explore the photophysical properties of protonation isomers of the linearly π-extended [(tbbpy)2Ru(L)]2+-type complexes bearing a dppz ligand with directly fused imidazole (im) and methyl-imidazole units (mim) as L. Steady-state UV-vis absorption, resonance Raman, as well as time-resolved emission and transient absorption spectroscopy reveal that Ru-im and Ru-mim show desirable properties for the application in photocatalytic processes, i.e., strong visible absorbance and two long-lived excited states in the 3ILCT and 3MLCT manifold, at pH values between 3 and 12. However, protonation of the (methyl-)imidazole unit at pH ≤ 2 unit causes decreased excited-state lifetimes and an emission switch-off.
Collapse
Affiliation(s)
- Carolin Müller
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany.,Research Department Functional Interfaces, Leibniz Institute of Photonic Technology Jena, Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Dajana Isakov
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Sven Rau
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Benjamin Dietzek
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany.,Research Department Functional Interfaces, Leibniz Institute of Photonic Technology Jena, Albert-Einstein-Straße 9, 07745 Jena, Germany.,Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Lessingstraße 8, 07743 Jena, Germany
| |
Collapse
|
6
|
Hniopek J, Müller C, Bocklitz T, Schmitt M, Dietzek B, Popp J. Kinetic-Model-Free Analysis of Transient Absorption Spectra Enabled by 2D Correlation Analysis. J Phys Chem Lett 2021; 12:4148-4153. [PMID: 33890789 DOI: 10.1021/acs.jpclett.1c00835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Here, we present, to the best of our knowledge for the first time, a systematic study of utilizing 2D correlation analysis in the field of femtosecond transient absorption (fs-TA) spectroscopy. We present that the application of 2D correlation spectroscopy (2DCOS) to fs-TA spectroscopy enables a model-free means to analyze excited state kinetics, which is demonstrated on the model system [(tbbpy)2Ru(dppz)]2+ in different solvents. We show that TA-2DCOS is able to determine the number of processes contributing to the time-resolved spectral changes in fs-TA data sets, as well as extract the spectral response of these components. Overall, the results show that TA-2DCOS leads to the same results as obtained with methods relying on global lifetime analysis or multivariate curve resolution but without the need to specify a predetermined kinetic model. The work presented therefore highlights the potential of TA-2DCOS as a model-free approach for analyzing fs-TA spectral data sets.
Collapse
Affiliation(s)
- Julian Hniopek
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany
- Friedrich Schiller University Jena, Institute of Physical Chemistry, Helmholtzweg 4, 07743 Jena, Germany
- Friedrich Schiller University Jena, Abbe Center of Photonics, Albert-Einstein-Str. 6, 07745 Jena, Germany
| | - Carolin Müller
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany
- Friedrich Schiller University Jena, Institute of Physical Chemistry, Helmholtzweg 4, 07743 Jena, Germany
| | - Thomas Bocklitz
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany
- Friedrich Schiller University Jena, Institute of Physical Chemistry, Helmholtzweg 4, 07743 Jena, Germany
- Friedrich Schiller University Jena, Abbe Center of Photonics, Albert-Einstein-Str. 6, 07745 Jena, Germany
| | - Michael Schmitt
- Friedrich Schiller University Jena, Institute of Physical Chemistry, Helmholtzweg 4, 07743 Jena, Germany
- Friedrich Schiller University Jena, Abbe Center of Photonics, Albert-Einstein-Str. 6, 07745 Jena, Germany
| | - Benjamin Dietzek
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany
- Friedrich Schiller University Jena, Institute of Physical Chemistry, Helmholtzweg 4, 07743 Jena, Germany
- Friedrich Schiller University Jena, Abbe Center of Photonics, Albert-Einstein-Str. 6, 07745 Jena, Germany
| | - Jürgen Popp
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany
- Friedrich Schiller University Jena, Institute of Physical Chemistry, Helmholtzweg 4, 07743 Jena, Germany
