1
|
Rius M, Rest JS, Filloramo GV, Novák Vanclová AMG, Archibald JM, Collier JL. Horizontal Gene Transfer and Fusion Spread Carotenogenesis Among Diverse Heterotrophic Protists. Genome Biol Evol 2023; 15:7048456. [PMID: 36805209 PMCID: PMC10016063 DOI: 10.1093/gbe/evad029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 12/13/2022] [Accepted: 01/24/2023] [Indexed: 02/21/2023] Open
Abstract
Thraustochytrids (phylum: Labyrinthulomycota) are nonphotosynthetic marine protists. Some thraustochytrids have crtIBY, a trifunctional fusion gene encoding a protein capable of β-carotene biosynthesis from geranylgeranyl pyrophosphate. Here we show that crtIBY is essential in, and encodes the sole pathway for, carotenoid biosynthesis in the thraustochytrid Aurantiochytrium limacinum ATCC MYA-1381. We explore the evolutionary origins of CrtIBY and discover that the closest related protein domains are present in a small but diverse group of other heterotrophic protists, including the apusomonad Thecamonas trahens and the dinoflagellates Oxyrrhis marina and Noctiluca scintillans. Each organism within this cluster also contains one or more β-carotene 15-15' oxygenase genes (blh and rpe65), suggesting that the acquisition of β-carotene biosynthesis genes may have been related to the production of retinal. Our findings support a novel origin of eukaryotic (apo)carotenoid biosynthesis by horizontal gene transfer from Actinobacteria, Bacteroidetes, and/or Archaea. This reveals a remarkable case of parallel evolution of eukaryotic (apo)carotenogenesis in divergent protistan lineages by repeated gene transfers.
Collapse
Affiliation(s)
- Mariana Rius
- School of Marine and Atmospheric Sciences, Stony Brook University
| | - Joshua S Rest
- Department of Ecology and Evolution, Stony Brook University
| | - Gina V Filloramo
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Anna M G Novák Vanclová
- Faculty of Science, Charles University, BIOCEV, Vestec, Czechia.,Present address: Institut de Biologie de l'École Normale Supérieure, Paris 75005, France
| | - John M Archibald
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jackie L Collier
- School of Marine and Atmospheric Sciences, Stony Brook University
| |
Collapse
|
2
|
Chen R, Huangfu L, Lu Y, Fang H, Xu Y, Li P, Zhou Y, Xu C, Huang J, Yang Z. Adaptive innovation of green plants by horizontal gene transfer. Biotechnol Adv 2020; 46:107671. [PMID: 33242576 DOI: 10.1016/j.biotechadv.2020.107671] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 12/16/2022]
Abstract
Horizontal gene transfer (HGT) refers to the movement of genetic material between distinct species by means other than sexual reproduction. HGT has contributed tremendously to the genome plasticity and adaptive evolution of prokaryotes and certain unicellular eukaryotes. The evolution of green plants from chlorophyte algae to angiosperms and from water to land represents a process of adaptation to diverse environments, which has been facilitated by acquisition of genetic material from other organisms. In this article, we review the occurrence of HGT in major lineages of green plants, including chlorophyte and charophyte green algae, bryophytes, lycophytes, ferns, and seed plants. In addition, we discuss the significance of horizontally acquired genes in the adaptive innovations of green plants and their potential applications to crop breeding and improvement.
Collapse
Affiliation(s)
- Rujia Chen
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Liexiang Huangfu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Yue Lu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Huimin Fang
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Yang Xu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Pengcheng Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Yong Zhou
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Chenwu Xu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China.
| | - Jinling Huang
- Department of Biology, East Carolina University, Greenville, NC 28590, USA; State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng 475004, China; Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| | - Zefeng Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
3
|
Origin, evolution and functional characterization of the land plant glycoside hydrolase subfamily GH5_11. Mol Phylogenet Evol 2019; 138:205-218. [DOI: 10.1016/j.ympev.2019.05.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 05/20/2019] [Accepted: 05/23/2019] [Indexed: 01/20/2023]
|
4
|
Schmickl R, Marburger S, Bray S, Yant L. Hybrids and horizontal transfer: introgression allows adaptive allele discovery. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5453-5470. [PMID: 29096001 DOI: 10.1093/jxb/erx297] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Evolution has devised countless remarkable solutions to diverse challenges. Understanding the mechanistic basis of these solutions provides insights into how biological systems can be subtly tweaked without maladaptive consequences. The knowledge gained from illuminating these mechanisms is equally important to our understanding of fundamental evolutionary mechanisms as it is to our hopes of developing truly rational plant breeding and synthetic biology. In particular, modern population genomic approaches are proving very powerful in the detection of candidate alleles for mediating consequential adaptations that can be tested functionally. Especially striking are signals gained from contexts involving genetic transfers between populations, closely related species, or indeed between kingdoms. Here we discuss two major classes of these scenarios, adaptive introgression and horizontal gene flow, illustrating discoveries made across kingdoms.
