1
|
Li H, Ai Y, Wu Y, Fan R, Tian Y, Chen S, Wan W, Wu C. Development of a Graphene Oxide-Based Aptamer Nanoarray for Improved Neutralization and Protection Effects Against Ricin. Pharmaceutics 2024; 16:1455. [PMID: 39598578 PMCID: PMC11597295 DOI: 10.3390/pharmaceutics16111455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Ricin's high toxicity and potential as a bioweapon underscore the need for effective antidotes. Monoclonal antibodies, though effective, are limited by complex production. This study aimed to develop a graphene oxide-based aptamer nanoarray (ARMAN) for improved neutralization and protection against ricin. Methods: High-affinity aptamers targeting ricin's RTA and RTB subunits were selected using SELEX technology and conjugated to graphene oxide (GO) via click chemistry. ARMAN's characteristics, including morphology, stability, and biosecurity, were assessed. Its performance was evaluated in terms of affinity for ricin, neutralization capacity, and therapeutic effects in cellular assays and a mouse model of ricin poisoning. Results: ARMAN exhibited a uniform morphology with an average particle size of 217 nm and demonstrated significantly enhanced affinity for ricin compared to free aptamers. ARMAN showed rapid and effective neutralization ability, significantly increasing cell viability in BEAS-2B, GES-1, and HL7702 cell lines exposed to ricin. In vivo, ARMAN treatment led to a notable prolongation of survival in ricin-poisoned mice, highlighting its potential for both pre- and post-exposure treatment. These findings indicate that ARMAN not only neutralizes ricin effectively but also provides a therapeutic window for treatment. Conclusions: ARMAN's superior binding affinity, serum stability, biocompatibility, and broad therapeutic efficacy make it a promising new antidote against ricin poisoning. This study's findings represent significant progress in the development of rapid-response antidotes, with ARMAN offering a potential solution for both military and civilian emergency response scenarios.
Collapse
Affiliation(s)
- Huafei Li
- School of Lifesciences, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Yanwen Ai
- School of Lifesciences, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Yanjin Wu
- School of Lifesciences, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Ruyu Fan
- Clinical Research Unit, The First Affiliated Hospital of Navy Medical University (Changhai Hospital), 168 Changhai Road, Shanghai 200433, China
| | - Yuan Tian
- School of Lifesciences, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Shuangqun Chen
- School of Lifesciences, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Wei Wan
- Department of Orthopedic Oncology, Spinal Tumor Center, Changzheng Hospital, Navy Medical University, 415 Fengyang Road, Shanghai 200003, China
| | - Cong Wu
- Clinical Research Unit, The First Affiliated Hospital of Navy Medical University (Changhai Hospital), 168 Changhai Road, Shanghai 200433, China
| |
Collapse
|
2
|
Dias IRSB, Costa RGA, Rodrigues ACBDC, Silva SLR, Oliveira MDS, Soares MBP, Dias RB, Valverde LF, Gurgel Rocha CA, Cairns LV, Mills KI, Bezerra DP. Bithionol eliminates acute myeloid leukaemia stem-like cells by suppressing NF-κB signalling and inducing oxidative stress, leading to apoptosis and ferroptosis. Cell Death Discov 2024; 10:390. [PMID: 39209810 PMCID: PMC11362533 DOI: 10.1038/s41420-024-02148-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Acute myeloid leukaemia (AML) is a lethal bone marrow neoplasm caused by genetic alterations in blood cell progenitors. Leukaemic stem cells (LSCs) are responsible for the development of AML, drug resistance and relapse. Bithionol is an old anthelmintic drug with potential antibacterial, antiviral, antifungal, anti-Alzheimer, and antitumour properties. In this work, we focused on the anti-AML LSC properties of bithionol. This compound inhibited the viability of both solid and haematological cancer cells, suppressed AML stem-like cells, and inhibited AML growth in NSG mice at a dosage of 50 mg/kg, with tolerable systemic toxicity. Bithionol significantly reduced the levels of phospho-NF-κB p65 (Ser529) and phospho-NF-κB p65 (Ser536) and nuclear NF-κB p65 translocation in AML cells, indicating that this molecule can suppress NF-κB signalling. DNA fragmentation, nuclear condensation, cell shrinkage, phosphatidylserine externalisation, loss of transmembrane mitochondrial potential, caspase-3 activation and PARP-(Asp 214) cleavage were detected in bithionol-treated AML cells, indicating the induction of apoptosis. Furthermore, this compound increased mitochondrial superoxide levels, and bithionol-induced cell death was partially prevented by cotreatment with the selective ferroptosis inhibitor ferrostatin-1, indicating the induction of ferroptosis. In addition, bithionol synergised with venetoclax in AML cells, indicating the translational potential of bithionol to enhance the effects of venetoclax in patients with AML. Taken together, these data indicate that bithionol is a potential new anti-AML drug.