- Friedrich Schiller University Jena, Abbe Center of Photonics, Albert-Einstein-Str. 6, 07745 Jena, Germany
| |
Collapse
|
7
|
Kaufmann M, Müller C, Cullen AA, Brandon MP, Dietzek B, Pryce MT. Photophysics of Ruthenium(II) Complexes with Thiazole π-Extended Dipyridophenazine Ligands. Inorg Chem 2020; 60:760-773. [PMID: 33356204 DOI: 10.1021/acs.inorgchem.0c02765] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Transition-metal-based donor-acceptor systems can produce long-lived excited charge-transfer states by visible-light irradiation. The novel ruthenium(II) polypyridyl type complexes Ru1 and Ru2 based on the dipyridophenazine ligand (L0) directly linked to 4-hydroxythiazoles of different donor strengths were synthesized and photophysically characterized. The excited-state dynamics were investigated by femtosecond-to-nanosecond transient absorption and nanosecond emission spectroscopy complemented by time-dependent density functional theory calculations. These results indicate that photoexcitation in the visible region leads to the population of both metal-to-ligand charge-transfer (1MLCT) and thiazole (tz)-induced intraligand charge-transfer (1ILCT) states. Thus, the excited-state dynamics is described by two excited-state branches, namely, the population of (i) a comparably short-lived phenazine-centered 3MLCT state (τ ≈ 150-400 ps) and (ii) a long-lived 3ILCT state (τ ≈ 40-300 ns) with excess charge density localized on the phenazine and tz moieties. Notably, the ruthenium(II) complexes feature long-lived dual emission with lifetimes in the ranges τEm,1 ≈ 40-300 ns and τEm,2 ≈ 100-200 ns, which are attributed to emission from the 3ILCT and 3MLCT manifolds, respectively.
Collapse
Affiliation(s)
- Martin Kaufmann
- School of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
| | - Carolin Müller
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, Jena 07743, Germany.,Research Department Functional Interfaces, Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, Jena 07745, Germany
| | - Aoibhin A Cullen
- School of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
| | - Michael P Brandon
- School of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
| | - Benjamin Dietzek
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, Jena 07743, Germany.,Research Department Functional Interfaces, Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, Jena 07745, Germany.,Center for Energy and Environmental Chemistry Jena, Friedrich Schiller University Jena, Lessingstraße 8, Jena 07743, Germany
| | - Mary T Pryce
- School of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
| |
Collapse
|
8
|
Saeed HK, Sreedharan S, Jarman PJ, Archer SA, Fairbanks SD, Foxon SP, Auty AJ, Chekulaev D, Keane T, Meijer AJHM, Weinstein JA, Smythe CGW, Bernardino de la Serna J, Thomas JA. Making the Right Link to Theranostics: The Photophysical and Biological Properties of Dinuclear Ru II-Re I dppz Complexes Depend on Their Tether. J Am Chem Soc 2020; 142:1101-1111. [PMID: 31846306 DOI: 10.1021/jacs.9b12564] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The synthesis of new dinuclear complexes containing linked RuII(dppz) and ReI(dppz) moieties is reported. The photophysical and biological properties of the new complex, which incorporates a N,N'-bis(4-pyridylmethyl)-1,6-hexanediamine tether ligand, are compared to a previously reported RuII/ReI complex linked by a simple dipyridyl alkane ligand. Although both complexes bind to DNA with similar affinities, steady-state and time-resolved photophysical studies reveal that the nature of the linker affects the excited state dynamics of the complexes and their DNA photocleavage properties. Quantum-based DFT calculations on these systems offer insights into these effects. While both complexes are live cells permeant, their intracellular localizations are significantly affected by the nature of the linker. Notably, one of the complexes displayed concentration-dependent localization and possesses photophysical properties that are compatible with SIM and STED nanoscopy. This allowed the dynamics of its intracellular localization to be tracked at super resolutions.
