1
|
Feng Q, Fang W, Guo Y, Hu P, Shi J. Nebulized Therapy of Early Orthotopic Lung Cancer by Iron-Based Nanoparticles: Macrophage-Regulated Ferroptosis of Cancer Stem Cells. J Am Chem Soc 2023; 145:24153-24165. [PMID: 37897426 DOI: 10.1021/jacs.3c08032] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2023]
Abstract
Cancer stem cells (CSCs) within protumorigenic microlesions are a critical driver in the initiation and progression of early stage lung cancer, where immune cells provide an immunosuppressive niche to strengthen the CSC stemness. As the mutual interactions between CSCs and immune cells are increasingly recognized, regulating the immune cells to identify and effectively eliminate CSCs has recently become one of the most attractive therapeutic options, especially for abundant tumor-associated macrophages (TAMs). Herein, we developed a nebulized nanocatalytic medicine strategy in which iron-based nanoparticle-regulated TAMs effectively target CSC niches and trigger CSC ferroptosis in the early stage of lung cancer. Briefly, the iron-based nanoparticles can effectively accumulate in lung cancer microlesions (minimum 122 μm in diameter) through dextran-mediated TAM targeting by nebulization administration, and as a result, nanoparticle-internalized TAMs can play a predominant role of the iron factory in elevating the iron level surrounding CSC niches and destroying redox equilibrium through downregulating glucose-6-phosphate metabolite following their lysosomal degradation and iron metabolism. The altered microenvironment results in the enhanced sensitivity of CSCs to ferroptosis due to their high expression of the CD44 receptor mediating iron endocytosis. In an orthotopic mouse model of lung cancer, the initiation and progression of early lung cancer are significantly suppressed through ferroptosis-induced stemness reduction of CSCs by nebulization administration. This work presents a nebulized therapeutic strategy for early lung cancer through modulation of communications between TAMs and CSCs, which is expected to be a general approach for regulating primary microlesions and micrometastatic niches of lung cancer.
Collapse
Affiliation(s)
- Qishuai Feng
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai 200331, P. R. China
| | - Wenming Fang
- Shanghai Institute of Ceramics Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai 200050, P. R. China
| | - Yuedong Guo
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai 200331, P. R. China
| | - Ping Hu
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai 200331, P. R. China
- Shanghai Institute of Ceramics Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai 200050, P. R. China
| | - Jianlin Shi
- Shanghai Institute of Ceramics Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai 200050, P. R. China
| |
Collapse
|
2
|
Zhang H, Wang Y, Li M, Cao K, Qi Z, Zhu L, Zhang Z, Hou L. A self-guidance biological hybrid drug delivery system driven by anaerobes to inhibit the proliferation and metastasis of colon cancer. Asian J Pharm Sci 2022; 17:892-907. [PMID: 36600894 PMCID: PMC9800957 DOI: 10.1016/j.ajps.2022.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/17/2022] [Accepted: 09/14/2022] [Indexed: 01/07/2023] Open
Abstract
Colorectal cancer is often accompanied by multiple organ metastasis. Anaerobic Bifidobacterium Infantis (BI) bacterial can selectively grow in hypoxic colorectal tumor microenvironment (TME), to own the natural advantage of preferentially colorectal tumor targeting. Herein, a self-guidance biological hybrid drug delivery system (BI-ES-FeAlg/DOX) based on BI was constructed to inhibit the proliferation and metastasis of colon cancer. Results demonstrated that BI-ES-FeAlg/DOX could overcome physical barriers to target and accumulate in colon tumor tissues. Then DOX was released to kill tumor cells along with the phase transition (solid to liquid) of FeAlg hydrogel, due to Fe3+ was reduced to Fe2+by intracellular GSH. Meanwhile, BI-ES selectively colonized into tumors and expressed endostatin (ES) protein to down-regulate VEGF and bFGF expression, exerting anti-angiogenic effect. Moreover, FeAlg catalyzed H2O2 in the local tumor to generate cytotoxic ·OH, further enhancing the antitumor effect. The pharmacodynamic result in AOM/DSS model proved that BI-ES-FeAlg/DOX had the best therapeutic effect, with the final V/V0 of 2.19 ± 0.57, which was significantly lower than the other groups. Meanwhile, on CT-26 tumor-bearing model, it also showed an outstanding anti-tumor effect with inhibition rate of 82.12% ± 3.08%. In addition, lung metastases decreased significantly in tumor metastasis model after BI-ES-FeAlg/DOX treatment.
Collapse
Affiliation(s)
- Huijuan Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China,Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450000, China,Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou 450000, China
| | - Yaping Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Mengting Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Kexuan Cao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zijun Qi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Ling Zhu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China,Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450000, China,Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou 450000, China,Corresponding authors.
