1
|
Bruni R. High-Throughput Cell-Free Screening of Eukaryotic Membrane Proteins in Lipidic Mimetics. Curr Protoc 2022; 2:e510. [PMID: 35926131 DOI: 10.1002/cpz1.510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Membrane proteins (MPs) carry out important functions in the metabolism of cells, such as the detection of extracellular activities and the transport of small molecules across the plasma and organelle membranes. Expression of MPs for biochemical, biophysical, and structural analysis is in most cases achieved by overexpression of the desired target in an appropriate host, such as a bacterium. However, overexpression of MPs is usually toxic to the host cells and can lead to aggregation of target protein and to resistance to detergent extraction. An alternative to cell-based MP expression is cell-free (CF), or in vitro, expression. CF expression of MPs has several advantages over cell-based methods, including lack of toxicity issues, no requirement for detergent extraction, and direct incorporation of target proteins in various lipidic mimetics. This article describes a high-throughput method for the expression and purification of eukaryotic membrane proteins used in the author's lab. Basic Protocol 1 describes the selection and cloning of target genes into appropriate vectors for CF expression. Basic Protocol 2 describes the assembly of CF reactions for high-throughput screening. Basic Protocol 3 outlines methods for purification and detection of target proteins. Support Protocols 1-6 describe various accessory procedures: amplification of target, treatment of vectors to prepare them for ligation-independent cloning, and the preparation of S30 extract, T7 RNA polymerase, liposomes, and nanodiscs. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Target selection, construct design, and cloning into pET-based expression vectors Support Protocol 1: Amplification of target DNA Support Protocol 2: Preparation of ligation-independent cloning (LIC)-compatible vectors Basic Protocol 2: Assembly of small-scale cell-free reactions for high-throughput screening Support Protocol 3: Preparation of Escherichia coli S30 extract Support Protocol 4: Preparation of T7 RNA polymerase Support Protocol 5: Preparation of liposomes Support Protocol 6: Preparation of nanodiscs Basic Protocol 3: Purification and detection of cell-free reaction products.
Collapse
Affiliation(s)
- Renato Bruni
- Center on Membrane Protein Production and Analysis (COMPPÅ), New York Structural Biology Center, New York, New York
| |
Collapse
|
2
|
Schloßhauer JL, Cavak N, Zemella A, Thoring L, Kubick S. Cell Engineering and Cultivation of Chinese Hamster Ovary Cells for the Development of Orthogonal Eukaryotic Cell-free Translation Systems. Front Mol Biosci 2022; 9:832379. [PMID: 35586195 PMCID: PMC9109823 DOI: 10.3389/fmolb.2022.832379] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/15/2022] [Indexed: 12/03/2022] Open
Abstract
The investigation of protein structures, functions and interactions often requires modifications to adapt protein properties to the specific application. Among many possible methods to equip proteins with new chemical groups, the utilization of orthogonal aminoacyl-tRNA synthetase/tRNA pairs enables the site-specific incorporation of non-canonical amino acids at defined positions in the protein. The open nature of cell-free protein synthesis reactions provides an optimal environment, as the orthogonal components do not need to be transported across the cell membrane and the impact on cell viability is negligible. In the present work, it was shown that the expression of orthogonal aminoacyl-tRNA synthetases in CHO cells prior to cell disruption enhanced the modification of the pharmaceutically relevant adenosine A2a receptor. For this purpose, in complement to transient transfection of CHO cells, an approach based on CRISPR/Cas9 technology was selected to generate a translationally active cell lysate harboring endogenous orthogonal aminoacyl-tRNA synthetase.
