1
|
Zaini A, Morgan PK, Cardwell B, Vlassopoulos E, Sgro M, Li CN, Salberg S, Mellett NA, Christensen J, Meikle PJ, Murphy AJ, Marsland BJ, Mychasiuk R, Yamakawa GR. Time restricted feeding alters the behavioural and physiological outcomes to repeated mild traumatic brain injury in male and female rats. Exp Neurol 2025; 385:115108. [PMID: 39662793 DOI: 10.1016/j.expneurol.2024.115108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/24/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024]
Abstract
Mild traumatic brain injury (mTBI) research has had limited success translating treatments from preclinical models to clinical application for concussion. One major factor that has been overlooked is the near 24-hour availability of food, both for experimental nocturnal rodents and patients suffering from mTBI. Here, we characterised the impact of food restriction limited to either the inactive (day) or the active phase (night), on repetitive mTBI (RmTBI) - induced outcomes in male and female rats. We found that active phase fed rats consumed more food, had increased body weight, and reduced brain weights. Behaviourally, active phase feeding increased motor coordination deficits and caused changes to thermal nociceptive processing following RmTBI. Hypothalamic transcriptomic analysis revealed minor changes in response to RmTBI, and genes associated with oxytocin-vasopressin regulation in response to inactive phase, but not active phase feeding. These transcript changes were absent in females, where the overall effect of RmTBI was minor. Prefrontal cortex lipidomics revealed an increase in sphingomyelin synthesis following injury and marked sex differences in response to feeding. Of the lipids that changed and overlapped between the prefrontal cortex and serum, dihydroceramides, sphingomyelins, and hexosylceramides, were higher in the serum but lower in the prefrontal cortex. Together, these results demonstrate that feeding time alters outcomes to RmTBI, independent of the hypothalamic transcriptome, and injury-specific lipids may serve as useful biomarkers in RmTBI diagnosis.
Collapse
Affiliation(s)
- A Zaini
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia; Gastroenterology, Immunology, and Neuroscience Discovery Program, Monash University, Melbourne, Victoria, Australia
| | - P K Morgan
- Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Department of Diabetes, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - B Cardwell
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia; Gastroenterology, Immunology, and Neuroscience Discovery Program, Monash University, Melbourne, Victoria, Australia
| | - E Vlassopoulos
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - M Sgro
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - C N Li
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - S Salberg
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - N A Mellett
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - J Christensen
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - P J Meikle
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Department of Cardiovascular Research Translation and Implementation, La Trobe University, Bundoora, Victoria, Australia
| | - A J Murphy
- Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - B J Marsland
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia; Gastroenterology, Immunology, and Neuroscience Discovery Program, Monash University, Melbourne, Victoria, Australia
| | - R Mychasiuk
- Gastroenterology, Immunology, and Neuroscience Discovery Program, Monash University, Melbourne, Victoria, Australia; Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - G R Yamakawa
- Gastroenterology, Immunology, and Neuroscience Discovery Program, Monash University, Melbourne, Victoria, Australia; Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
2
|
Tamayo-Molina YS, Giraldo MA, Rodríguez BA, Machado-Rodríguez G. A biological rhythm in the hypothalamic system links sleep-wake cycles with feeding-fasting cycles. Sci Rep 2024; 14:28897. [PMID: 39572629 PMCID: PMC11582708 DOI: 10.1038/s41598-024-77915-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/28/2024] [Indexed: 11/24/2024] Open
Abstract
The hypothalamus senses the appetite-regulating hormones and also coordinates the metabolic function in alignment with the circadian rhythm. This alignment is essential to maintain the physiological conditions that prevent clinically important comorbidities, such as obesity or type-2 diabetes. However, a complete model of the hypothalamus that relates food intake with circadian rhythms and appetite hormones has not yet been developed. In this work, we present a computational model that accurately allows interpreting neural activity in terms of hormone regulation and sleep-wake cycles. We used a conductance-based model, which consists of a system of four differential equations that considers the ionotropic and metabotropic receptors, and the input currents from homeostatic hormones. We proposed a logistic function that fits available experimental data of insulin hormone concentration and added it into a short-term ghrelin model that served as an input to our dynamical system. Our results show a double oscillatory system, one synchronized by light-regulated sleep-wake cycles and the other by food-regulated feeding-fasting cycles. We have also found that meal timing frequency is highly relevant for the regulation of the hypothalamus neurons. We therefore present a mathematical model to explore the plausible link between the circadian rhythm and the endogenous food clock.
