1
|
Kondratskyi A, Bazzone A, Rapedius M, Zerlotti R, Masson B, Sadanandan NP, Parker JL, Santinho A, Moutia M, Thiam AR, Kemp A, Seibertz F, Murciano N, Friis S, Becker N, Obergrussberger A, Barthmes M, George C, George M, Dalrymple D, Gasnier B, Newstead S, Grimm C, Fertig N. Lysosomal Ion Channels and Transporters: Recent Findings, Therapeutic Potential, and Technical Approaches. Bioelectricity 2025; 7:29-57. [PMID: 40342936 PMCID: PMC12056583 DOI: 10.1089/bioe.2025.0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2025] Open
Abstract
In recent years, there has been a growing interest in lysosomal ion channels and transporters due to their critical role in maintaining lysosomal function and their involvement in a variety of diseases, particularly lysosomal storage diseases, cancer, and neurodegenerative disorders. Recent advancements in research techniques, including manual and automated patch clamp (APC) electrophysiology, solid-supported membrane-based electrophysiology (SSME), and fluorescence-based ion imaging, have further enhanced our ability to investigate lysosomal ion channels and transporters in both physiological and pathological conditions, spurring drug discovery efforts. Several pharmaceutical companies are now developing therapies aimed at modulating these channels and transporters to improve lysosomal function in disease. Small molecules targeting channels like transient receptor potential mucolipin (TRPML) 1 and TMEM175, as well as drugs modulating lysosomal pH, are currently in preclinical and clinical development. This review provides an overview of the role of lysosomal ion channels and transporters in health and disease, highlights the cutting-edge techniques used to study them, and discusses the therapeutic potential of targeting these channels and transporters in the treatment of various diseases. Furthermore, in addition to summarizing recent discoveries, we contribute novel functional data on cystinosin, TRPML1, and two-pore channel 2 (TPC2), utilizing both SSME and APC approaches.
Collapse
Affiliation(s)
| | | | | | | | | | - Nidish Ponath Sadanandan
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig Maximilians University, Munich, Germany
| | - Joanne L. Parker
- Department of Biochemistry, University of Oxford, Oxford, UK
- The Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | | | | | - Abdou Rachid Thiam
- Laboratoire de Physique de l’École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, Paris, France
| | - Arlene Kemp
- SB Drug Discovery a Sygnature Discovery Business, West of Scotland Science Park, Glasgow, UK
| | | | | | | | | | | | | | | | | | - David Dalrymple
- SB Drug Discovery a Sygnature Discovery Business, West of Scotland Science Park, Glasgow, UK
| | - Bruno Gasnier
- Saints-Pères Paris Institute for the Neurosciences, Université Paris Cité, Centre National de la Recherche Scientifique, Paris, France
| | - Simon Newstead
- Department of Biochemistry, University of Oxford, Oxford, UK
- The Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Christian Grimm
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig Maximilians University, Munich, Germany
- Immunology, Infection and Pandemic Research IIP, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Munich/Frankfurt, Germany
| | | |
Collapse
|
2
|
Tedeschi V, Sapienza S, Ciancio R, Canzoniero LMT, Pannaccione A, Secondo A. Lysosomal Channels as New Molecular Targets in the Pharmacological Therapy of Neurodegenerative Diseases via Autophagy Regulation. Curr Neuropharmacol 2025; 23:375-383. [PMID: 38766825 DOI: 10.2174/1570159x22666240517101846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/20/2023] [Accepted: 01/16/2024] [Indexed: 05/22/2024] Open
Abstract
Besides controlling several organellar functions, lysosomal channels also guide the catabolic "self-eating" process named autophagy, which is mainly involved in protein and organelle quality control. Neuronal cells are particularly sensitive to the rate of autophagic flux either under physiological conditions or during the degenerative process. Accordingly, neurodegeneration occurring in Parkinson's (PD), Alzheimer's (AD), and Huntington's Diseases (HD), and Amyotrophic Lateral Sclerosis (ALS) as well as Lysosomal Storage Diseases (LSD) is partially due to defective autophagy and accumulation of toxic aggregates. In this regard, dysfunction of lysosomal ionic homeostasis has been identified as a putative cause of aberrant autophagy. From a therapeutic perspective, Transient Receptor Potential Channel Mucolipin 1 (TRPML1) and Two-Pore Channel isoform 2 (TPC2), regulating lysosomal homeostasis, are now considered promising druggable targets in neurodegenerative diseases. Compelling evidence suggests that pharmacological modulation of TRPML1 and TPC2 may rescue the pathological phenotype associated with autophagy dysfunction in AD, PD, HD, ALS, and LSD. Although pharmacological repurposing has identified several already used drugs with the ability to modulate TPC2, and several tools are already available for the modulation of TRPML1, many efforts are necessary to design and test new entities with much higher specificity in order to reduce dysfunctional autophagy during neurodegeneration.
Collapse
Affiliation(s)
- Valentina Tedeschi
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, Federico II University of Naples, Via S. Pansini 5, 80131 Naples, Italy
| | - Silvia Sapienza
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, Federico II University of Naples, Via S. Pansini 5, 80131 Naples, Italy
| | - Raffaella Ciancio
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, Federico II University of Naples, Via S. Pansini 5, 80131 Naples, Italy
| | | | - Anna Pannaccione
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, Federico II University of Naples, Via S. Pansini 5, 80131 Naples, Italy
| | - Agnese Secondo
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, Federico II University of Naples, Via S. Pansini 5, 80131 Naples, Italy
| |
Collapse
|
3
|
Wang J, Sun X, Cheng L, Qu M, Zhang C, Li X, Zhou L. What We Know About TMEM175 in Parkinson's Disease. CNS Neurosci Ther 2025; 31:e70195. [PMID: 39834146 PMCID: PMC11746916 DOI: 10.1111/cns.70195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 10/11/2024] [Accepted: 11/30/2024] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Lysosome is a highly heterogeneous membranous organelle in eukaryotic cells, which regulates many physiological processes in the cell. Studies have found that lysosomal dysfunction disrupts cellular homeostasis and is associated with Parkinson's disease (PD). Transmembrane protein 175 (TMEM175) is a lysosomal cation channel whose activity is essential for lysosomal homeostasis. At present, it has been confirmed that TMEM175 is related to the pathogenesis of PD, but the relationship between the two remains unclear. AIMS A thorough comprehension of the structure and function of TMEM175 would greatly contribute to elucidating the achievement of this objective. In this paper, the structure, composition, and function of TMEM175 and its relationship with PD will be reviewed.
Collapse
Affiliation(s)
- Jing Wang
- Medical Record Information SectionYantai Yuhuangding HospitalYantaiShandongChina
| | - Xuechun Sun
- Department of NeurologyJinan Central Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
- Department of NeurologyXuanwu Jinan HospitalJinanShandongChina
| | - Lufeng Cheng
- Department of NeurologyLinyi People's HospitalLinyiShandongChina
| | - Meijie Qu
- Department of NeurologyThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Chanyuan Zhang
- Department of Otolaryngology and Head and NeckChongqing General HospitalChongqingChina
| | - Xueting Li
- Department of Cardiology, the Second Affiliated HospitalZhejiang University School of MedicineZhejiangHangzhouChina
| | - Lingyan Zhou
- Department of NeurologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| |
Collapse
|
4
|
Zhang C, Su K, Jiang X, Tian Y, Li K. Advances in research on potential therapeutic approaches for Niemann-Pick C1 disease. Front Pharmacol 2024; 15:1465872. [PMID: 39263569 PMCID: PMC11387184 DOI: 10.3389/fphar.2024.1465872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024] Open
Abstract
Niemann-Pick disease type C1 (NP-C1) is a rare and devastating recessive inherited lysosomal lipid and cholesterol storage disorder caused by mutations in the NPC1 or NPC2 gene. These two proteins bind to cholesterol and cooperate in endosomal cholesterol transport. Characteristic clinical manifestations of NP-C1 include hepatosplenomegaly, progressive neurodegeneration, and ataxia. While the rarity of NP-C1 presents a significant obstacle to progress, researchers have developed numerous potential therapeutic approaches over the past two decades to address this condition. Various methods have been proposed and continuously improved to slow the progression of NP-C1, although they are currently at an animal or clinical experimental stage. This overview of NP-C1 therapy will delve into different theoretical treatment strategies, such as small molecule therapies, cell-based approaches, and gene therapy, highlighting the complex therapeutic challenges associated with this disorder.