Collapse
Affiliation(s)
- Jeffrey L. Schloßhauer
- Branch Bioanalytics and Bioprocesses (IZI-BB), Fraunhofer Institute for Cell Therapy and Immunology (IZI), Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Niño Cavak
- Branch Bioanalytics and Bioprocesses (IZI-BB), Fraunhofer Institute for Cell Therapy and Immunology (IZI), Potsdam, Germany
| | - Anne Zemella
- Branch Bioanalytics and Bioprocesses (IZI-BB), Fraunhofer Institute for Cell Therapy and Immunology (IZI), Potsdam, Germany
| | - Lena Thoring
- Branch Bioanalytics and Bioprocesses (IZI-BB), Fraunhofer Institute for Cell Therapy and Immunology (IZI), Potsdam, Germany
| | - Stefan Kubick
- Branch Bioanalytics and Bioprocesses (IZI-BB), Fraunhofer Institute for Cell Therapy and Immunology (IZI), Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus –Senftenberg, The Brandenburg Medical School Theodor Fontane and the University of Potsdam, Potsdam, Germany
- *Correspondence: Stefan Kubick,
| |
Collapse
|
3
|
Wüstenhagen DA, Lukas P, Müller C, Aubele SA, Hildebrandt JP, Kubick S. Cell-free synthesis of the hirudin variant 1 of the blood-sucking leech Hirudo medicinalis. Sci Rep 2020; 10:19818. [PMID: 33188246 PMCID: PMC7666225 DOI: 10.1038/s41598-020-76715-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 10/28/2020] [Indexed: 12/17/2022] Open
Abstract
Synthesis and purification of peptide drugs for medical applications is a challenging task. The leech-derived factor hirudin is in clinical use as an alternative to heparin in anticoagulatory therapies. So far, recombinant hirudin is mainly produced in bacterial or yeast expression systems. We describe the successful development and application of an alternative protocol for the synthesis of active hirudin based on a cell-free protein synthesis approach. Three different cell lysates were compared, and the effects of two different signal peptide sequences on the synthesis of mature hirudin were determined. The combination of K562 cell lysates and the endogenous wild-type signal peptide sequence was most effective. Cell-free synthesized hirudin showed a considerably higher anti-thrombin activity compared to recombinant hirudin produced in bacterial cells.
Collapse
Affiliation(s)
- Doreen A Wüstenhagen
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses Potsdam-Golm (IZI-BB), 14476, Potsdam, Germany
| | - Phil Lukas
- Animal Physiology and Biochemistry, Zoological Institute and Museum, University of Greifswald, 17489, Greifswald, Germany
| | - Christian Müller
- Animal Physiology and Biochemistry, Zoological Institute and Museum, University of Greifswald, 17489, Greifswald, Germany
| | - Simone A Aubele
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses Potsdam-Golm (IZI-BB), 14476, Potsdam, Germany
| | - Jan-Peter Hildebrandt
- Animal Physiology and Biochemistry, Zoological Institute and Museum, University of Greifswald, 17489, Greifswald, Germany
| | - Stefan Kubick
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses Potsdam-Golm (IZI-BB), 14476, Potsdam, Germany. .,Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus - Senftenberg, The Brandenburg Medical School Theodor Fontane and the University of Potsdam, 16816, Neuruppin, Germany.
| |
Collapse
|
4
|
Abstract
Proteins are the main source of drug targets and some of them possess therapeutic potential themselves. Among them, membrane proteins constitute approximately 50% of the major drug targets. In the drug discovery pipeline, rapid methods for producing different classes of proteins in a simple manner with high quality are important for structural and functional analysis. Cell-free systems are emerging as an attractive alternative for the production of proteins due to their flexible nature without any cell membrane constraints. In a bioproduction context, open systems based on cell lysates derived from different sources, and with batch-to-batch consistency, have acted as a catalyst for cell-free synthesis of target proteins. Most importantly, proteins can be processed for downstream applications like purification and functional analysis without the necessity of transfection, selection, and expansion of clones. In the last 5 years, there has been an increased availability of new cell-free lysates derived from multiple organisms, and their use for the synthesis of a diverse range of proteins. Despite this progress, major challenges still exist in terms of scalability, cost effectiveness, protein folding, and functionality. In this review, we present an overview of different cell-free systems derived from diverse sources and their application in the production of a wide spectrum of proteins. Further, this article discusses some recent progress in cell-free systems derived from Chinese hamster ovary and Sf21 lysates containing endogenous translocationally active microsomes for the synthesis of membrane proteins. We particularly highlight the usage of internal ribosomal entry site sequences for more efficient protein production, and also the significance of site-specific incorporation of non-canonical amino acids for labeling applications and creation of antibody drug conjugates using cell-free systems. We also discuss strategies to overcome the major challenges involved in commercializing cell-free platforms from a laboratory level for future drug development.