Collapse
Affiliation(s)
| | | | | | | | | | - Simon P Foxon
- ZapGo, Limited , Rutherford Appleton Laboratory, Harwell , Oxford OX11 0FA , United Kingdom
| | | | | | | | | | | | | | - Jorge Bernardino de la Serna
- Central Laser Facility, Rutherford Appleton Laboratory , Research Complex at Harwell, Science and Technology Facilities Council , Harwell-Oxford , Didcot OX11 0QX , United Kingdom
- National Heart and Lung Institute, Faculty of Medicine , Imperial College London , Sir Alexander Fleming Building, Exhibition Road , London SW7 2AZ , United Kingdom
| | | |
Collapse
|
9
|
Jia F, Hébraud P, Han K, Wang J, Liang X, Liu B. Flexibility and thermal dynamic stability increase of dsDNA induced by Ru(bpy) 2dppz 2+ based on AFM and HRM technique. BMC Chem 2019; 13:68. [PMID: 31384815 PMCID: PMC6661754 DOI: 10.1186/s13065-019-0584-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 05/02/2019] [Indexed: 01/05/2023] Open
Abstract
Ru(bpy)2dppz2+ has been widely used as a probe for exploring the structure of double-stranded DNA (dsDNA). The flexibility change of DNA helix is important in many of its biological functions but not well understood. Here, flexibility change of dsDNA helix caused by intercalation with Ru(bpy)2dppz2+ was investigated using the atomic force microscopy. At first, the interactions between ruthenium complex and dsDNA helix were characterized and the binding site size (p = 2.87 bp) and binding constant (Ka = 5.9 * 107 M−1) were determined by the relative extension of DNA helix using the equation of McGhee and von Hippel. By measuring intercalator-induced DNA elongation and the mean square of end-to-end distance at different molar ratios of Ru(bpy)2dppz2+ to dsDNA, the changes of persistence length under different ruthenium concentrations were determined by the worm-like chain model. We found that the persistence length of dsDNA decreased with increasing Ru(bpy)2dppz2+ concentration, demonstrating that the flexibility of dsDNA obviously enhanced due to the intercalation. Especially, the persistence length changed greatly from 54 to 34 nm on changing the molar ratio of ruthenium to dsDNA from 0 to 0.2. We speculated that the intercalation of dsDNA with Ru(bpy)2dppz2+ resulted in local deformation or bending of the DNA duplex. In addition, the thermal dynamic stability of DNA helix was measured with high resolution melting method which revealed the increase in thermal dynamic stability of DNA helix due to the ruthenium intercalation.
Collapse
Affiliation(s)
- Fuchao Jia
- 1Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo, 255000 China
| | - Pascal Hébraud
- 2Institut de Physique et Chimie des Matériaux de Strasbourg/Centre National de la Recherche Scientifique, University of Strasbourg, 67034 Strasbourg, France
| | - Kezhen Han
- 1Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo, 255000 China
| | - Jing Wang
- 3College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
| | - Xingguo Liang
- 3College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
| | - Bo Liu
- 1Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo, 255000 China
| |
Collapse
|
10
|
Jia F, Wang S, Man Y, Kumar P, Liu B. Recent Developments in the Interactions of Classic Intercalated Ruthenium Compounds: [Ru(bpy)₂dppz] 2+ and [Ru(phen)₂dppz] 2+ with a DNA Molecule. Molecules 2019; 24:molecules24040769. [PMID: 30791625 PMCID: PMC6412511 DOI: 10.3390/molecules24040769] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/12/2019] [Accepted: 02/12/2019] [Indexed: 12/19/2022] Open
Abstract
[Ru(bpy)2dppz]2+ and [Ru(phen)2dppz]2+ as the light switches of the deoxyribose nucleic acid (DNA) molecule have attracted much attention and have become a powerful tool for exploring the structure of the DNA helix. Their interactions have been intensively studied because of the excellent photophysical and photochemical properties of ruthenium compounds. In this perspective, this review describes the recent developments in the interactions of these two classic intercalated compounds with a DNA helix. The mechanism of the molecular light switch effect and the selectivity of these two compounds to different forms of a DNA helix has been discussed. In addition, the specific binding modes between them have been discussed in detail, for a better understanding the mechanism of the light switch and the luminescence difference. Finally, recent studies of single molecule force spectroscopy have also been included so as to precisely interpret the kinetics, equilibrium constants, and the energy landscape during the process of the dynamic assembly of ligands into a single DNA helix.