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China,Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450000, China,Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou 450000, China,Corresponding authors.
| | - Lin Hou
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China,Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450000, China,Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou 450000, China,Corresponding authors.
| |
Collapse
|
3
|
Gu YH, Shen YC, Ou-yang Y, Rao XM, Fu DD, Wen FQ. Combined BRM270 and endostatin inhibit relapse of NSCLC while suppressing lung cancer stem cell proliferation induced by endostatin. MOLECULAR THERAPY-ONCOLYTICS 2021; 22:565-573. [PMID: 34553041 PMCID: PMC8433059 DOI: 10.1016/j.omto.2021.05.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 05/26/2021] [Indexed: 02/05/2023]
Abstract
Endostatin (ES, ENDO) has been reported to suppress the growth of tumors while inducing the proliferation of lung cancer stem cells (LCSCs), causing a poor prognosis for lung cancer. In this study, we aimed to clarify whether BRM270 can inhibit the proliferation of cancer stem cells (CSCs). Endostatin + BRM270 showed anti-tumor effects by reducing tumor volume and increasing survival. Administration of BRM270 reduced the number of aldehyde dehydrogenase-positive (ALDH+) cells and the level of ALDH1A1 expression in tumors by increasing the level of miR-128 while decreasing the levels of BMI-1, ABCC-5, E2F3, and c-MET. The luciferase activity of miR-128 promoter was increased by an increasing concentration of BRM270. In addition, BMI-1, ABCC-5, E2F3, and c-MET were identified as candidate targets of miR-128, and the overexpression of miR-128 significantly reduced mRNA/protein levels of BMI-1, ABCC-5, E2F3, and c-MET in A549 and H460 cells. Administration of BRM270 inhibited the expression of BMI-1, ABCC-5, E2F3, and c-MET in a dose-dependent manner. In this study, we showed for the first time that the combined administration of endostatin and BRM270 achieved anti-tumor effects while suppressing the proliferation of stem cells.
Collapse
Affiliation(s)
- Yan-hui Gu
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563000, China
| | - Yong-chun Shen
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Yao Ou-yang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563000, China
| | - Xi-min Rao
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563000, China
| | - Dan-dan Fu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563000, China
| | - Fu-qiang Wen
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
- Corresponding author: Fu-qiang Wen, Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, No. 37 Wainanguoxue Alley, Chengdu, Sichuan 610041, China.
| |
Collapse
|
4
|
Dynamic matrisome: ECM remodeling factors licensing cancer progression and metastasis. Biochim Biophys Acta Rev Cancer 2018; 1870:207-228. [DOI: 10.1016/j.bbcan.2018.09.002] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/07/2018] [Accepted: 09/30/2018] [Indexed: 01/04/2023]
|
5
|
Cancer stem cells (CSCs): metabolic strategies for their identification and eradication. Biochem J 2018; 475:1611-1634. [PMID: 29743249 PMCID: PMC5941316 DOI: 10.1042/bcj20170164] [Citation(s) in RCA: 185] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/12/2018] [Accepted: 04/12/2018] [Indexed: 02/08/2023]
Abstract
Phenotypic and functional heterogeneity is one of the most relevant features of cancer cells within different tumor types and is responsible for treatment failure. Cancer stem cells (CSCs) are a population of cells with stem cell-like properties that are considered to be the root cause of tumor heterogeneity, because of their ability to generate the full repertoire of cancer cell types. Moreover, CSCs have been invoked as the main drivers of metastatic dissemination and therapeutic resistance. As such, targeting CSCs may be a useful strategy to improve the effectiveness of classical anticancer therapies. Recently, metabolism has been considered as a relevant player in CSC biology, and indeed, oncogenic alterations trigger the metabolite-driven dissemination of CSCs. More interestingly, the action of metabolic pathways in CSC maintenance might not be merely a consequence of genomic alterations. Indeed, certain metabotypic phenotypes may play a causative role in maintaining the stem traits, acting as an orchestrator of stemness. Here, we review the current studies on the metabolic features of CSCs, focusing on the biochemical energy pathways involved in CSC maintenance and propagation. We provide a detailed overview of the plastic metabolic behavior of CSCs in response to microenvironment changes, genetic aberrations, and pharmacological stressors. In addition, we describe the potential of comprehensive metabolic approaches to identify and selectively eradicate CSCs, together with the possibility to 'force' CSCs within certain metabolic dependences, in order to effectively target such metabolic biochemical inflexibilities. Finally, we focus on targeting mitochondria to halt CSC dissemination and effectively eradicate cancer.