Collapse
Affiliation(s)
- Caifeng Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Keke Su
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- First College for Clinical Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xu Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- First College for Clinical Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yuping Tian
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- First College for Clinical Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Ke Li
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- First College for Clinical Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
5
|
Hu M, Feng X, Liu Q, Liu S, Huang F, Xu H. The ion channels of endomembranes. Physiol Rev 2024; 104:1335-1385. [PMID: 38451235 PMCID: PMC11381013 DOI: 10.1152/physrev.00025.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 02/20/2024] [Accepted: 02/25/2024] [Indexed: 03/08/2024] Open
Abstract
The endomembrane system consists of organellar membranes in the biosynthetic pathway [endoplasmic reticulum (ER), Golgi apparatus, and secretory vesicles] as well as those in the degradative pathway (early endosomes, macropinosomes, phagosomes, autophagosomes, late endosomes, and lysosomes). These endomembrane organelles/vesicles work together to synthesize, modify, package, transport, and degrade proteins, carbohydrates, and lipids, regulating the balance between cellular anabolism and catabolism. Large ion concentration gradients exist across endomembranes: Ca2+ gradients for most endomembrane organelles and H+ gradients for the acidic compartments. Ion (Na+, K+, H+, Ca2+, and Cl-) channels on the organellar membranes control ion flux in response to cellular cues, allowing rapid informational exchange between the cytosol and organelle lumen. Recent advances in organelle proteomics, organellar electrophysiology, and luminal and juxtaorganellar ion imaging have led to molecular identification and functional characterization of about two dozen endomembrane ion channels. For example, whereas IP3R1-3 channels mediate Ca2+ release from the ER in response to neurotransmitter and hormone stimulation, TRPML1-3 and TMEM175 channels mediate lysosomal Ca2+ and H+ release, respectively, in response to nutritional and trafficking cues. This review aims to summarize the current understanding of these endomembrane channels, with a focus on their subcellular localizations, ion permeation properties, gating mechanisms, cell biological functions, and disease relevance.
Collapse
Affiliation(s)
- Meiqin Hu
- Department of Neurology and Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Xinghua Feng
- Department of Neurology and Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Qiang Liu
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Siyu Liu
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Fangqian Huang
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Haoxing Xu
- Department of Neurology and Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, People's Republic of China
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
6
|
Kendall RL, Holian A. Lysosomal BK channels facilitate silica-induced inflammation in macrophages. Inhal Toxicol 2024; 36:31-43. [PMID: 38261520 PMCID: PMC11080613 DOI: 10.1080/08958378.2024.2305112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024]
Abstract
BACKGROUND Lysosomal ion channels are proposed therapeutic targets for a number of diseases, including those driven by NLRP3 inflammasome-mediated inflammation. Here, the specific role of the lysosomal big conductance Ca2+-activated K+ (BK) channel was evaluated in a silica model of inflammation in murine macrophages. A specific-inhibitor of BK channel function, paxilline (PAX), and activators NS11021 and NS1619 were utilized to evaluate the role of lysosomal BK channel activity in silica-induced lysosomal membrane permeabilization (LMP) and NLRP3 inflammasome activation resulting in IL-1β release. METHODS Murine macrophages were exposed in vitro to crystalline silica following pretreatment with BK channel inhibitors or activators and LMP, cell death, and IL-1β release were assessed. In addition, the effect of PAX treatment on silica-induced cytosolic K+ decrease was measured. Finally, the effects of BK channel modifiers on lysosomal pH, proteolytic activity, and cholesterol transport were also evaluated. RESULTS PAX pretreatment significantly attenuated silica-induced cell death and IL-1β release. PAX caused an increase in lysosomal pH and decrease in lysosomal proteolytic activity. PAX also caused a significant accumulation of lysosomal cholesterol. BK channel activators NS11021 and NS1619 increased silica-induced cell death and IL-1β release. BK channel activation also caused a decrease in lysosomal pH and increase in lysosomal proteolytic function as well as a decrease in cholesterol accumulation. CONCLUSION Taken together, these results demonstrate that inhibiting lysosomal BK channel activity with PAX effectively reduced silica-induced cell death and IL-1β release. Blocking cytosolic K+ entry into the lysosome prevented LMP through the decrease of lysosomal acidification and proteolytic function and increase in lysosomal cholesterol.
Collapse
Affiliation(s)
- Rebekah L Kendall
- Center for Environmental Health Sciences, University of Montana, Missoula, MT, USA
| | - Andrij Holian
- Center for Environmental Health Sciences, University of Montana, Missoula, MT, USA
| |
Collapse
|
7
|
Pastore N, Annunziata F, Colonna R, Maffia V, Giuliano T, Custode BM, Lombardi B, Polishchuk E, Cacace V, De Stefano L, Nusco E, Sorrentino NC, Piccolo P, Brunetti-Pierri N. Increased expression or activation of TRPML1 reduces hepatic storage of toxic Z alpha-1 antitrypsin. Mol Ther 2023; 31:2651-2661. [PMID: 37394797 PMCID: PMC10492024 DOI: 10.1016/j.ymthe.2023.06.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/06/2023] [Accepted: 06/28/2023] [Indexed: 07/04/2023] Open
Abstract
Mutant Z alpha-1 antitrypsin (ATZ) accumulates in globules in the liver and is the prototype of proteotoxic hepatic disease. Therapeutic strategies aiming at clearance of polymeric ATZ are needed. Transient receptor potential mucolipin-1 (TRPML1) is a lysosomal Ca2+ channel that maintains lysosomal homeostasis. In this study, we show that by increasing lysosomal exocytosis, TRPML1 gene transfer or small-molecule-mediated activation of TRPML1 reduces hepatic ATZ globules and fibrosis in PiZ transgenic mice that express the human ATZ. ATZ globule clearance induced by TRPML1 occurred without increase in autophagy or nuclear translocation of TFEB. Our results show that targeting TRPML1 and lysosomal exocytosis is a novel approach for treatment of the liver disease due to ATZ and potentially other diseases due to proteotoxic liver storage.
Collapse
Affiliation(s)
- Nunzia Pastore
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy; Department of Translational Medicine, Medical Genetics, University of Naples Federico II, Naples, Italy.
| | | | - Rita Colonna
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
| | - Veronica Maffia
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
| | - Teresa Giuliano
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
| | - Bruno Maria Custode
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
| | - Bernadette Lombardi
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
| | - Elena Polishchuk
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
| | - Vincenzo Cacace
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
| | - Lucia De Stefano
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
| | - Edoardo Nusco
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
| | - Nicolina Cristina Sorrentino
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy; Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Pasquale Piccolo
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
| | - Nicola Brunetti-Pierri
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy; Department of Translational Medicine, Medical Genetics, University of Naples Federico II, Naples, Italy; Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomics and Experimental Medicine Program, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
8
|
Las Heras M, Szenfeld B, Ballout RA, Buratti E, Zanlungo S, Dardis A, Klein AD. Understanding the phenotypic variability in Niemann-Pick disease type C (NPC): a need for precision medicine. NPJ Genom Med 2023; 8:21. [PMID: 37567876 PMCID: PMC10421955 DOI: 10.1038/s41525-023-00365-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Niemann-Pick type C (NPC) disease is a lysosomal storage disease (LSD) characterized by the buildup of endo-lysosomal cholesterol and glycosphingolipids due to loss of function mutations in the NPC1 and NPC2 genes. NPC patients can present with a broad phenotypic spectrum, with differences at the age of onset, rate of progression, severity, organs involved, effects on the central nervous system, and even response to pharmacological treatments. This article reviews the phenotypic variation of NPC and discusses its possible causes, such as the remaining function of the defective protein, modifier genes, sex, environmental cues, and splicing factors, among others. We propose that these factors should be considered when designing or repurposing treatments for this disease. Despite its seeming complexity, this proposition is not far-fetched, considering the expanding interest in precision medicine and easier access to multi-omics technologies.