Collapse
Affiliation(s)
- Srujan Kumar Dondapati
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476, Potsdam, Germany
| | - Marlitt Stech
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476, Potsdam, Germany
| | - Anne Zemella
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476, Potsdam, Germany
| | - Stefan Kubick
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476, Potsdam, Germany.
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, The Brandenburg Medical School Theodor Fontane and the University of Potsdam, Potsdam, Germany.
| |
Collapse
|
5
|
Ablenas CJ, Gidi Y, Powdrill MH, Ahmed N, Shaw TA, Mesko M, Götte M, Cosa G, Pezacki JP. Hepatitis C Virus Helicase Binding Activity Monitored through Site-Specific Labeling Using an Expanded Genetic Code. ACS Infect Dis 2019; 5:2118-2126. [PMID: 31640339 DOI: 10.1021/acsinfecdis.9b00220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The mechanism of unwinding catalyzed by the hepatitis C virus nonstructural protein 3 helicase (NS3h) has been a subject of considerable interest, with NS3h serving as a prototypical enzyme in the study of helicase function. Recent studies support an ATP-fueled, inchworm-like stepping of NS3h on the nucleic acid that would result in the displacement of the complementary strand of the duplex during unwinding. Here, we describe the screening of a site of incorporation of an unnatural amino acid in NS3h for fluorescent labeling of the enzyme to be used in single-molecule Förster resonance energy transfer (FRET) experiments. From the nine potential sites identified in NS3h for incorporation of the unnatural amino acid, only one allowed for expression and fluorescent labeling of the recombinant protein. Incorporation of the unnatural amino acid was confirmed via bulk assays to not interfere with unwinding activity of the helicase. Binding to four different dsDNA sequences bearing a ssDNA overhang segment of varying length (either minimal 6 or 7 base length overhang to ensure binding or a long 24 base overhang) and sequence was recorded with the new NS3h construct at the single-molecule level. Single-molecule fluorescence displayed time intervals with anticorrelated donor and acceptor emission fluctuations associated with protein binding to the substrates. An apparent FRET value was estimated from the binding events showing a single FRET value of ∼0.8 for the 6-7 base overhangs. A smaller mean value and a broad distribution was in turn recorded for the long ssDNA overhang, consistent with NS3h exploring a larger physical space while bound to the DNA construct. Notably, intervals where NS3h binding was recorded were exhibited at time periods where the acceptor dye reversibly bleached. Protein induced fluorescence intensity enhancement in the donor channel became apparent at these intervals. Overall, the site-specific fluorescent labeling of NS3h reported here provides a powerful tool for future studies to monitor the dynamics of enzyme translocation during unwinding by single-molecule FRET.