Collapse
Affiliation(s)
- Fuchao Jia
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Shuo Wang
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Yan Man
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| | - Parveen Kumar
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Bo Liu
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China.
| |
Collapse
|
11
|
Keane PM, Kelly JM. Transient absorption and time-resolved vibrational studies of photophysical and photochemical processes in DNA-intercalating polypyridyl metal complexes or cationic porphyrins. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.02.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
Poynton FE, Bright SA, Blasco S, Williams DC, Kelly JM, Gunnlaugsson T. The development of ruthenium(ii) polypyridyl complexes and conjugates for in vitro cellular and in vivo applications. Chem Soc Rev 2018; 46:7706-7756. [PMID: 29177281 DOI: 10.1039/c7cs00680b] [Citation(s) in RCA: 316] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ruthenium(ii) [Ru(ii)] polypyridyl complexes have been the focus of intense investigations since work began exploring their supramolecular interactions with DNA. In recent years, there have been considerable efforts to translate this solution-based research into a biological environment with the intention of developing new classes of probes, luminescent imaging agents, therapeutics and theranostics. In only 10 years the field has expanded with diverse applications for these complexes as imaging agents and promising candidates for therapeutics. In light of these efforts this review exclusively focuses on the developments of these complexes in biological systems, both in cells and in vivo, and hopes to communicate to readers the diversity of applications within which these complexes have found use, as well as new insights gained along the way and challenges that researchers in this field still face.
Collapse
Affiliation(s)
- Fergus E Poynton
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland.
| | | | | | | | | | | |
Collapse
|
13
|
Rana PJS, Singh P, Kar P. Ruthenium Bis(terpyridine) Complexes Based on D-P-A Functionalization: Experimental and Theoretical Evidences. ChemistrySelect 2017. [DOI: 10.1002/slct.201700927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Prem Jyoti Singh Rana
- Department of Chemistry; Indian Institution of Technology; Roorkee 247667, Uttrakhand India
| | - Pallavi Singh
- Department of Chemistry; Indian Institution of Technology; Roorkee 247667, Uttrakhand India
| | - Prasenjit Kar
- Department of Chemistry; Indian Institution of Technology; Roorkee 247667, Uttrakhand India
| |
Collapse
|
14
|
Cardin CJ, Kelly JM, Quinn SJ. Photochemically active DNA-intercalating ruthenium and related complexes - insights by combining crystallography and transient spectroscopy. Chem Sci 2017; 8:4705-4723. [PMID: 28936338 PMCID: PMC5596416 DOI: 10.1039/c7sc01070b] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 04/05/2017] [Indexed: 11/21/2022] Open
Abstract
Recent research on the study of the interaction of ruthenium polypyridyl compounds and defined sequence nucleic acids is reviewed. Particular emphasis is paid to complexes [Ru(LL)2(Int)]2+ containing potentially intercalating ligands (Int) such as dipyridophenazine (dppz), which are known to display light-switching or photo-oxidising behaviour, depending on the nature of the ancillary ligands. X-ray crystallography has made a key contribution to our understanding, and the first complete survey of structural results is presented. These include sequence, enantiomeric, substituent and structural specificities. The use of ultrafast transient spectroscopic methods to probe the ultrafast processes for complexes such as [Ru(TAP)2(dppz)]2+ and [Ru(phen)2(dppz)]2+ when bound to mixed sequence oligonucleotides are reviewed with particular attention being paid to the complementary advantages of transient (visible) absorption and time-resolved (mid) infra-red techniques to probe spectral changes in the metal complex and in the nucleic acid. The observed photophysical properties are considered in light of the structural information obtained from X-ray crystallography. In solution, metal complexes can be expected to bind at more than one DNA step, so that a perfect correlation of the photophysical properties and factors such as the orientation or penetration of the ligand into the intercalation pocket should not be expected. This difficulty can be obviated by carrying out TRIR studies in the crystals. Dppz complexes also undergo insertion, especially with mismatched sequences. Future areas for study such as those involving non-canonical forms of DNA, such as G-quadruplexes or i-motifs are also briefly considered.
Collapse
Affiliation(s)
- Christine J Cardin
- School of Chemistry , University of Reading , Whiteknights , RG6 6AD , UK .
| | - John M Kelly
- School of Chemistry , Trinity College Dublin , Dublin 2 , Ireland .
| | - Susan J Quinn
- School of Chemistry , University College Dublin , Belfield , Dublin 4 , Ireland .
| |
Collapse
|