Collapse
Affiliation(s)
- Y S Tamayo-Molina
- Biophysics Group, Institute of Physics, University of Antioquia, Medellin, Colombia.
- Grupo de Fundamentos y Enseñanza de la Física y los Sistemas Dinámicos, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Medellin, Colombia.
| | - M A Giraldo
- Biophysics Group, Institute of Physics, University of Antioquia, Medellin, Colombia.
| | - B A Rodríguez
- Grupo de Fundamentos y Enseñanza de la Física y los Sistemas Dinámicos, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Medellin, Colombia
| | - G Machado-Rodríguez
- Biophysics Group, Institute of Physics, University of Antioquia, Medellin, Colombia
- Grupo de Fundamentos y Enseñanza de la Física y los Sistemas Dinámicos, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Medellin, Colombia
| |
Collapse
|
3
|
Luo N, Guo Y, Peng L, Deng F. High-fiber-diet-related metabolites improve neurodegenerative symptoms in patients with obesity with diabetes mellitus by modulating the hippocampal-hypothalamic endocrine axis. Front Neurol 2023; 13:1026904. [PMID: 36733447 PMCID: PMC9888315 DOI: 10.3389/fneur.2022.1026904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 12/09/2022] [Indexed: 01/19/2023] Open
Abstract
Objective Through transcriptomic and metabolomic analyses, this study examined the role of high-fiber diet in obesity complicated by diabetes and neurodegenerative symptoms. Method The expression matrix of high-fiber-diet-related metabolites, blood methylation profile associated with pre-symptomatic dementia in elderly patients with type 2 diabetes mellitus (T2DM), and high-throughput single-cell sequencing data of hippocampal samples from patients with Alzheimer's disease (AD) were retrieved from the Gene Expression Omnibus (GEO) database and through a literature search. Data were analyzed using principal component analysis (PCA) after quality control and data filtering to identify different cell clusters and candidate markers. A protein-protein interaction network was mapped using the STRING database. To further investigate the interaction among high-fiber-diet-related metabolites, methylation-related DEGs related to T2DM, and single-cell marker genes related to AD, AutoDock was used for semi-flexible molecular docking. Result Based on GEO database data and previous studies, 24 marker genes associated with high-fiber diet, T2DM, and AD were identified. Top 10 core genes include SYNE1, ANK2, SPEG, PDZD2, KALRN, PTPRM, PTPRK, BIN1, DOCK9, and NPNT, and their functions are primarily related to autophagy. According to molecular docking analysis, acetamidobenzoic acid, the most substantially altered metabolic marker associated with a high-fiber diet, had the strongest binding affinity for SPEG. Conclusion By targeting the SPEG protein in the hippocampus, acetamidobenzoic acid, a metabolite associated with high-fiber diet, may improve diabetic and neurodegenerative diseases in obese people.
Collapse
Affiliation(s)
- Ning Luo
- Department of Endocrinology, Chenzhou No. 1 People's Hospital, Chenzhou, China,*Correspondence: Ning Luo ✉
| | - Yuejie Guo
- Department of Geriatrics, Chenzhou No. 1 People's Hospital, Chenzhou, China
| | - Lihua Peng
- Department of Clinical Laboratory, Chenzhou No. 4 People's Hospital, Chenzhou, China
| | - Fangli Deng
- Breast Health Care Center, Chenzhou No. 1 People's Hospital, Chenzhou, China
| |
Collapse
|
4
|
Toumba M, Fanis P, Vlachakis D, Neocleous V, Phylactou LA, Skordis N, Mantzoros CS, Pantelidou M. Molecular modelling of novel ADCY3 variant predicts a molecular target for tackling obesity. Int J Mol Med 2021; 49:10. [PMID: 34821371 PMCID: PMC8651229 DOI: 10.3892/ijmm.2021.5065] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/26/2021] [Indexed: 12/27/2022] Open
Abstract
Severe early-onset obesity is mainly attributed to single gene variations of the hypothalamic leptin-melanocortin system, which is critical for controlling the balance between appetite and energy expenditure. Adenylate cyclase 3 (ADCY3), a transmembrane enzyme localized in primary neuronal cilia, is a key genetic candidate, which appears to have an essential role in regulating body weight. The present study aimed to identify ADCY3 genetic variants in severely obese young patients of Greek-Cypriot origin by genomic sequencing. Apart from previously reported variants, the novel and probably pathogenic variant c.349T>A, causing a p.Leu117Met substitution within one of the two pseudo-symmetric halves of the transmembrane part of the protein, was reported. Molecular modelling analysis used to delineate bonding interactions within the mutated protein structure strongly suggested a change in interactive forces and energy levels affecting the pseudo-twofold symmetry of the transmembrane domain of the protein and probably its catalytic function. These results support the involvement of ADCY3 in the pathology of the disease and point towards the requirement of defining protein function and evaluating the clinical significance of the detected variants.