Collapse
Affiliation(s)
- Macarena Las Heras
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, 7780272, Chile
| | - Benjamín Szenfeld
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, 7780272, Chile
| | - Rami A Ballout
- Department of Pediatrics, University of Texas Southwestern (UTSW) Medical Center and Children's Health, Dallas, TX, 75235, USA
| | - Emanuele Buratti
- Molecular Pathology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, 34149, Italy
| | - Silvana Zanlungo
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, 8330033, Chile
| | - Andrea Dardis
- Regional Coordinator Centre for Rare Diseases, University Hospital of Udine, 33100, Udine, Italy
| | - Andrés D Klein
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, 7780272, Chile.
| |
Collapse
|
9
|
Jiang L, Li J, Reilly S, Xin H, Guo N, Zhang X. Role of organellar Ca2+-activated K+ channels in disease development. Life Sci 2023; 316:121433. [PMID: 36708987 DOI: 10.1016/j.lfs.2023.121433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023]
Abstract
The organellar Ca2+-activated K+ channels share a similar ability to transfer the alteration of Ca2+ concentration to membrane conductance of potassium. Multiple effects of Ca2+-activated K+ channels on cell metabolism and complex signaling pathways during organ development have been explored. The organellar Ca2+-activated K+ channels are able to control the ionic equilibrium and are always associated with oxidative stress in different organelles and the whole cells. Some drugs targeting Ca2+-activated K+ channels have been tested for various diseases in clinical trials. In this review, the known roles of organellar Ca2+-activated K+ channels were described, and their effects on different diseases, particularly on diabetes, cardiovascular diseases, and neurological diseases were discussed. It was attempted to summarize the currently known operational modes with the involvement of organellar Ca2+-activated K+ channels. This review may assist scholars to more comprehensively understand organellar Ca2+-activated K+ channels and related diseases.
Collapse
Affiliation(s)
- Lan Jiang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Jiawei Li
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Svetlana Reilly
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Hong Xin
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Nan Guo
- Department of Pharmacy, Minhang hospital, Fudan University, Shanghai, China.
| | - Xuemei Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China.
| |
Collapse
|
10
|
Abstract
Lysosomes are acidic membrane-bound organelles that use hydrolytic enzymes to break down material through pathways such as endocytosis, phagocytosis, mitophagy, and autophagy. To function properly, intralysosomal environments are strictly controlled by a set of integral membrane proteins such as ion channels and transporters. Potassium ion (K+) channels are a large and diverse family of membrane proteins that control K+ flux across both the plasma membrane and intracellular membranes. In the plasma membrane, they are essential in both excitable and non-excitable cells for the control of membrane potential and cell signaling. However, our understanding of intracellular K+ channels is very limited. In this review, we summarize the recent development in studies of K+ channels in the lysosome. We focus on their characterization, potential roles in maintaining lysosomal membrane potential and lysosomal function, and pathological implications.
Collapse
Affiliation(s)
- Peng Huang
- Collaborative Innovation Center for Biomedicine, School of Clinical Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Mengnan Xu
- Department of Physiology and Biophysics, Dalhousie University, Sir Charles Tupper Medical Building, Halifax, NS, Canada
| | - Yi Wu
- Collaborative Innovation Center for Biomedicine, School of Clinical Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Alia Kazim Rizvi Syeda
- Department of Physiology and Biophysics, Dalhousie University, Sir Charles Tupper Medical Building, Halifax, NS, Canada
| | - Xian-Ping Dong
- Department of Physiology and Biophysics, Dalhousie University, Sir Charles Tupper Medical Building, Halifax, NS, Canada.
| |
Collapse
|
11
|
Secondary Mitochondrial Dysfunction as a Cause of Neurodegenerative Dysfunction in Lysosomal Storage Diseases and an Overview of Potential Therapies. Int J Mol Sci 2022; 23:ijms231810573. [PMID: 36142486 PMCID: PMC9503973 DOI: 10.3390/ijms231810573] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 12/05/2022] Open
Abstract
Mitochondrial dysfunction has been recognised a major contributory factor to the pathophysiology of a number of lysosomal storage disorders (LSDs). The cause of mitochondrial dysfunction in LSDs is as yet uncertain, but appears to be triggered by a number of different factors, although oxidative stress and impaired mitophagy appear to be common inhibitory mechanisms shared amongst this group of disorders, including Gaucher’s disease, Niemann–Pick disease, type C, and mucopolysaccharidosis. Many LSDs resulting from defects in lysosomal hydrolase activity show neurodegeneration, which remains challenging to treat. Currently available curative therapies are not sufficient to meet patients’ needs. In view of the documented evidence of mitochondrial dysfunction in the neurodegeneration of LSDs, along with the reciprocal interaction between the mitochondrion and the lysosome, novel therapeutic strategies that target the impairment in both of these organelles could be considered in the clinical management of the long-term neurodegenerative complications of these diseases. The purpose of this review is to outline the putative mechanisms that may be responsible for the reported mitochondrial dysfunction in LSDs and to discuss the new potential therapeutic developments.
Collapse
|
12
|
Prat Castro S, Kudrina V, Jaślan D, Böck J, Scotto Rosato A, Grimm C. Neurodegenerative Lysosomal Storage Disorders: TPC2 Comes to the Rescue! Cells 2022; 11:2807. [PMID: 36139381 PMCID: PMC9496660 DOI: 10.3390/cells11182807] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 12/24/2022] Open
Abstract
Lysosomal storage diseases (LSDs) resulting from inherited gene mutations constitute a family of disorders that disturb lysosomal degradative function leading to abnormal storage of macromolecular substrates. In most LSDs, central nervous system (CNS) involvement is common and leads to the progressive appearance of neurodegeneration and early death. A growing amount of evidence suggests that ion channels in the endolysosomal system play a crucial role in the pathology of neurodegenerative LSDs. One of the main basic mechanisms through which the endolysosomal ion channels regulate the function of the endolysosomal system is Ca2+ release, which is thought to be essential for intracellular compartment fusion, fission, trafficking and lysosomal exocytosis. The intracellular TRPML (transient receptor potential mucolipin) and TPC (two-pore channel) ion channel families constitute the main essential Ca2+-permeable channels expressed on endolysosomal membranes, and they are considered potential drug targets for the prevention and treatment of LSDs. Although TRPML1 activation has shown rescue effects on LSD phenotypes, its activity is pH dependent, and it is blocked by sphingomyelin accumulation, which is characteristic of some LSDs. In contrast, TPC2 activation is pH-independent and not blocked by sphingomyelin, potentially representing an advantage over TRPML1. Here, we discuss the rescue of cellular phenotypes associated with LSDs such as cholesterol and lactosylceramide (LacCer) accumulation or ultrastructural changes seen by electron microscopy, mediated by the small molecule agonist of TPC2, TPC2-A1-P, which promotes lysosomal exocytosis and autophagy. In summary, new data suggest that TPC2 is a promising target for the treatment of different types of LSDs such as MLIV, NPC1, and Batten disease, both in vitro and in vivo.
Collapse
Affiliation(s)
| | | | | | | | - Anna Scotto Rosato
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-University, 80336 Munich, Germany
| | - Christian Grimm
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-University, 80336 Munich, Germany
| |
Collapse
|
13
|
Lu A. Endolysosomal cholesterol export: More than just NPC1. Bioessays 2022; 44:e2200111. [PMID: 35934896 DOI: 10.1002/bies.202200111] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 11/07/2022]
Abstract
NPC1 plays a central role in cholesterol egress from endolysosomes, a critical step for maintaining intracellular cholesterol homeostasis. Despite recent advances in the field, the full repertoire of molecules and pathways involved in this process remains unknown. Emerging evidence suggests the existence of NPC1-independent, alternative routes. These may involve vesicular and non-vesicular mechanisms, as well as release of extracellular vesicles. Understanding the underlying molecular mechanisms that bypass NPC1 function could have important implications for the development of therapies for lysosomal storage disorders. Here we discuss how cholesterol may be exported from lysosomes in which NPC1 function is impaired.