Collapse
Affiliation(s)
- Christopher J. Ablenas
- Department of Biochemistry, McGill University, Montreal, Quebec H3G1Y6, Canada
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N6N5, Canada
| | - Yasser Gidi
- Department of Chemistry, McGill University, Montreal, Quebec H3A0B8, Canada
| | - Megan H. Powdrill
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N6N5, Canada
| | - Noreen Ahmed
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N6N5, Canada
| | - Tyler A. Shaw
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N6N5, Canada
| | - Mihai Mesko
- Department of Chemistry, McGill University, Montreal, Quebec H3A0B8, Canada
| | - Matthias Götte
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G2R7, Canada
| | - Gonzalo Cosa
- Department of Chemistry, McGill University, Montreal, Quebec H3A0B8, Canada
| | - John Paul Pezacki
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N6N5, Canada
| |
Collapse
|
6
|
Dondapati SK, Lübberding H, Zemella A, Thoring L, Wüstenhagen DA, Kubick S. Functional Reconstitution of Membrane Proteins Derived From Eukaryotic Cell-Free Systems. Front Pharmacol 2019; 10:917. [PMID: 31543813 PMCID: PMC6728924 DOI: 10.3389/fphar.2019.00917] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/22/2019] [Indexed: 11/23/2022] Open
Abstract
Cell-free protein synthesis (CFPS) based on eukaryotic Sf21 lysate is gaining interest among researchers due to its ability to handle the synthesis of complex human membrane proteins (MPs). Additionally Sf21 cell-free systems contain endogenous microsomal vesicles originally derived from the endoplasmic reticulum (ER). After CFPS, MPs will be translocated into the microsomal vesicles membranes present in the lysates. Thus microsomal membranes offer a natural environment for de novo synthesized MPs. Despite the advantage of synthesizing complex MPs with post translational modifications directly into the microsomal membranes without any additional solubilization supplements, batch based Sf21 cell-free synthesis suffers from low yields. The bottleneck for MPs in particular after the synthesis and incorporation into the microsomal membranes is to analyze their functionality. Apart from low yields of the synthesized MPs with batch based cell-free synthesis, the challenges arise in the form of cytoskeleton elements and peripheral endogenous proteins surrounding the microsomes which may impede the functional analysis of the synthesized proteins. So careful sample processing after the synthesis is particularly important for developing the appropriate functional assays. Here we demonstrate how MPs (native and batch synthesized) from ER derived microsomes can be processed for functional analysis by electrophysiology and radioactive uptake assay methods. Treatment of the microsomal membranes either with a sucrose washing step in the case of human serotonin transporter (hSERT) and sarco/endoplasmic reticulum Ca2+/ATPase (SERCA) pump or with mild detergents followed by the preparation of proteoliposomes in the case of the human voltage dependent anionic channel (hVDAC1) helps to analyze the functional properties of MPs.
Collapse
Affiliation(s)
- Srujan Kumar Dondapati
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg, Potsdam, Germany
| | - Henning Lübberding
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg, Potsdam, Germany
| | - Anne Zemella
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg, Potsdam, Germany
| | - Lena Thoring
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg, Potsdam, Germany
| | - Doreen A Wüstenhagen
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg, Potsdam, Germany
| | - Stefan Kubick
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg, Potsdam, Germany.,Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus - Senftenberg, The Brandenburg Medical School Theodor Fontane, University of Potsdam, Potsdam, Germany
| |
Collapse
|
7
|
A Combined Cell-Free Protein Synthesis and Fluorescence-Based Approach to Investigate GPCR Binding Properties. Methods Mol Biol 2019; 1947:57-77. [PMID: 30969411 DOI: 10.1007/978-1-4939-9121-1_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Fluorescent labeling of de novo synthesized proteins is in particular a valuable tool for functional and structural studies of membrane proteins. In this context, we present two methods for the site-specific fluorescent labeling of difficult-to-express membrane proteins in combination with cell-free protein synthesis. The cell-free protein synthesis system is based on Chinese Hamster Ovary Cells (CHO) since this system contains endogenous membrane structures derived from the endoplasmic reticulum. These so-called microsomes enable a direct integration of membrane proteins into a biological membrane. In this protocol the first part describes the fluorescent labeling by using a precharged tRNA, loaded with a fluorescent amino acid. The second part describes the preparation of a modified aminoacyl-tRNA-synthetase and a suppressor tRNA that are applied to the CHO cell-free system to enable the incorporation of a non-canonical amino acid. The reactive group of the non-canonical amino acid is further coupled to a fluorescent dye. Both methods utilize the amber stop codon suppression technology. The successful fluorescent labeling of the model G protein-coupled receptor adenosine A2A (Adora2a) is analyzed by in-gel-fluorescence, a reporter protein assay, and confocal laser scanning microscopy (CLSM). Moreover, a ligand-dependent conformational change of the fluorescently labeled Adora2a was analyzed by bioluminescence resonance energy transfer (BRET).