Collapse
Affiliation(s)
- Meropi Toumba
- Pediatric Endocrinology Clinic, Department of Paediatrics, Aretaeio Hospital, 2024 Nicosia, Cyprus
| | - Pavlos Fanis
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, 1683 Nicosia, Cyprus
| | - Dimitrios Vlachakis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Vassos Neocleous
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, 1683 Nicosia, Cyprus
| | - Leonidas A Phylactou
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, 1683 Nicosia, Cyprus
| | - Nicos Skordis
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, 1683 Nicosia, Cyprus
| | - Christos S Mantzoros
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Maria Pantelidou
- Department of Pharmacy, School of Health Sciences, Frederick University Cyprus, 1036 Nicosia, Cyprus
| |
Collapse
|
5
|
Li Y, Chen D, Xu C, Zhao Q, Ma Y, Zhao S, Chen C. Glycolipid metabolism and liver transcriptomic analysis of the therapeutic effects of pressed degreased walnut meal extracts on type 2 diabetes mellitus rats. Food Funct 2021; 11:5538-5552. [PMID: 32515761 DOI: 10.1039/d0fo00670j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Walnut meal (WM) is rich in polyphenols which exhibit multiple therapeutic effects. The purpose of this study was to investigate the therapeutic effects of walnut meal extracts (WMP) on glycolipid metabolism and liver transcriptomics in T2DM rats. A T2DM rat model was established by using a high-fat diet combined with streptozotocin. A 5-week WMP therapy showed the effects of decreasing water intake, excretion, fasting blood glucose, fasting insulin, and insulin resistance, increasing β-cell function and insulin sensitivity index; meanwhile regulating dysfunctional lipid metabolism and reducing inflammation; improving body weight, oral glucose tolerance test and insulin sensitivity; and increasing the activities of SOD and CAT while decreasing the MDA levels in the liver and serum of T2DM rats. Moreover, 10 key differentially expressed genes were identified by RNA-seq, including Gck, RT1-Ba, Fasn, Slc13a3, Cd74, Jun, Cyp4a1, Myh7b, Plin3, and Got1, and they were highly potentially related to glycolipid metabolism. Our results suggested that WMP exhibited the anti-diabetic effect and could regulate glycolipid metabolism in T2DM rats. This finding might assist in identifying potential therapeutic targets for T2DM prevention and intervention.
Collapse
Affiliation(s)
- Yulan Li
- Yunnan University of Traditional Chinese Medicine, Kunming 650500, China.
| | - Dan Chen
- Yunnan Institute of Tobacco Quality Inspection and Supervision, Kunming 650106, China
| | - Chengmei Xu
- Yunnan University of Traditional Chinese Medicine, Kunming 650500, China.
| | | | - Yage Ma
- Yunnan University of Traditional Chinese Medicine, Kunming 650500, China.
| | - Shenglan Zhao
- Yunnan University of Traditional Chinese Medicine, Kunming 650500, China.