Collapse
|
6
|
Zhu P, Hu C, Hui K, Jiang X. The role and significance of VEGFR2 + regulatory T cells in tumor immunity. Onco Targets Ther 2017; 10:4315-4319. [PMID: 28919780 PMCID: PMC5590762 DOI: 10.2147/ott.s142085] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Tumor development is closely related to angiogenesis, and VEGFR2 plays an important role in tumor angiogenesis. It is broadly expressed in the blood vessels, especially in the microvessels of tumor tissues. Furthermore, VEGFR2 is detected on the surface of the cell membrane in various immune cells, such as dendritic cells, macrophages, and regulatory T cells (Tregs). Tregs, which are one of the key negative regulatory factors in tumor immune microenvironments, show high-level expression of VEGFR2 which participates in the regulation of immunosuppressive function. VEGFR2+ Tregs play a potent suppressive role in the formation of immunosuppressive microenvironments. A large number of reports have proven the synergistic effects between targeted therapy for VEGFR2 and immunotherapy. The depression of VEGFR2 activity on T cells can significantly reduce the infiltration of Tregs into the tumor tissue. Targeted therapy for VEGFR2+ Tregs also provides a new choice for the clinical treatment of malignant solid tumors. In this paper, the role and significance of VEGFR2+ Tregs in tumor immunity in recent years are reviewed.
Collapse
Affiliation(s)
- Panrong Zhu
- Tumor Laboratory, Department of Oncology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu, China
| | - Chenxi Hu
- Tumor Laboratory, Department of Oncology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu, China
| | - Kaiyuan Hui
- Tumor Laboratory, Department of Oncology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu, China
| | - Xiaodong Jiang
- Tumor Laboratory, Department of Oncology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu, China
| |
Collapse
|
7
|
Frezzetti D, Gallo M, Maiello MR, D'Alessio A, Esposito C, Chicchinelli N, Normanno N, De Luca A. VEGF as a potential target in lung cancer. Expert Opin Ther Targets 2017; 21:959-966. [PMID: 28831824 DOI: 10.1080/14728222.2017.1371137] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction The vascular endothelial growth factor A (VEGF) is the main mediator of angiogenesis. In addition, VEGF contributes to cancer growth and metastasis directly targeting tumor cells. VEGF overexpression and/or high VEGF serum levels have been reported in lung cancer. Areas covered We searched Pubmed for relevant preclinical studies with the terms 'lung cancer' 'VEGF' and 'in vivo'. We also searched the Clinicaltrials.gov database, the FDA and the EMA websites for the most recent updates on clinical development of anti-VEGF agents. Expert opinion VEGF plays an important role in sustaining the development and progression of lung cancer and it might represent an attractive target for therapeutic strategies. Nevertheless, clinical trials failed to attend the promising expectations deriving from preclinical studies with anti-VEGF agents. To improve the efficacy of anti-VEGF therapies in lung cancer, potential strategies might be the employment of combinatory therapies with immune checkpoint inhibitors or agents that inhibit signaling pathways and proangiogenic factors activated in response to VEGF blockade, and the identification of novel targets in the VEGF cascade. Finally, the identification of predictive markers might help to select patients who are more likely to respond to anti-angiogenic drugs.
Collapse
Affiliation(s)
- Daniela Frezzetti
- a Cell Biology and Biotherapy Unit , Istituto Nazionale Tumori - IRCCS - 'Fondazione G. Pascale' , Naples , Italy
| | - Marianna Gallo
- a Cell Biology and Biotherapy Unit , Istituto Nazionale Tumori - IRCCS - 'Fondazione G. Pascale' , Naples , Italy
| | - Monica R Maiello
- a Cell Biology and Biotherapy Unit , Istituto Nazionale Tumori - IRCCS - 'Fondazione G. Pascale' , Naples , Italy
| | - Amelia D'Alessio
- a Cell Biology and Biotherapy Unit , Istituto Nazionale Tumori - IRCCS - 'Fondazione G. Pascale' , Naples , Italy
| | - Claudia Esposito
- a Cell Biology and Biotherapy Unit , Istituto Nazionale Tumori - IRCCS - 'Fondazione G. Pascale' , Naples , Italy
| | - Nicoletta Chicchinelli
- a Cell Biology and Biotherapy Unit , Istituto Nazionale Tumori - IRCCS - 'Fondazione G. Pascale' , Naples , Italy
| | - Nicola Normanno
- a Cell Biology and Biotherapy Unit , Istituto Nazionale Tumori - IRCCS - 'Fondazione G. Pascale' , Naples , Italy
| | - Antonella De Luca
- a Cell Biology and Biotherapy Unit , Istituto Nazionale Tumori - IRCCS - 'Fondazione G. Pascale' , Naples , Italy
| |
Collapse
|