Collapse
|
8
|
Gao W, Cho E, Liu Y, Lu Y. Advances and Challenges in Cell-Free Incorporation of Unnatural Amino Acids Into Proteins. Front Pharmacol 2019; 10:611. [PMID: 31191324 PMCID: PMC6549004 DOI: 10.3389/fphar.2019.00611] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/15/2019] [Indexed: 12/17/2022] Open
Abstract
Incorporation of unnatural amino acids (UNAAs) into proteins currently is an active biological research area for various fundamental and applied science. In this context, cell-free synthetic biology (CFSB) has been developed and recognized as a robust testing and biomanufacturing platform for highly efficient UNAA incorporation. It enables the orchestration of unnatural biological machinery toward an exclusive user-defined objective of unnatural protein synthesis. This review aims to overview the principles of cell-free unnatural protein synthesis (CFUPS) systems, their advantages, different UNAA incorporation approaches, and recent achievements. These have catalyzed cutting-edge research and diverse emerging applications. Especially, present challenges and future trends are focused and discussed. With the development of CFSB and the fusion with other advanced next-generation technologies, CFUPS systems would explicitly deliver their values for biopharmaceutical applications.
Collapse
Affiliation(s)
- Wei Gao
- Department of Chemical Engineering, Tsinghua University, Beijing, China
- College of Life Science, Shenyang Normal University, Shenyang, China
| | - Eunhee Cho
- Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Yingying Liu
- Department of Chemical Engineering, Tsinghua University, Beijing, China
- College of Life Science, Shenyang Normal University, Shenyang, China
| | - Yuan Lu
- Department of Chemical Engineering, Tsinghua University, Beijing, China
- Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, China
- Key Lab of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, China
| |
Collapse
|
9
|
Xiao X, Zhou Y, Sun Y, Wang Q, Liu J, Huang J, Zhu X, Yang X, Wang K. Integration of cell-free protein synthesis and purification in one microfluidic chip for on-demand production of recombinant protein. BIOMICROFLUIDICS 2018; 12:054102. [PMID: 30271517 PMCID: PMC6136919 DOI: 10.1063/1.5042307] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/04/2018] [Indexed: 06/08/2023]
Abstract
Recombinant proteins have shown several benefits compared with their non-recombinant counterparts in protein therapeutics. However, there are still some problems with the storage and distribution of recombinant proteins, owing to their temperature sensitivity. Microfluidic chips can integrate different functional modules into a single device because of the advantages of integration and miniaturization, which have the special potential to synthesize drugs when and where they are needed most. Here, we integrated cell-free protein synthesis and purification into a microfluidic chip for the production of recombinant protein. The chip consisted of a main channel and a branch channel. The main channel included two pinches, which were filled with template DNA-modified agarose microbeads and nickel ion-modified agarose beads as the cell-free protein synthesis unit and protein purification unit, respectively. The reaction mixture for protein synthesis was introduced into the main channel and first passed through the protein synthesis unit where the target protein was synthesized; next, the reaction mixture passed through the protein purification unit where the target protein was captured; and, finally, pure protein was collected at the outlet when washing buffer and eluting buffer were sequentially introduced into the branch channel. Enhanced green fluorescent protein (EGFP) was used as the model to investigate the performance of our chip. One chip could produce 70 μl of EGFP solution (144.3 μg/ml, 10.1 μg) per batch, and another round of protein synthesis and purification could be performed after replacing or regenerating nickel ion-modified agarose beads. It should be possible to produce other recombinant proteins on demand with this chip by simply replacing the template DNA.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xiaohai Yang
- Authors to whom correspondence should be addressed: and . Tel./Fax: +86-731-88821566
| | - Kemin Wang
- Authors to whom correspondence should be addressed: and . Tel./Fax: +86-731-88821566
| |
Collapse
|
10
|
Richardson SL, Dods KK, Abrigo NA, Iqbal ES, Hartman MC. In vitro genetic code reprogramming and expansion to study protein function and discover macrocyclic peptide ligands. Curr Opin Chem Biol 2018; 46:172-179. [PMID: 30077877 DOI: 10.1016/j.cbpa.2018.07.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 05/02/2018] [Accepted: 07/13/2018] [Indexed: 01/26/2023]
Abstract
The ability to introduce non-canonical amino acids into peptides and proteins is facilitated by working within in vitro translation systems. Non-canonical amino acids can be introduced into these systems using sense codon reprogramming, stop codon suppression, and by breaking codon degeneracy. Here, we review how these techniques have been used to create proteins with novel properties and how they facilitate sophisticated studies of protein function. We also discuss how researchers are using in vitro translation experiments with non-canonical amino acids to explore the tolerance of the translation apparatus to artificial building blocks. Finally, we give several examples of how non-canonical amino acids can be combined with mRNA-displayed peptide libraries for the creation of protease-stable, macrocyclic peptide libraries for ligand discovery.