| | - Chaoyin Chen
- Yunnan Academy of Forestry and Grassland, Kunming 650204, China
| |
Collapse
|
6
|
Chen K, Wei X, Pariyani R, Kortesniemi M, Zhang Y, Yang B. 1H NMR Metabolomics and Full-Length RNA-Seq Reveal Effects of Acylated and Nonacylated Anthocyanins on Hepatic Metabolites and Gene Expression in Zucker Diabetic Fatty Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4423-4437. [PMID: 33835816 PMCID: PMC8154569 DOI: 10.1021/acs.jafc.1c00130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 06/01/2023]
Abstract
Anthocyanins have been reported to possess antidiabetic effects. Recent studies indicate acylated anthocyanins have better stability and antioxidative activity compared to their nonacylated counterparts. This study compared the effects of nonacylated and acylated anthocyanins on hepatic gene expression and metabolic profile in diabetic rats, using full-length transcriptomics and 1H NMR metabolomics. Zucker diabetic fatty (ZDF) rats were fed with nonacylated anthocyanin extract from bilberries (NAAB) or acylated anthocyanin extract from purple potatoes (AAPP) at daily doses of 25 and 50 mg/kg body weight for 8 weeks. Both anthocyanin extracts restored the levels of multiple metabolites (glucose, lactate, alanine, and pyruvate) and expression of genes (G6pac, Pck1, Pklr, and Gck) involved in glycolysis and gluconeogenesis. AAPP decreased the hepatic glutamine level. NAAB regulated the expression of Mgat4a, Gstm6, and Lpl, whereas AAPP modified the expression of Mgat4a, Jun, Fos, and Egr1. This study indicated different effects of AAPP and NAAB on the hepatic transcriptomic and metabolic profiles of diabetic rats.
Collapse
Affiliation(s)
- Kang Chen
- Food
Chemistry and Food Development,
Department of Life Technologies, University
of Turku, FI-20014 Turun yliopisto, Finland
| | - Xuetao Wei
- Beijing
Key Laboratory of Toxicological Research and Risk Assessment for Food
Safety, Department of Toxicology, School of Public Health, Beijing University, Beijing 100191, China
| | - Raghunath Pariyani
- Food
Chemistry and Food Development,
Department of Life Technologies, University
of Turku, FI-20014 Turun yliopisto, Finland
| | - Maaria Kortesniemi
- Food
Chemistry and Food Development,
Department of Life Technologies, University
of Turku, FI-20014 Turun yliopisto, Finland
| | - Yumei Zhang
- Department
of Nutrition and Food Hygiene, School of Public Health, Beijing University, Beijing 100191, China
| | - Baoru Yang
- Food
Chemistry and Food Development,
Department of Life Technologies, University
of Turku, FI-20014 Turun yliopisto, Finland
| |
Collapse
|
7
|
Transcriptome reveals genes involving in black skin color formation of ducks. Genes Genomics 2021; 43:173-182. [PMID: 33528733 DOI: 10.1007/s13258-020-01026-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 12/10/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND Skin color is colorful for birds, which has been reported to be associated with multi-biological functions, such as crypsis, camouflage, social signaling and mate choice, but little is known about its underlying molecular mechanism. OBJECTIVE Studies on the major genes affecting the black skin color of ducks. METHODS For this purpose, Silver ammonia staining and RNA-seq analysis were carried out to identify the differences in tissue morphology and gene expressions between black and yellow skin ducks. RESULTS The silver ammonia dyes slice results showed that in the development of black duck, the content of melanin in black skin gradually increased and then decreased, and the content of melanin in yellow and black skin was significantly different. Through transcriptome, a total of 102 and 84 differentially expressed genes (DEGs) were identified in beak skin and web skin, respectively. These DEGs were enriched in melanin biosynthesis and play a critical role in melanogenesis pathway. Co-expression analysis showed that EDNRB2 was the only gene associated with black skin color in DEGs, which was also consistent with qRT-PCR. CONCLUSIONS The melanin synthesis pathway dominated by EDNRB2 up-regulated the amount of melanin synthesis, leading to the formation of black skin in ducks.