Collapse
Affiliation(s)
- Albert Lu
- Departament de Biomedicina, Unitat de Biologia Cellular, Facultat de Medicina i Ciències de la Salut, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
14
|
Scotto Rosato A, Krogsaeter EK, Jaślan D, Abrahamian C, Montefusco S, Soldati C, Spix B, Pizzo MT, Grieco G, Böck J, Wyatt A, Wünkhaus D, Passon M, Stieglitz M, Keller M, Hermey G, Markmann S, Gruber-Schoffnegger D, Cotman S, Johannes L, Crusius D, Boehm U, Wahl-Schott C, Biel M, Bracher F, De Leonibus E, Polishchuk E, Medina DL, Paquet D, Grimm C. TPC2 rescues lysosomal storage in mucolipidosis type IV, Niemann-Pick type C1, and Batten disease. EMBO Mol Med 2022; 14:e15377. [PMID: 35929194 PMCID: PMC9449600 DOI: 10.15252/emmm.202115377] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 01/05/2023] Open
Abstract
Lysosomes are cell organelles that degrade macromolecules to recycle their components. If lysosomal degradative function is impaired, e.g., due to mutations in lysosomal enzymes or membrane proteins, lysosomal storage diseases (LSDs) can develop. LSDs manifest often with neurodegenerative symptoms, typically starting in early childhood, and going along with a strongly reduced life expectancy and quality of life. We show here that small molecule activation of the Ca2+‐permeable endolysosomal two‐pore channel 2 (TPC2) results in an amelioration of cellular phenotypes associated with LSDs such as cholesterol or lipofuscin accumulation, or the formation of abnormal vacuoles seen by electron microscopy. Rescue effects by TPC2 activation, which promotes lysosomal exocytosis and autophagy, were assessed in mucolipidosis type IV (MLIV), Niemann–Pick type C1, and Batten disease patient fibroblasts, and in neurons derived from newly generated isogenic human iPSC models for MLIV and Batten disease. For in vivo proof of concept, we tested TPC2 activation in the MLIV mouse model. In sum, our data suggest that TPC2 is a promising target for the treatment of different types of LSDs, both in vitro and in‐vivo.
Collapse
Affiliation(s)
- Anna Scotto Rosato
- Faculty of Medicine, Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Einar K Krogsaeter
- Faculty of Medicine, Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Dawid Jaślan
- Faculty of Medicine, Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Carla Abrahamian
- Faculty of Medicine, Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität, Munich, Germany
| | | | - Chiara Soldati
- Telethon Institute of Genetics and Medicine, Naples, Italy
| | - Barbara Spix
- Faculty of Medicine, Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität, Munich, Germany
| | | | | | - Julia Böck
- Faculty of Medicine, Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Amanda Wyatt
- Experimental Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | | | - Marcel Passon
- Faculty of Medicine, Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Marc Stieglitz
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität, Munich, Germany
| | - Marco Keller
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität, Munich, Germany
| | - Guido Hermey
- Center for Molecular Neurobiology Hamburg (ZMNH), Institute of Molecular and Cellular Cognition, UKE, Hamburg, Germany
| | | | | | - Susan Cotman
- Department of Neurology, Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ludger Johannes
- Cellular and Chemical Biology Department, Institut Curie, U1143 INSERM, UMR3666 CNRS, PSL Research University, Paris, France
| | - Dennis Crusius
- Institute for Stroke and Dementia Research (ISD), Ludwig-Maximilians-University (LMU) Hospital, Munich, Germany
| | - Ulrich Boehm
- Experimental Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | | | - Martin Biel
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität, Munich, Germany
| | - Franz Bracher
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität, Munich, Germany
| | - Elvira De Leonibus
- Telethon Institute of Genetics and Medicine, Naples, Italy.,Institute of Biochemistry and Cell Biology (IBBC), CNR, Rome, Italy
| | | | - Diego L Medina
- Telethon Institute of Genetics and Medicine, Naples, Italy.,Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, Naples, Italy
| | - Dominik Paquet
- Institute for Stroke and Dementia Research (ISD), Ludwig-Maximilians-University (LMU) Hospital, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Christian Grimm
- Faculty of Medicine, Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität, Munich, Germany
| |
Collapse
|
15
|
Oh S, Marinelli F, Zhou W, Lee J, Choi HJ, Kim M, Faraldo-Gómez JD, Hite RK. Differential ion dehydration energetics explains selectivity in the non-canonical lysosomal K + channel TMEM175. eLife 2022; 11:75122. [PMID: 35608336 PMCID: PMC9129878 DOI: 10.7554/elife.75122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 05/01/2022] [Indexed: 12/31/2022] Open
Abstract
Structures of the human lysosomal K+ channel transmembrane protein 175 (TMEM175) in open and closed states revealed a novel architecture lacking the canonical K+ selectivity filter motif present in previously known K+ channel structures. A hydrophobic constriction composed of four isoleucine residues was resolved in the pore and proposed to serve as the gate in the closed state, and to confer ion selectivity in the open state. Here, we achieve higher-resolution structures of the open and closed states and employ molecular dynamics simulations to analyze the conducting properties of the putative open state, demonstrating that it is permeable to K+ and, to a lesser degree, also Na+. Both cations must dehydrate significantly to penetrate the narrow hydrophobic constriction, but ion flow is assisted by a favorable electrostatic field generated by the protein that spans the length of the pore. The balance of these opposing energetic factors explains why permeation is feasible, and why TMEM175 is selective for K+ over Na+, despite the absence of the canonical selectivity filter. Accordingly, mutagenesis experiments reveal an exquisite sensitivity of the channel to perturbations that mitigate the constriction. Together, these data reveal a novel mechanism for selective permeation of ions by TMEM175 that is unlike that of other K+ channels.
Collapse
Affiliation(s)
- SeCheol Oh
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Fabrizio Marinelli
- Theoretical Molecular Biophysics Section, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Wenchang Zhou
- Theoretical Molecular Biophysics Section, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Jooyeon Lee
- Department of Chemistry, Chungbuk National University, Cheongju-si, Republic of Korea
| | - Ho Jeong Choi
- Department of Chemistry, Chungbuk National University, Cheongju-si, Republic of Korea
| | - Min Kim
- Department of Chemistry, Chungbuk National University, Cheongju-si, Republic of Korea
| | - José D Faraldo-Gómez
- Theoretical Molecular Biophysics Section, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Richard K Hite
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
| |
Collapse
|
16
|
Krogsaeter E, Rosato AS, Grimm C. TRPMLs and TPCs: targets for lysosomal storage and neurodegenerative disease therapy? Cell Calcium 2022; 103:102553. [DOI: 10.1016/j.ceca.2022.102553] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/04/2022] [Accepted: 02/04/2022] [Indexed: 12/25/2022]
|
17
|
Wu Y, Xu M, Wang P, Syeda AKR, Huang P, Dong XP. Lysosomal potassium channels. Cell Calcium 2022; 102:102536. [PMID: 35016151 DOI: 10.1016/j.ceca.2022.102536] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/21/2022]
Abstract
The lysosome is an important membrane-bound acidic organelle that is regarded as the degradative center as well as multifunctional signaling hub. It digests unwanted macromolecules, damaged organelles, microbes, and other materials derived from endocytosis, autophagy, and phagocytosis. To function properly, the ionic homeostasis and membrane potential of the lysosome are strictly regulated by transporters and ion channels. As the most abundant cation inside the cell, potassium ions (K+) are vital for lysosomal membrane potential and lysosomal calcium (Ca2+) signaling. However, our understanding about how lysosomal K+homeostasis is regulated and what are the functions of K+in the lysosome is very limited. Currently, two lysosomal K+channels have been identified: large-conductance Ca2+-activated K+channel (BK) and transmembrane Protein 175 (TMEM175). In this review, we summarize recent development in our understanding of K+ homeostasis and K+channels in the lysosome. We hope to guide the readers into a more in-depth discussion of lysosomal K+ channels in lysosomal physiology and human diseases.