Collapse
Affiliation(s)
- Stacie L Richardson
- Department of Chemistry, Virginia Commonwealth University (VCU), 1001 West Main Street, P.O. Box 842006, Richmond, USA; Massey Cancer Center, Virginia Commonwealth University, 401 College Street, Richmond, USA
| | - Kara K Dods
- Department of Chemistry, Virginia Commonwealth University (VCU), 1001 West Main Street, P.O. Box 842006, Richmond, USA; Massey Cancer Center, Virginia Commonwealth University, 401 College Street, Richmond, USA
| | - Nicolas A Abrigo
- Department of Chemistry, Virginia Commonwealth University (VCU), 1001 West Main Street, P.O. Box 842006, Richmond, USA; Massey Cancer Center, Virginia Commonwealth University, 401 College Street, Richmond, USA
| | - Emil S Iqbal
- Department of Chemistry, Virginia Commonwealth University (VCU), 1001 West Main Street, P.O. Box 842006, Richmond, USA; Massey Cancer Center, Virginia Commonwealth University, 401 College Street, Richmond, USA
| | - Matthew Ct Hartman
- Department of Chemistry, Virginia Commonwealth University (VCU), 1001 West Main Street, P.O. Box 842006, Richmond, USA; Massey Cancer Center, Virginia Commonwealth University, 401 College Street, Richmond, USA.
| |
Collapse
|
11
|
Majumder S, Willey PT, DeNies MS, Liu AP, Luxton GWG. A synthetic biology platform for the reconstitution and mechanistic dissection of LINC complex assembly. J Cell Sci 2018; 132:jcs.219451. [DOI: 10.1242/jcs.219451] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 09/19/2018] [Indexed: 11/20/2022] Open
Abstract
The linker of nucleoskeleton and cytoskeleton (LINC) is a conserved nuclear envelope-spanning molecular bridge that is responsible for the mechanical integration of the nucleus with the cytoskeleton. LINC complexes are formed by a transluminal interaction between the outer and inner nuclear membrane KASH and SUN proteins, respectively. Despite recent structural insights, our mechanistic understanding of LINC complex assembly remains limited by the lack of an experimental system for its in vitro reconstitution and manipulation. Here, we describe artificial nuclear membranes (ANMs) as a synthetic biology platform based on mammalian cell-free expression for the rapid reconstitution of SUN proteins in supported lipid bilayers. We demonstrate that SUN1 and SUN2 are oriented in ANMs with solvent-exposed C-terminal KASH-binding SUN domains. We also find that SUN2 possesses a single transmembrane domain, while SUN1 possesses three. Finally, SUN protein-containing ANMs bind synthetic KASH peptides, thereby reconstituting the LINC complex core. This work represents the first in vitro reconstitution of KASH-binding SUN proteins in supported lipid bilayers using cell-free expression, which will be invaluable for testing proposed models of LINC complex assembly and its regulation.