Collapse
|
8
|
Wu Y, Zhao X, Chen L, Wang J, Duan Y, Li H, Lu L. Transcriptomic Analyses of the Hypothalamic-Pituitary-Gonadal Axis Identify Candidate Genes Related to Egg Production in Xinjiang Yili Geese. Animals (Basel) 2020; 10:E90. [PMID: 31935822 PMCID: PMC7023467 DOI: 10.3390/ani10010090] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/26/2019] [Accepted: 01/02/2020] [Indexed: 12/22/2022] Open
Abstract
The study was conducted to investigate the transcriptomic differences of the hypothalamic-pituitary-gonadal axis between Xinjiang Yili geese with high and low egg production and to find candidate genes regulating the egg production of Xinjiang Yili geese. The 8 selected Xinjiang Yili Geese with high or low egg production (4 for each group) were 3 years old, with good health, and under the same feeding condition. High-throughput sequencing technology was used to sequence cDNA libraries of the hypothalami, pituitary glands, and ovaries. The sequencing data were compared and analyzed, and the transcripts with significant differences were identified and analyzed with bioinformatics. The study showed that the transcriptome sequencing data of the 24 samples contained a total of 1,176,496,146 valid reads and 176.47 gigabase data. Differential expression analyses identified 135, 56, and 331 genes in the hypothalami, pituitary glands, and ovaries of Xinjiang Yili geese with high and low egg production. Further annotation of these differentially expressed genes in the non-redundant protein sequence database (Nr) revealed that 98, 52, and 309 genes were annotated, respectively. Through the annotations of GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) databases, 30 candidate genes related to the egg production of Xinjiang Yili geese were preliminarily selected. The gap junction, focal adhesion, and ECM-receptor interaction signaling pathways were enriched with the hypothalamic, pituitary, and ovarian differentially expressed genes, and the calcium signaling pathway was enriched with the pituitary and ovarian differentially expressed genes. Thus, these pathways in the hypothalamic-pituitary-gonadal axis may play an important role in regulating egg production of Xinjiang Yili geese. The results provided the transcriptomic information of the hypothalamic-pituitary-gonadal axis of Xinjiang Yili geese and laid the theoretical basis for revealing the molecular mechanisms regulating the egg-laying traits of Xinjiang Yili geese.
Collapse
Affiliation(s)
- Yingping Wu
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830000, China; (Y.W.); (X.Z.); (J.W.); (Y.D.)
| | - Xiaoyu Zhao
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830000, China; (Y.W.); (X.Z.); (J.W.); (Y.D.)
| | - Li Chen
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
| | - Junhua Wang
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830000, China; (Y.W.); (X.Z.); (J.W.); (Y.D.)
| | - Yuqing Duan
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830000, China; (Y.W.); (X.Z.); (J.W.); (Y.D.)
| | - Haiying Li
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830000, China; (Y.W.); (X.Z.); (J.W.); (Y.D.)
| | - Lizhi Lu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
| |
Collapse
|
9
|
Fu S, Meng Y, Lin S, Zhang W, He Y, Huang L, Du H. Transcriptomic responses of hypothalamus to acute exercise in type 2 diabetic Goto-Kakizaki rats. PeerJ 2019; 7:e7743. [PMID: 31579613 PMCID: PMC6764357 DOI: 10.7717/peerj.7743] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/25/2019] [Indexed: 12/21/2022] Open
Abstract
The hypothalamus has an integral role in energy homeostasis regulation, and its dysfunctions lead to the development of type 2 diabetes (T2D). Physical activity positively affects the prevention and treatment of T2D. However, there is not much information on the adaptive mechanisms of the hypothalamus. In this study, RNA sequencing was used to determine how acute exercise affects hypothalamic transcriptome from both type 2 diabetic Goto-Kakizaki (GK) and control Wistar rats with or without a single session of running (15 m/min for 60 min). Through pairwise comparisons, we identified 957 differentially expressed genes (DEGs), of which 726, 197, and 98 genes were found between GK and Wistar, exercised GK and GK, and exercised Wistar and Wistar, respectively. The results of Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment revealed that lipid metabolism-related terms and pathways were enriched in GK and exercised GK rats, and nervous system related terms and pathways were enriched in exercised GK and Wistar rats. Furthermore, 45 DEGs were associated with T2D and related phenotypes according to the annotations in the Rat Genome Database. Among these 45 DEGs, several genes (Plin2, Cd36, Lpl, Wfs1, Cck) related to lipid metabolism or the nervous system are associated with the exercise-induced benefits in the hypothalamus of GK rats. Our findings might assist in identifying potential therapeutic targets for T2D prevention and treatment.