Collapse
Affiliation(s)
- Yi Wu
- Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine and Health Sciences, 279 Zhouzhu Rd, Shanghai 201318, China; School of Pharmacy, Shanghai University of Medicine and Health Sciences, 279 Zhouzhu Rd, Shanghai 201318, China
| | - Mengnan Xu
- Department of Physiology and Biophysics, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, Halifax, Nova NS B3H 4R2, Canada
| | - Pingping Wang
- Department of Physiology and Biophysics, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, Halifax, Nova NS B3H 4R2, Canada
| | - Alia Kazim Rizvi Syeda
- Department of Physiology and Biophysics, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, Halifax, Nova NS B3H 4R2, Canada
| | - Peng Huang
- Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine and Health Sciences, 279 Zhouzhu Rd, Shanghai 201318, China; School of Clinical Medicine, Shanghai University of Medicine and Health Sciences, 279 Zhouzhu Rd, Shanghai 201318, China.
| | - Xian-Ping Dong
- Department of Physiology and Biophysics, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, Halifax, Nova NS B3H 4R2, Canada.
| |
Collapse
|
18
|
Abstract
Lysosomes offer a unique arrangement of degradative, exocytic, and signaling capabilities that make their continued function critical to cellular homeostasis. Lysosomes owe their function to the activity of lysosomal ion channels and transporters, which maintain concentration gradients of H+, K+, Ca2+, Na+, and Cl- across the lysosomal membrane. This review examines the contributions of lysosomal ion channels to lysosome function, showing how ion channel function is integral to degradation and autophagy, maintaining lysosomal membrane potential, controlling Ca2+ signaling, and facilitating exocytosis. Evidence of lysosome dysfunction in a variety of disease pathologies creates a need to understand how lysosomal ion channels contribute to lysosome dysfunction. For example, the loss of function of the TRPML1 Ca2+ lysosome channel in multiple lysosome storage diseases leads to lysosome dysfunction and disease pathogenesis while neurodegenerative diseases are marked by lysosome dysfunction caused by changes in ion channel activity through the TRPML1, TPC, and TMEM175 ion channels. Autoimmune disease is marked by dysregulated autophagy, which is dependent on the function of multiple lysosomal ion channels. Understanding the role of lysosomal ion channel activity in lysosome membrane permeability and NLRP3 inflammasome activation could provide valuable mechanistic insight into NLRP3 inflammasome-mediated diseases. Finally, this review seeks to show that understanding the role of lysosomal ion channels in lysosome dysfunction could give mechanistic insight into the efficacy of certain drug classes, specifically those that target the lysosome, such as cationic amphiphilic drugs.
Collapse
Affiliation(s)
- Rebekah L Kendall
- Department of Biomedical and Pharmaceutical Sciences, Center for Environmental Health Sciences, University of Montana, Missoula, MT, USA
| | - Andrij Holian
- Department of Biomedical and Pharmaceutical Sciences, Center for Environmental Health Sciences, University of Montana, Missoula, MT, USA
| |
Collapse
|
19
|
Hui L, Soliman ML, Geiger NH, Miller NM, Afghah Z, Lakpa KL, Chen X, Geiger JD. Acidifying Endolysosomes Prevented Low-Density Lipoprotein-Induced Amyloidogenesis. J Alzheimers Dis 2020; 67:393-410. [PMID: 30594929 DOI: 10.3233/jad-180941] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cholesterol dyshomeostasis has been linked to the pathogenesis of sporadic Alzheimer's disease (AD). In furthering the understanding of mechanisms by which increased levels of circulating cholesterol augments the risk of developing sporadic AD, others and we have reported that low-density lipoprotein (LDL) enters brain parenchyma by disrupting the blood-brain barrier and that endolysosome de-acidification plays a role in LDL-induced amyloidogenesis in neurons. Here, we tested the hypothesis that endolysosome de-acidification was central to amyloid-β (Aβ) generation and that acidifying endolysosomes protects against LDL-induced increases in Aβ levels in neurons. We demonstrated that LDL, but not HDL, de-acidified endolysosomes and increased intraneuronal and secreted levels of Aβ. ML-SA1, an agonist of endolysosome-resident TRPML1 channels, acidified endolysosomes, and TRPML1 knockdown attenuated ML-SA1-induced endolysosome acidification. ML-SA1 blocked LDL-induced increases in intraneuronal and secreted levels of Aβ as well as Aβ accumulation in endolysosomes, prevented BACE1 accumulation in endolysosomes, and decreased BACE1 activity levels. LDL downregulated TRPML1 protein levels, and TRPML1 knockdown worsens LDL-induced increases in Aβ. Our findings suggest that endolysosome acidification by activating TRPML1 may represent a protective strategy against sporadic AD.
Collapse
Affiliation(s)
- Liang Hui
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Mahmoud L Soliman
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Nicholas H Geiger
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Nicole M Miller
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Zahra Afghah
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Koffi L Lakpa
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Xuesong Chen
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Jonathan D Geiger
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| |
Collapse
|
20
|
Yu J, Yang J. Ion channels as potential redox sensors in lysosomes. Channels (Austin) 2019; 13:477-482. [PMID: 31662029 PMCID: PMC6833971 DOI: 10.1080/19336950.2019.1684428] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/26/2019] [Accepted: 09/15/2019] [Indexed: 02/08/2023] Open
Abstract
Lysosomes are central organelles that recycle materials and energy to maintain intracellular homeostasis. Lysosomes are capable of sensing environmental cues such as nutrition to regulate their function accordingly. Whether lysosomes can sense redox signaling, however, was unclear. Here in this review, we summarized recent evidence of lysosomal ion channel as redox sensors for this organelle. We also discussed their roles in lysosomal diseases that features imbalanced redox.
Collapse
Affiliation(s)
- Jie Yu
- Sports Science Research Center, Zhejiang College of Sports, Hangzhou, China
| | - Junsheng Yang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
21
|
Manthe RL, Rappaport JA, Long Y, Solomon M, Veluvolu V, Hildreth M, Gugutkov D, Marugan J, Zheng W, Muro S. δ-Tocopherol Effect on Endocytosis and Its Combination with Enzyme Replacement Therapy for Lysosomal Disorders: A New Type of Drug Interaction? J Pharmacol Exp Ther 2019; 370:823-833. [PMID: 31101681 PMCID: PMC6806345 DOI: 10.1124/jpet.119.257345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/15/2019] [Indexed: 12/27/2022] Open
Abstract
Induction of lysosomal exocytosis alleviates lysosomal storage of undigested metabolites in cell models of lysosomal disorders (LDs). However, whether this strategy affects other vesicular compartments, e.g., those involved in endocytosis, is unknown. This is important both to predict side effects and to use this strategy in combination with therapies that require endocytosis for intracellular delivery, such as lysosomal enzyme replacement therapy (ERT). We investigated this using δ-tocopherol as a model previously shown to induce lysosomal exocytosis and cell models of type A Niemann-Pick disease, a LD characterized by acid sphingomyelinase (ASM) deficiency and sphingomyelin storage. δ-Tocopherol and derivative CF3-T reduced net accumulation of fluid phase, ligands, and polymer particles via phagocytic, caveolae-, clathrin-, and cell adhesion molecule (CAM)-mediated pathways, yet the latter route was less affected due to receptor overexpression. In agreement, δ-tocopherol lowered uptake of recombinant ASM by deficient cells (known to occur via the clathrin pathway) and via targeting intercellular adhesion molecule-1 (associated to the CAM pathway). However, the net enzyme activity delivered and lysosomal storage attenuation were greater via the latter route. Data suggest stimulation of exocytosis by tocopherols is not specific of lysosomes and affects endocytic cargo. However, this effect was transient and became unnoticeable several hours after tocopherol removal. Therefore, induction of exocytosis in combination with therapies requiring endocytic uptake, such as ERT, may represent a new type of drug interaction, yet this strategy could be valuable if properly timed for minimal interference.