Collapse
Affiliation(s)
- Sagardip Majumder
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48019, USA
| | - Patrick T. Willey
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Maxwell S. DeNies
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, 48019, USA
| | - Allen P. Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48019, USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, 48019, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48019, USA
- Biophysics Program, University of Michigan, Ann Arbor, MI, 48019, USA
| | - G. W. Gant Luxton
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
12
|
Stech M, Nikolaeva O, Thoring L, Stöcklein WFM, Wüstenhagen DA, Hust M, Dübel S, Kubick S. Cell-free synthesis of functional antibodies using a coupled in vitro transcription-translation system based on CHO cell lysates. Sci Rep 2017; 7:12030. [PMID: 28931913 PMCID: PMC5607253 DOI: 10.1038/s41598-017-12364-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 09/07/2017] [Indexed: 11/09/2022] Open
Abstract
Antibodies are indispensable tools for basic research as well as diagnostic and therapeutic applications. Consequently, the development of alternative manufacturing strategies which circumvent the hurdles connected to conventional antibody production technologies is of enormous interest. To address this issue, we demonstrate the synthesis of complex antibody formats, in particular immunoglobulin G (IgG) and single-chain variable fragment Fc fusion (scFv-Fc), in a microsome-containing cell-free system based on translationally active chinese hamster ovary (CHO) cell lysates. To mimic the environment for antibody folding and assembly present in living cells, antibody genes were fused to an endoplasmic reticulum (ER)-specific signal sequence. Signal-peptide induced translocation of antibody polypeptide chains into the lumen of ER microsomes was found to be the prerequisite for antibody chain assembly and functionality. In this context, we show the rapid synthesis of antibody molecules in different reaction formats, including batch and continuous-exchange cell-free (CECF) reactions, depending on the amount of protein needed for further analysis. In addition, we demonstrate site-specific and residue-specific labeling of antibodies with fluorescent non-canonical amino acids. In summary, our study describes a novel antibody production platform which combines the highly efficient mammalian protein folding machinery of CHO cells with the benefits of cell-free protein synthesis.
Collapse
Affiliation(s)
- M Stech
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476, Potsdam, Germany
| | - O Nikolaeva
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476, Potsdam, Germany.,Technische Universität Berlin, Institut für Biotechnologie, Medizinische Biotechnologie, Gustav-Meyer-Allee 25, 13355, Berlin, Germany
| | - L Thoring
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476, Potsdam, Germany.,Technische Universität Berlin, Institut für Biotechnologie, Medizinische Biotechnologie, Gustav-Meyer-Allee 25, 13355, Berlin, Germany
| | - W F M Stöcklein
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476, Potsdam, Germany
| | - D A Wüstenhagen
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476, Potsdam, Germany
| | - M Hust
- Technische Universität Braunschweig, Institute for Biochemistry, Biotechnology and Bioinformatics, Department of Biotechnology, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - S Dübel
- Technische Universität Braunschweig, Institute for Biochemistry, Biotechnology and Bioinformatics, Department of Biotechnology, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - S Kubick
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476, Potsdam, Germany.