Collapse
Affiliation(s)
- Roswitha Schmickl
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, 252 43 Průhonice, Czech Republic
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, 128 01 Prague, Czech Republic
| | - Sarah Marburger
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| | - Sian Bray
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| | - Levi Yant
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| |
Collapse
|
5
|
Lerner A, Matthias T, Aminov R. Potential Effects of Horizontal Gene Exchange in the Human Gut. Front Immunol 2017; 8:1630. [PMID: 29230215 PMCID: PMC5711824 DOI: 10.3389/fimmu.2017.01630] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 11/09/2017] [Indexed: 01/02/2023] Open
Abstract
Many essential functions of the human body are dependent on the symbiotic microbiota, which is present at especially high numbers and diversity in the gut. This intricate host-microbe relationship is a result of the long-term coevolution between the two. While the inheritance of mutational changes in the host evolution is almost exclusively vertical, the main mechanism of bacterial evolution is horizontal gene exchange. The gut conditions, with stable temperature, continuous food supply, constant physicochemical conditions, extremely high concentration of microbial cells and phages, and plenty of opportunities for conjugation on the surfaces of food particles and host tissues, represent one of the most favorable ecological niches for horizontal gene exchange. Thus, the gut microbial system genetically is very dynamic and capable of rapid response, at the genetic level, to selection, for example, by antibiotics. There are many other factors to which the microbiota may dynamically respond including lifestyle, therapy, diet, refined food, food additives, consumption of pre- and probiotics, and many others. The impact of the changing selective pressures on gut microbiota, however, is poorly understood. Presumably, the gut microbiome responds to these changes by genetic restructuring of gut populations, driven mainly via horizontal gene exchange. Thus, our main goal is to reveal the role played by horizontal gene exchange in the changing landscape of the gastrointestinal microbiome and potential effect of these changes on human health in general and autoimmune diseases in particular.
Collapse
Affiliation(s)
- Aaron Lerner
- B. Rappaport School of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- AESKU.KIPP Institute, Wendelsheim, Germany
| | | | - Rustam Aminov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- School of Medicine & Dentistry, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
6
|
Ancestor of land plants acquired the DNA-3-methyladenine glycosylase (MAG) gene from bacteria through horizontal gene transfer. Sci Rep 2017; 7:9324. [PMID: 28839126 PMCID: PMC5570899 DOI: 10.1038/s41598-017-05066-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 05/23/2017] [Indexed: 02/07/2023] Open
Abstract
The origin and evolution of land plants was an important event in the history of life and initiated the establishment of modern terrestrial ecosystems. From water to terrestrial environments, plants needed to overcome the enhanced ultraviolet (UV) radiation and many other DNA-damaging agents. Evolving new genes with the function of DNA repair is critical for the origin and radiation of land plants. In bacteria, the DNA-3-methyladenine glycosylase (MAG) recognizes of a variety of base lesions and initiates the process of the base excision repair for damaged DNA. The homologs of MAG gene are present in all major lineages of streptophytes, and both the phylogenic and sequence similarity analyses revealed that green plant MAG gene originated through an ancient horizontal gene transfer (HGT) event from bacteria. Experimental evidence demonstrated that the expression of the maize ZmMAG gene was induced by UV and zeocin, both of which are known as DNA-damaging agents. Further investigation revealed that Streptophyta MAG genes had undergone positive selection during the initial evolutionary period in the ancestor of land plants. Our findings demonstrated that the ancient HGT of MAG to the ancestor of land plants probably played an important role in preadaptation to DNA-damaging agents in terrestrial environments.
Collapse
|
7
|
Gouveia BC, Calil IP, Machado JPB, Santos AA, Fontes EPB. Immune Receptors and Co-receptors in Antiviral Innate Immunity in Plants. Front Microbiol 2017; 7:2139. [PMID: 28105028 PMCID: PMC5214455 DOI: 10.3389/fmicb.2016.02139] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/19/2016] [Indexed: 01/19/2023] Open
Abstract
Plants respond to pathogens using an innate immune system that is broadly divided into PTI (pathogen-associated molecular pattern- or PAMP-triggered immunity) and ETI (effector-triggered immunity). PTI is activated upon perception of PAMPs, conserved motifs derived from pathogens, by surface membrane-anchored pattern recognition receptors (PRRs). To overcome this first line of defense, pathogens release into plant cells effectors that inhibit PTI and activate effector-triggered susceptibility (ETS). Counteracting this virulence strategy, plant cells synthesize intracellular resistance (R) proteins, which specifically recognize pathogen effectors or avirulence (Avr) factors and activate ETI. These coevolving pathogen virulence strategies and plant resistance mechanisms illustrate evolutionary arms race between pathogen and host, which is integrated into the zigzag model of plant innate immunity. Although antiviral immune concepts have been initially excluded from the zigzag model, recent studies have provided several lines of evidence substantiating the notion that plants deploy the innate immune system to fight viruses in a manner similar to that used for non-viral pathogens. First, most R proteins against viruses so far characterized share structural similarity with antibacterial and antifungal R gene products and elicit typical ETI-based immune responses. Second, virus-derived PAMPs may activate PTI-like responses through immune co-receptors of plant PTI. Finally, and even more compelling, a viral Avr factor that triggers ETI in resistant genotypes has recently been shown to act as a suppressor of PTI, integrating plant viruses into the co-evolutionary model of host-pathogen interactions, the zigzag model. In this review, we summarize these important progresses, focusing on the potential significance of antiviral immune receptors and co-receptors in plant antiviral innate immunity. In light of the innate immune system, we also discuss a newly uncovered layer of antiviral defense that is specific to plant DNA viruses and relies on transmembrane receptor-mediated translational suppression for defense.
Collapse
Affiliation(s)
- Bianca C. Gouveia
- Department of Biochemistry and Molecular Biology, BIOAGRO, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de ViçosaViçosa, Brazil
| | - Iara P. Calil
- Department of Biochemistry and Molecular Biology, BIOAGRO, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de ViçosaViçosa, Brazil
| | - João Paulo B. Machado
- Department of Biochemistry and Molecular Biology, BIOAGRO, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de ViçosaViçosa, Brazil
| | - Anésia A. Santos
- Department of General Biology, BIOAGRO, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de ViçosaViçosa, Brazil
| | - Elizabeth P. B. Fontes
- Department of Biochemistry and Molecular Biology, BIOAGRO, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de ViçosaViçosa, Brazil
| |
Collapse
|