Collapse
Affiliation(s)
- Rachel L Manthe
- Fischell Department of Bioengineering (R.L.M., J.A.R., V.V., M.H.) and Institute for Bioscience and Biotechnology Research (M.S., S.M.), University of Maryland, College Park, Maryland; National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland (Y.L., J.M., W.Z.); Institute for Bioengineering of Catalonia of the Barcelona Institute of Science and Technology, Barcelona, Spain (D.G., S.M.); and Institution of Catalonia for Research and Advanced Studies, Barcelona, Spain (S.M.)
| | - Jeffrey A Rappaport
- Fischell Department of Bioengineering (R.L.M., J.A.R., V.V., M.H.) and Institute for Bioscience and Biotechnology Research (M.S., S.M.), University of Maryland, College Park, Maryland; National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland (Y.L., J.M., W.Z.); Institute for Bioengineering of Catalonia of the Barcelona Institute of Science and Technology, Barcelona, Spain (D.G., S.M.); and Institution of Catalonia for Research and Advanced Studies, Barcelona, Spain (S.M.)
| | - Yan Long
- Fischell Department of Bioengineering (R.L.M., J.A.R., V.V., M.H.) and Institute for Bioscience and Biotechnology Research (M.S., S.M.), University of Maryland, College Park, Maryland; National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland (Y.L., J.M., W.Z.); Institute for Bioengineering of Catalonia of the Barcelona Institute of Science and Technology, Barcelona, Spain (D.G., S.M.); and Institution of Catalonia for Research and Advanced Studies, Barcelona, Spain (S.M.)
| | - Melani Solomon
- Fischell Department of Bioengineering (R.L.M., J.A.R., V.V., M.H.) and Institute for Bioscience and Biotechnology Research (M.S., S.M.), University of Maryland, College Park, Maryland; National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland (Y.L., J.M., W.Z.); Institute for Bioengineering of Catalonia of the Barcelona Institute of Science and Technology, Barcelona, Spain (D.G., S.M.); and Institution of Catalonia for Research and Advanced Studies, Barcelona, Spain (S.M.)
| | - Vinay Veluvolu
- Fischell Department of Bioengineering (R.L.M., J.A.R., V.V., M.H.) and Institute for Bioscience and Biotechnology Research (M.S., S.M.), University of Maryland, College Park, Maryland; National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland (Y.L., J.M., W.Z.); Institute for Bioengineering of Catalonia of the Barcelona Institute of Science and Technology, Barcelona, Spain (D.G., S.M.); and Institution of Catalonia for Research and Advanced Studies, Barcelona, Spain (S.M.)
| | - Michael Hildreth
- Fischell Department of Bioengineering (R.L.M., J.A.R., V.V., M.H.) and Institute for Bioscience and Biotechnology Research (M.S., S.M.), University of Maryland, College Park, Maryland; National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland (Y.L., J.M., W.Z.); Institute for Bioengineering of Catalonia of the Barcelona Institute of Science and Technology, Barcelona, Spain (D.G., S.M.); and Institution of Catalonia for Research and Advanced Studies, Barcelona, Spain (S.M.)
| | - Dencho Gugutkov
- Fischell Department of Bioengineering (R.L.M., J.A.R., V.V., M.H.) and Institute for Bioscience and Biotechnology Research (M.S., S.M.), University of Maryland, College Park, Maryland; National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland (Y.L., J.M., W.Z.); Institute for Bioengineering of Catalonia of the Barcelona Institute of Science and Technology, Barcelona, Spain (D.G., S.M.); and Institution of Catalonia for Research and Advanced Studies, Barcelona, Spain (S.M.)
| | - Juan Marugan
- Fischell Department of Bioengineering (R.L.M., J.A.R., V.V., M.H.) and Institute for Bioscience and Biotechnology Research (M.S., S.M.), University of Maryland, College Park, Maryland; National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland (Y.L., J.M., W.Z.); Institute for Bioengineering of Catalonia of the Barcelona Institute of Science and Technology, Barcelona, Spain (D.G., S.M.); and Institution of Catalonia for Research and Advanced Studies, Barcelona, Spain (S.M.)
| | - Wei Zheng
- Fischell Department of Bioengineering (R.L.M., J.A.R., V.V., M.H.) and Institute for Bioscience and Biotechnology Research (M.S., S.M.), University of Maryland, College Park, Maryland; National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland (Y.L., J.M., W.Z.); Institute for Bioengineering of Catalonia of the Barcelona Institute of Science and Technology, Barcelona, Spain (D.G., S.M.); and Institution of Catalonia for Research and Advanced Studies, Barcelona, Spain (S.M.)
| | - Silvia Muro
- Fischell Department of Bioengineering (R.L.M., J.A.R., V.V., M.H.) and Institute for Bioscience and Biotechnology Research (M.S., S.M.), University of Maryland, College Park, Maryland; National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland (Y.L., J.M., W.Z.); Institute for Bioengineering of Catalonia of the Barcelona Institute of Science and Technology, Barcelona, Spain (D.G., S.M.); and Institution of Catalonia for Research and Advanced Studies, Barcelona, Spain (S.M.)
| |
Collapse
|
22
|
BK channels regulate extracellular Tat-mediated HIV-1 LTR transactivation. Sci Rep 2019; 9:12285. [PMID: 31439883 PMCID: PMC6706582 DOI: 10.1038/s41598-019-48777-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 08/05/2019] [Indexed: 01/22/2023] Open
Abstract
HIV-1 Tat is essential for HIV-1 replication and plays an important role in latent HIV-1 infection, HIV-1 associated neurological complication, and other HIV-1 comorbidities. Secreted from HIV-1 infected or transfected cells, Tat can be up-taken into cells by receptor-mediated endocytosis and internalized into endolysosomes. To reach nucleus where it can facilitate HIV-1 viral replication, exogenous Tat has to escape the degradation by endolysosomes. Because of findings that endolysosome de-acidification with, for example, the weak-base anti-malarial drug chloroquine prevents exogenous Tat degradation and enhances the amount of Tat available to activate HIV-1 LTR, we hypothesize that acidifying endolysosomes may enhance Tat degradation in endolysosomes and restrict LTR transactivation. Here, we determined the involvement of endolysosome-resident transient receptor potential mucolipin 1 channel (TRPML1) and the big conductance Ca2+-activated potassium (BK) channel in regulating endolysosome pH, as well as Tat-mediated HIV-1 LTR transactivation in U87MG cells stably integrated with HIV-1 LTR luciferase reporter. Activating TRPML1 channels with ML-SA1 acidified endolysosomes and restricted Tat-mediated HIV-1 LTR transactivation. These effects of ML-SA1 appeared to be mediated through activation of BK channels, because the effects of ML-SA1 on Tat-mediated HIV-1 LTR transactivation were blocked using pharmacological inhibitors or shRNA knock-down of BK channels. On the other hand, activating TRPML1 and BK channels enhanced cellular degradation of exogenous Tat. These results suggest that acidifying endolysosomes by activating TRPML1 or BK channels may provide therapeutic benefit against latent HIV-1 infection, HIV-1 associated neurocognitive disorders, and other HIV-1 comorbidities.