| |
Collapse
|
13
|
Sonnabend A, Spahn V, Stech M, Zemella A, Stein C, Kubick S. Production of G protein-coupled receptors in an insect-based cell-free system. Biotechnol Bioeng 2017; 114:2328-2338. [PMID: 28574582 PMCID: PMC5599999 DOI: 10.1002/bit.26346] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 04/21/2017] [Accepted: 05/31/2017] [Indexed: 02/06/2023]
Abstract
The biochemical analysis of human cell membrane proteins remains a challenging task due to the difficulties in producing sufficient quantities of functional protein. G protein‐coupled receptors (GPCRs) represent a main class of membrane proteins and drug targets, which are responsible for a huge number of signaling processes regulating various physiological functions in living cells. To circumvent the current bottlenecks in GPCR studies, we propose the synthesis of GPCRs in eukaryotic cell‐free systems based on extracts generated from insect (Sf21) cells. Insect cell lysates harbor the fully active translational and translocational machinery allowing posttranslational modifications, such as glycosylation and phosphorylation of de novo synthesized proteins. Here, we demonstrate the production of several GPCRs in a eukaryotic cell‐free system, performed within a short time and in a cost‐effective manner. We were able to synthesize a variety of GPCRs ranging from 40 to 133 kDa in an insect‐based cell‐free system. Moreover, we have chosen the μ opioid receptor (MOR) as a model protein to analyze the ligand binding affinities of cell‐free synthesized MOR in comparison to MOR expressed in a human cell line by “one‐point” radioligand binding experiments. Biotechnol. Bioeng. 2017;114: 2328–2338. © 2017 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Andrei Sonnabend
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalysis and Bioprocesses Potsdam-Golm (IZI-BB), Am Muehlenberg 13, Potsdam 14476, Germany
| | - Viola Spahn
- Department of Anesthesiology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Marlitt Stech
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalysis and Bioprocesses Potsdam-Golm (IZI-BB), Am Muehlenberg 13, Potsdam 14476, Germany
| | - Anne Zemella
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalysis and Bioprocesses Potsdam-Golm (IZI-BB), Am Muehlenberg 13, Potsdam 14476, Germany
| | - Christoph Stein
- Department of Anesthesiology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Stefan Kubick
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalysis and Bioprocesses Potsdam-Golm (IZI-BB), Am Muehlenberg 13, Potsdam 14476, Germany
| |
Collapse
|
14
|
Zemella A, Grossmann S, Sachse R, Sonnabend A, Schaefer M, Kubick S. Qualifying a eukaryotic cell-free system for fluorescence based GPCR analyses. Sci Rep 2017. [PMID: 28623260 PMCID: PMC5473880 DOI: 10.1038/s41598-017-03955-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Membrane proteins are key elements in cell-mediated processes. In particular, G protein-coupled receptors (GPCRs) have attracted increasing interest since they affect cellular signaling. Furthermore, mutations in GPCRs can cause acquired and inheritable diseases. Up to date, there still exist a number of GPCRs that has not been structurally and functionally analyzed due to difficulties in cell-based membrane protein production. A promising approach for membrane protein synthesis and analysis has emerged during the last years and is known as cell-free protein synthesis (CFPS). Here, we describe a simply portable method to synthesize GPCRs and analyze their ligand-binding properties without the requirement of additional supplements such as liposomes or nanodiscs. This method is based on eukaryotic cell lysates containing translocationally active endogenous endoplasmic reticulum-derived microsomes where the insertion of GPCRs into biologically active membranes is supported. In this study we present CFPS in combination with fast fluorescence-based screening methods to determine the localization, orientation and ligand-binding properties of the endothelin B (ET-B) receptor upon expression in an insect-based cell-free system. To determine the functionality of the cell-free synthesized ET-B receptor, we analyzed the binding of its ligand endothelin-1 (ET-1) in a qualitative fluorescence-based assay and in a quantitative radioligand binding assay.
Collapse
Affiliation(s)
- Anne Zemella
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalysis and Bioprocesses, Potsdam-Golm, Am Mühlenberg 13, 14476, Potsdam, Germany
| | - Solveig Grossmann
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Härtelstraße 16-18, 04107, Leipzig, Germany
| | - Rita Sachse
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalysis and Bioprocesses, Potsdam-Golm, Am Mühlenberg 13, 14476, Potsdam, Germany
| | - Andrei Sonnabend
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalysis and Bioprocesses, Potsdam-Golm, Am Mühlenberg 13, 14476, Potsdam, Germany
| | - Michael Schaefer
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Härtelstraße 16-18, 04107, Leipzig, Germany
| | - Stefan Kubick
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalysis and Bioprocesses, Potsdam-Golm, Am Mühlenberg 13, 14476, Potsdam, Germany.
| |
Collapse
|