Collapse
Affiliation(s)
- Shuying Fu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Yuhuan Meng
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Shudai Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Wenlu Zhang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Yuting He
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Lizhen Huang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Hongli Du
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
10
|
Meng Y, Cui Y, Zhang W, Fu S, Huang L, Dong H, Du H. Integrative Analysis of Genome and Expression Profile Data Reveals the Genetic Mechanism of the Diabetic Pathogenesis in Goto Kakizaki (GK) Rats. Front Genet 2019; 9:724. [PMID: 30687391 PMCID: PMC6335273 DOI: 10.3389/fgene.2018.00724] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/22/2018] [Indexed: 12/18/2022] Open
Abstract
The Goto Kakizaki (GK) rats which can spontaneously develop type 2 diabetes (T2D), are generated by repeated inbreeding of Wistar rats with glucose intolerance. The glucose intolerance in GK rat is mainly attributed to the impairment in glucose-stimulated insulin secretion (GSIS). In addition, GK rat display a decrease in beta cell mass, and a change in insulin action. However, the genetic mechanism of these features remain unclear. In the present study, we analyzed the population variants of GK rats and control Wistar rats by whole genome sequencing and identified 1,839 and 1,333 specific amino acid changed (SAAC) genes in GK and Wistar rats, respectively. We also detected the putative artificial selective sweeps (PASS) regions in GK rat which were enriched with GK fixed variants and were under selected in the initial diabetic-driven derivation by homogeneity test with the fixed and polymorphic sites between GK and Wistar populations. Finally, we integrated the SAAC genes, PASS region genes and differentially expressed genes in GK pancreatic beta cells to reveal the genetic mechanism of the impairment in GSIS, a decrease in beta cell mass, and a change in insulin action in GK rat. The results showed that Slc2a2 gene was related to impaired glucose transport and Adcy3, Cacna1f, Bmp4, Fam3b, and Ptprn2 genes were related to Ca2+ channel dysfunction which may responsible for the impaired GSIS. The genes Hnf4g, Bmp4, and Bad were associated with beta cell development and may be responsible for a decrease in beta cell mass while genes Ide, Ppp1r3c, Hdac9, Ghsr, and Gckr may be responsible for the change in insulin action in GK rats. The overexpression or inhibition of Bmp4, Fam3b, Ptprn2, Ide, Hnf4g, and Bad has been reported to change the glucose tolerance in rodents. However, the genes Bmp4, Fam3b, and Ptprn2 were found to be associated with diabetes in GK rats for the first time in the present study. Our findings provide a comprehensive genetic map of the abnormalities in GK genome which will be helpful in understand the underlying genetic mechanism of pathogenesis of diabetes in GK rats.
Collapse
Affiliation(s)
- Yuhuan Meng
- School of Biology and Biological Engineering - Department of Biomedical Engineering, South China University of Technology, Guangzhou, China
| | - Ying Cui
- School of Biology and Biological Engineering - Department of Biomedical Engineering, South China University of Technology, Guangzhou, China
| | - Wenlu Zhang
- School of Biology and Biological Engineering - Department of Biomedical Engineering, South China University of Technology, Guangzhou, China
| | - Shuying Fu
- School of Biology and Biological Engineering - Department of Biomedical Engineering, South China University of Technology, Guangzhou, China
| | - Lizhen Huang
- School of Biology and Biological Engineering - Department of Biomedical Engineering, South China University of Technology, Guangzhou, China
| | - Hua Dong
- School of Biology and Biological Engineering - Department of Biomedical Engineering, South China University of Technology, Guangzhou, China
| | - Hongli Du
- School of Biology and Biological Engineering - Department of Biomedical Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
11
|
Zhang W, Wu Y, Fan W, Chen H, Du H, Rao J. The pattern of plasma BCAA concentration and liver Bckdha gene expression in GK rats during T2D progression. Animal Model Exp Med 2018; 1:305-313. [PMID: 30891580 PMCID: PMC6388062 DOI: 10.1002/ame2.12038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 09/04/2018] [Accepted: 09/26/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND This study was conducted to measure the concentration of branched chain amino acid (BCAA) in different species and detect the expression pattern of the liver Bckdha gene in Goto-Kakizaki (GK) rats during type 2 diabetes (T2D) progression. METHODS We measured the concentration of BCAA in GK rats, induced T2D cynomolgus monkeys and T2D humans by liquid chromatography tandem mass spectrometry, and used real-time quantitative PCR to analyze the gene expression of Bckdha and Bckdk, which encode the rate-limiting enzymes in catabolism of, respectively, branched chain amino acids and branched chain α-keto acid dehydrogenase kinase. RESULTS In this study, we showed that GK rat BCAA concentrations were significantly reduced at 4 and 8 weeks (P < 0.05 and P < 0.01, respectively), while the expression of Bckdha in GK rat liver was increased at 4 and 8 weeks (1.62-fold and 1.93-fold, respectively). The BCAA concentrations were significantly reduced in diet-induced T2D cynomolgus monkeys (P < 0.01), but significantly increased in T2D humans (P < 0.001). CONCLUSIONS Our results showed that BCAA concentrations changed at different times and by different amounts in different species and during different periods of T2D progress, and the significant changes of BCAA concentration in the three species indicated that BCAA might participate in the progress of T2D. The results suggested that the increased expression of Bckdha in GK rat liver might partially explain the reduced plasma BCAA concentration at 4 and 8 weeks. Further studies are required to investigate the exact mechanism of BCAA changes in non-obese T2D.