Collapse
|
23
|
Vacca F, Vossio S, Mercier V, Moreau D, Johnson S, Scott CC, Montoya JP, Moniatte M, Gruenberg J. Cyclodextrin triggers MCOLN1-dependent endo-lysosome secretion in Niemann-Pick type C cells. J Lipid Res 2019; 60:832-843. [PMID: 30709900 PMCID: PMC6446697 DOI: 10.1194/jlr.m089979] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/30/2019] [Indexed: 12/11/2022] Open
Abstract
In specialized cell types, lysosome-related organelles support regulated secretory pathways, whereas in nonspecialized cells, lysosomes can undergo fusion with the plasma membrane in response to a transient rise in cytosolic calcium. Recent evidence also indicates that lysosome secretion can be controlled transcriptionally and promote clearance in lysosome storage diseases. In addition, evidence is also accumulating that low concentrations of cyclodextrins reduce the cholesterol-storage phenotype in cells and animals with the cholesterol storage disease Niemann-Pick type C, via an unknown mechanism. Here, we report that cyclodextrin triggers the secretion of the endo/lysosomal content in nonspecialized cells and that this mechanism is responsible for the decreased cholesterol overload in Niemann-Pick type C cells. We also find that the secretion of the endo/lysosome content occurs via a mechanism dependent on the endosomal calcium channel mucolipin-1, as well as FYCO1, the AP1 adaptor, and its partner Gadkin. We conclude that endo-lysosomes in nonspecialized cells can acquire secretory functions elicited by cyclodextrin and that this pathway is responsible for the decrease in cholesterol storage in Niemann-Pick C cells.
Collapse
Affiliation(s)
- Fabrizio Vacca
- Department of Biochemistry, University of Geneva, 1211-Geneva-4, Switzerland
| | - Stefania Vossio
- Department of Biochemistry, University of Geneva, 1211-Geneva-4, Switzerland
| | - Vincent Mercier
- Department of Biochemistry, University of Geneva, 1211-Geneva-4, Switzerland
| | - Dimitri Moreau
- Department of Biochemistry, University of Geneva, 1211-Geneva-4, Switzerland
| | - Shem Johnson
- Department of Biochemistry, University of Geneva, 1211-Geneva-4, Switzerland
| | - Cameron C Scott
- Department of Biochemistry, University of Geneva, 1211-Geneva-4, Switzerland
| | - Jonathan Paz Montoya
- Proteomics Core Facility, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Marc Moniatte
- Proteomics Core Facility, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Jean Gruenberg
- Department of Biochemistry, University of Geneva, 1211-Geneva-4, Switzerland.
| |
Collapse
|
24
|
Wheeler S, Schmid R, Sillence DJ. Lipid⁻Protein Interactions in Niemann⁻Pick Type C Disease: Insights from Molecular Modeling. Int J Mol Sci 2019; 20:E717. [PMID: 30736449 PMCID: PMC6387118 DOI: 10.3390/ijms20030717] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 01/31/2019] [Accepted: 02/03/2019] [Indexed: 12/19/2022] Open
Abstract
The accumulation of lipids in the late endosomes and lysosomes of Niemann⁻Pick type C disease (NPCD) cells is a consequence of the dysfunction of one protein (usually NPC1) but induces dysfunction in many proteins. We used molecular docking to propose (a) that NPC1 exports not just cholesterol, but also sphingosine, (b) that the cholesterol sensitivity of big potassium channel (BK) can be traced to a previously unappreciated site on the channel's voltage sensor, (c) that transient receptor potential mucolipin 1 (TRPML1) inhibition by sphingomyelin is likely an indirect effect, and (d) that phosphoinositides are responsible for both the mislocalization of annexin A2 (AnxA2) and a soluble NSF (N-ethylmaleimide Sensitive Fusion) protein attachment receptor (SNARE) recycling defect. These results are set in the context of existing knowledge of NPCD to sketch an account of the endolysosomal pathology key to this disease.
Collapse
Affiliation(s)
- Simon Wheeler
- School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK.
| | - Ralf Schmid
- Leicester Institute of Structural and Chemical Biology, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 7RH, UK.
| | - Dan J Sillence
- School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK.
| |
Collapse
|
25
|
Li P, Gu M, Xu H. Lysosomal Ion Channels as Decoders of Cellular Signals. Trends Biochem Sci 2019; 44:110-124. [PMID: 30424907 PMCID: PMC6340733 DOI: 10.1016/j.tibs.2018.10.006] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/09/2018] [Accepted: 10/15/2018] [Indexed: 02/08/2023]
Abstract
Lysosomes, the degradation center of the cell, are filled with acidic hydrolases. Lysosomes generate nutrient-sensitive signals to regulate the import of H+, hydrolases, and endocytic and autophagic cargos, as well as the export of their degradation products (catabolites). In response to environmental and cellular signals, lysosomes change their positioning, number, morphology, size, composition, and activity within minutes to hours to meet the changing cellular needs. Ion channels in the lysosome are essential transducers that mediate signal-initiated Ca2+/Fe2+/Zn2+ release and H+/Na+/K+-dependent changes of membrane potential across the perimeter membrane. Dysregulation of lysosomal ion flux impairs lysosome movement, membrane trafficking, nutrient sensing, membrane repair, organelle membrane contact, and lysosome biogenesis and adaptation. Hence, activation and inhibition of lysosomal channels by synthetic modulators may tune lysosome function to maintain cellular health and promote cellular clearance in lysosome storage disorders.
Collapse
Affiliation(s)
- Ping Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China; Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; These authors contributed equally to this work
| | - Mingxue Gu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; These authors contributed equally to this work
| | - Haoxing Xu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
26
|
Getting to the Heart of the Matter: Lysosomal Storage Diseases That Manifest a Cardiac Phenotype. CURRENT GENETIC MEDICINE REPORTS 2018. [DOI: 10.1007/s40142-018-0135-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
27
|
Sterea AM, Almasi S, El Hiani Y. The hidden potential of lysosomal ion channels: A new era of oncogenes. Cell Calcium 2018; 72:91-103. [PMID: 29748137 DOI: 10.1016/j.ceca.2018.02.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/28/2018] [Accepted: 02/28/2018] [Indexed: 01/14/2023]
Abstract
Lysosomes serve as the control centre for cellular clearance. These membrane-bound organelles receive biomolecules destined for degradation from intracellular and extracellular pathways; thus, facilitating the production of energy and shaping the fate of the cell. At the base of their functionality are the lysosomal ion channels which mediate the function of the lysosome through the modulation of ion influx and efflux. Ion channels form pores in the membrane of lysosomes and allow the passage of ions, a seemingly simple task which harbours the potential of overthrowing the cell's stability. Considered the master regulators of ion homeostasis, these integral membrane proteins enable the proper operation of the lysosome. Defects in the structure or function of these ion channels lead to the development of lysosomal storage diseases, neurodegenerative diseases and cancer. Although more than 50 years have passed since their discovery, lysosomes are not yet fully understood, with their ion channels being even less well characterized. However, significant improvements have been made in the development of drugs targeted against these ion channels as a means of combating diseases. In this review, we will examine how Ca2+, K+, Na+ and Cl- ion channels affect the function of the lysosome, their involvement in hereditary and spontaneous diseases, and current ion channel-based therapies.
Collapse
Affiliation(s)
- Andra M Sterea
- Departments of Physiology & Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Shekoufeh Almasi
- Departments of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Yassine El Hiani
- Departments of Physiology & Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
28
|
Chen CC, Butz ES, Chao YK, Grishchuk Y, Becker L, Heller S, Slaugenhaupt SA, Biel M, Wahl-Schott C, Grimm C. Small Molecules for Early Endosome-Specific Patch Clamping. Cell Chem Biol 2017; 24:907-916.e4. [PMID: 28732201 DOI: 10.1016/j.chembiol.2017.05.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/30/2017] [Accepted: 05/26/2017] [Indexed: 12/31/2022]
Abstract
To resolve the subcellular distribution of endolysosomal ion channels, we have established a novel experimental approach to selectively patch clamp Rab5 positive early endosomes (EE) versus Rab7/LAMP1-positive late endosomes/lysosomes (LE/LY). To functionally characterize ion channels in endolysosomal membranes with the patch-clamp technique, it is important to develop techniques to selectively enlarge the respective organelles. We found here that two small molecules, wortmannin and latrunculin B, enlarge Rab5-positive EE when combined but not Rab7-, LAMP1-, or Rab11 (RE)-positive vesicles. The two compounds act rapidly, specifically, and are readily applicable in contrast to genetic approaches or previously used compounds such as vacuolin, which enlarges EE, RE, and LE/LY. We apply this approach here to measure currents mediated by TRPML channels, in particular TRPML3, which we found to be functionally active in both EE and LE/LY in overexpressing cells as well as in endogenously expressing CD11b+ lung-tissue macrophages.
Collapse
Affiliation(s)
- Cheng-Chang Chen
- Department of Pharmacy, Center for Drug Research and Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Elisabeth S Butz
- Department of Pharmacy, Center for Drug Research and Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Yu-Kai Chao
- Department of Pharmacy, Center for Drug Research and Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Yulia Grishchuk
- Department of Neurology, Center for Human Genetic Research, Massachusetts General Hospital, Harvard University, Boston, MA 02114, USA
| | - Lars Becker
- Departments of Otolaryngology - HNS and Molecular & Cellular Physiology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Stefan Heller
- Departments of Otolaryngology - HNS and Molecular & Cellular Physiology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Susan A Slaugenhaupt
- Department of Neurology, Center for Human Genetic Research, Massachusetts General Hospital, Harvard University, Boston, MA 02114, USA
| | - Martin Biel
- Department of Pharmacy, Center for Drug Research and Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Christian Wahl-Schott
- Department of Pharmacy, Center for Drug Research and Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, 81377 Munich, Germany.
| | - Christian Grimm
- Department of Pharmacy, Center for Drug Research and Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, 81377 Munich, Germany.
| |
Collapse
|
29
|
Di Paola S, Scotto-Rosato A, Medina DL. TRPML1: The Ca (2+)retaker of the lysosome. Cell Calcium 2017; 69:112-121. [PMID: 28689729 DOI: 10.1016/j.ceca.2017.06.006] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/16/2017] [Accepted: 06/16/2017] [Indexed: 12/27/2022]
Abstract
Efficient functioning of lysosome is necessary to ensure the correct performance of a variety of intracellular processes such as degradation of cargoes coming from the endocytic and autophagic pathways, recycling of organelles, and signaling mechanisms involved in cellular adaptation to nutrient availability. Mutations in lysosomal genes lead to more than 50 lysosomal storage disorders (LSDs). Among them, mutations in the gene encoding TRPML1 (MCOLN1) cause Mucolipidosis type IV (MLIV), a recessive LSD characterized by neurodegeneration, psychomotor retardation, ophthalmologic defects and achlorhydria. At the cellular level, MLIV patient fibroblasts show enlargement and engulfment of the late endo-lysosomal compartment, autophagy impairment, and accumulation of lipids and glycosaminoglycans. TRPML1 is the most extensively studied member of a small family of genes that also includes TRPML2 and TRPML3, and it has been found to participate in vesicular trafficking, lipid and ion homeostasis, and autophagy. In this review we will provide an update on the latest and more novel findings related to the functions of TRPMLs, with particular focus on the emerging role of TRPML1 and lysosomal calcium signaling in autophagy. Moreover, we will also discuss new potential therapeutic approaches for MLIV and LSDs based on the modulation of TRPML1-mediated signaling.
Collapse
Affiliation(s)
- Simone Di Paola
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli ,NA, Italy
| | - Anna Scotto-Rosato
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli ,NA, Italy
| | - Diego Luis Medina
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli ,NA, Italy.
| |
Collapse
|
30
|
Methods for monitoring Ca 2+ and ion channels in the lysosome. Cell Calcium 2017; 64:20-28. [DOI: 10.1016/j.ceca.2016.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 12/07/2016] [Accepted: 12/07/2016] [Indexed: 12/22/2022]
|
31
|
Grimm C, Butz E, Chen CC, Wahl-Schott C, Biel M. From mucolipidosis type IV to Ebola: TRPML and two-pore channels at the crossroads of endo-lysosomal trafficking and disease. Cell Calcium 2017; 67:148-155. [PMID: 28457591 DOI: 10.1016/j.ceca.2017.04.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/05/2017] [Accepted: 04/05/2017] [Indexed: 01/05/2023]
Abstract
What do lysosomal storage disorders such as mucolipidosis type IV have in common with Ebola, cancer cell migration, or LDL-cholesterol trafficking? LDL-cholesterol, certain bacterial toxins and viruses, growth factors, receptors, integrins, macromolecules destined for degradation or secretion are all sorted and transported via the endolysosomal system (ES). There are several pathways known in the ES, e.g. the degradation, the recycling, or the retrograde trafficking pathway. The ES comprises early and late endosomes, lysosomes and recycling endosomes as well as autophagosomes and lysosome related organelles. Contact sites between the ES and the endoplasmic reticulum or the Golgi apparatus may also be considered part of it. Dysfunction of this complex intracellular machinery can cause or contribute to the development of a number of diseases ranging from neurodegenerative, infectious, or metabolic diseases to retinal and pigmentation disorders as well as cancer and autophagy-related diseases. Endolysosomal ion channels such as mucolipins (TRPMLs) and two-pore channels (TPCs) play an important role in intracellular cation/calcium signaling and homeostasis and appear to critically contribute to the proper function of the endolysosomal trafficking network.
Collapse
Affiliation(s)
- Christian Grimm
- Munich Center for Integrated Protein Science CIPSM, Center for Drug Research, Ludwig-Maximilians-Universität, München, Germany; Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, Germany.
| | - Elisabeth Butz
- Munich Center for Integrated Protein Science CIPSM, Center for Drug Research, Ludwig-Maximilians-Universität, München, Germany; Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, Germany
| | - Cheng-Chang Chen
- Munich Center for Integrated Protein Science CIPSM, Center for Drug Research, Ludwig-Maximilians-Universität, München, Germany; Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, Germany
| | - Christian Wahl-Schott
- Munich Center for Integrated Protein Science CIPSM, Center for Drug Research, Ludwig-Maximilians-Universität, München, Germany; Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, Germany
| | - Martin Biel
- Munich Center for Integrated Protein Science CIPSM, Center for Drug Research, Ludwig-Maximilians-Universität, München, Germany; Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, Germany.
| |
Collapse
|
32
|
Abstract
Lysosomes are key acidic Ca2+ stores. The principle Ca2+-permeable channels of the lysosome are TRP mucolipins (TRPMLs) and NAADP-regulated two-pore channels (TPCs). Recent studies, reviewed in this collection, have linked numerous neurodegenerative diseases to both gain and loss of function of TRPMLs/TPCs, as well as to defects in acidic Ca2+ store content. These diseases span rare lysosomal storage disorders such as Mucolipidosis Type IV and Niemann-Pick disease, type C, through to more common ones such as Alzheimer and Parkinson disease. Cellular phenotypes, underpinned by endo-lysosomal trafficking defects, are reversed by chemical or molecular targeting of TRPMLs and TPCs. Lysosomal Ca2+ channels therefore emerge as potential druggable targets in combatting neurodegeneration.
Collapse
Affiliation(s)
- Sandip Patel
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT
| |
Collapse
|
33
|
Feng X, Yang J. Lysosomal Calcium in Neurodegeneration. MESSENGER (LOS ANGELES, CALIF. : PRINT) 2016; 5:56-66. [PMID: 29082116 PMCID: PMC5659362 DOI: 10.1166/msr.2016.1055] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Lysosomes are the central organelles responsible for macromolecule recycling in the cell. Lysosomal dysfunction is the primary cause of lysosomal storage diseases (LSDs), and contributes significantly to the pathogenesis of common neurodegenerative diseases. The lysosomes are also intracellular stores for calcium ions, one of the most common second messenger in the cell. Lysosomal Ca2+ is required for diverse cellular processes including signal transduction, vesicular trafficking, autophagy, nutrient sensing, exocytosis, and membrane repair. In this review, we first summarize some recent progresses in the studies of lysosome Ca2+ regulation, with a focus on the newly discovered lysosomal Ca2+ channels and the mechanisms of lysosomal Ca2+ store refilling. We then discuss how defects in lysosomal Ca2+ release and store maintenance cause lysosomal dysfunction and neurodegeneration.
Collapse
Affiliation(s)
- Xinghua Feng
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Junsheng Yang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
- The Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 3089 Natural Science Building (Kraus), 830 North University, Ann Arbor, MI 48109, USA
| |
Collapse
|