Collapse
Affiliation(s)
- Wenlu Zhang
- School of Biological and Biological EngineeringSouth China University of TechnologyGuangzhouChina
| | - Yu'e Wu
- Guangdong Key Laboratory of Laboratory AnimalsGuangzhouChina
| | - Wei Fan
- School of Biological and Biological EngineeringSouth China University of TechnologyGuangzhouChina
| | | | - Hongli Du
- School of Biological and Biological EngineeringSouth China University of TechnologyGuangzhouChina
| | - Junhua Rao
- Guangdong Key Laboratory of Animal Conservation and Resource UtilizationGuangdong Public Laboratory of Wild Animal Conservation and UtilizationGuangdong Institute of Applied Biological ResourcesGuangzhouChina
| |
Collapse
|
12
|
Ando A, Gantulga D, Nakata M, Maekawa F, Dezaki K, Ishibashi S, Yada T. Weaning stage hyperglycemia induces glucose-insensitivity in arcuate POMC neurons and hyperphagia in type 2 diabetic GK rats. Neuropeptides 2018. [PMID: 29525472 DOI: 10.1016/j.npep.2018.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Hyperphagia triggers and accelerates diabetes, and prevents proper dietary control of glycemia. Inversely, the impact of hyperglycemia on hyperphagia and possible mechanistic cause common for these two metabolic disorders in type 2 diabetes are less defined. The present study examined the precise developmental process of hyperglycemia and hyperphagia and explored the alterations in the hypothalamic arcuate nucleus (ARC), the primary feeding and metabolic center, in Goto-Kakizaki (GK) rats with type 2 diabetes and nearly normal body weight. At mid 3 to 4 weeks of age, GK rats first exhibited hyperglycemia, and then hyperphagia and reduced mRNA expressions for anorexigenic pro-opiomelanocortin (POMC) and glucokinase in ARC. Furthermore, [Ca2+]i responses to high glucose in ARC POMC neurons were impaired in GK rats at 4 weeks. Treating GK rats from early 3 to mid 6 weeks of age with an anti-diabetic medicine miglitol not only suppressed hyperglycemia but ameliorated hyperphagia and restored POMC mRNA expression in ARC. These results suggest that the early hyperglycemia occurring in weaning period may lead to impaired glucose sensing and neuronal activity of POMC neurons, and thereby induce hyperphagia in GK rats. Correction of hyperglycemia in the early period may prevent and/or ameliorate the progression of hyperphagia in type 2 diabetes.
Collapse
Affiliation(s)
- A Ando
- Division of Integrative Physiology, Department of Physiology, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi 320-0498, Japan; Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi 320-0498, Japan
| | - D Gantulga
- Division of Integrative Physiology, Department of Physiology, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi 320-0498, Japan
| | - M Nakata
- Division of Integrative Physiology, Department of Physiology, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi 320-0498, Japan
| | - F Maekawa
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba-City, Ibaragi 305-8506, Japan
| | - K Dezaki
- Division of Integrative Physiology, Department of Physiology, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi 320-0498, Japan
| | - S Ishibashi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi 320-0498, Japan
| | - T Yada
- Division of Integrative Physiology, Department of Physiology, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi 320-0498, Japan; Kansai Electric Power Medical Research Institute, 1-5-6 Minatojimaminamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.
| |
Collapse
|
13
|
Bihoreau MT, Dumas ME, Lathrop M, Gauguier D. Genomic regulation of type 2 diabetes endophenotypes: Contribution from genetic studies in the Goto-Kakizaki rat. Biochimie 2017; 143:56-65. [DOI: 10.1016/j.biochi.2017.08.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/20/2017] [Indexed: 11/30/2022]
|