Collapse
Affiliation(s)
- Ingrid R S B Dias
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, Brazil
| | - Rafaela G A Costa
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, Brazil
| | | | - Suellen L R Silva
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, Brazil
| | - Maiara de S Oliveira
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, Brazil
| | - Milena B P Soares
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, Brazil
- SENAI Institute for Innovation in Advanced Health Systems, SENAI CIMATEC, Salvador, BA, Brazil
| | - Rosane B Dias
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, Brazil
- Department of Propaedeutics, Faculty of Dentistry of the Federal University of Bahia (UFBA), Salvador, Bahia, Brazil
- Department of Biological Sciences, State University of Feira de Santana, Feira de Santana, Bahia, Brazil
| | - Ludmila F Valverde
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, Brazil
- Department of Dentistry, Federal University of Sergipe, Lagarto, Sergipe, Brazil
| | - Clarissa A Gurgel Rocha
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, Brazil
- Department of Propaedeutics, Faculty of Dentistry of the Federal University of Bahia (UFBA), Salvador, Bahia, Brazil
- Center for Biotechnology and Cell Therapy, D'Or Institute for Research and Education (IDOR), Salvador, Bahia, Brazil
| | - Lauren V Cairns
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Ken I Mills
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Daniel P Bezerra
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, Brazil.
| |
Collapse
|
3
|
Luo Y, Wen Z, Xiong Y, Chen X, Shen Z, Li P, Peng Y, Deng Q, Yu Z, Zheng J, Han S. The potential target of bithionol against Staphylococcus aureus: design, synthesis and application of biotinylated probes Bio-A2. J Antibiot (Tokyo) 2023:10.1038/s41429-023-00618-x. [PMID: 37185582 DOI: 10.1038/s41429-023-00618-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/07/2023] [Accepted: 03/19/2023] [Indexed: 05/17/2023]
Abstract
This study aims to explore the potential targets of bithionol in Staphylococcus aureus.The four bithionol biotinylated probes Bio-A2-1, Bio-A2-2, Bio-A2-3, and Bio-A2-4 were synthesized, the minimal inhibitory concentrations (MICs) of these probes against S. aureus were determined. The bithionol binding proteins in S. aureus were identified through immunoprecipitation and LC-MS/MS with bithionol biotinylated probe. The biotinylated bithionol probes Bio-A2-1 and Bio-A2-3 displayed antibacterial activities against S. aureus. The Bio-A2-1 showed lower MICs than Bio-A2-3, and both with the MIC50/MIC90 at 12.5/12.5 μM against S. aureus clinical isolates. The inhibition rates of bithionol biotinylated probes Bio-A2-1 and Bio-A2-3 on the biofilm formation of S. aureus were comparable to that of bithionol, and were stronger than that of Bio-A2-2 and Bio-A2-4. The biofilm formation of 10 out of 12S. aureus clinical isolates could be inhibited by Bio-A2-1 (at 1/4×, or 1/2× MICs). There are three proteins identified in S. aureus through immunoprecipitation and LC-MS/MS with bithionol biotinylated probe Bio-A2-1: Protein translocase subunit SecA 1 (secA1), Alanine--tRNA ligase (alaS) and DNA gyrase subunit A (gyrA), and in which the SecA1 protein the highest coverage and the most unique peptides. The LYS112, GLN143, ASP213, GLY496 and ASP498 of SecA1 protein act as hydrogen acceptors to form 6 hydrogen bonds with bithionol biotinylated probe Bio-A2-1 by molecular docking analysis. In conclusion, the bithionol biotinylated probe Bio-A2-1 has antibacterial and anti-biofilm activities against S. aureus, and SecA1 was probably one of the potential targets of bithionol in S. aureus.
Collapse
Affiliation(s)
- Yue Luo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Zewen Wen
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, 518052, China
| | - Yanpeng Xiong
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Xuecheng Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Zonglin Shen
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, 518052, China
| | - Peiyu Li
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, 518052, China
| | - Yalan Peng
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Qiwen Deng
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, 518052, China
| | - Zhijian Yu
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, 518052, China
| | - Jinxin Zheng
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, 518052, China.
| | - Shiqing Han
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China.
| |
Collapse
|
4
|
Dahiya N, Yadav M, Singh H, Jakhar R, Sehrawat N. ZIKV: Epidemiology, infection mechanism and current therapeutics. FRONTIERS IN TROPICAL DISEASES 2023. [DOI: 10.3389/fitd.2022.1059283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The Zika virus (ZIKV) is a vector-borne flavivirus that has been detected in 87 countries worldwide. Outbreaks of ZIKV infection have been reported from various places around the world and the disease has been declared a public health emergency of international concern. ZIKV has two modes of transmission: vector and non-vector. The ability of ZIKV to vertically transmit in its competent vectors, such as Aedes aegypti and Aedes albopictus, helps it to cope with adverse conditions, and this could be the reason for the major outbreaks that occur from time to time. ZIKV outbreaks are a global threat and, therefore, there is a need for safe and effective drugs and vaccines to fight the virus. In more than 80% of cases, ZIKV infection is asymptomatic and leads to complications, such as microcephaly in newborns and Guillain–Barré syndrome (GBS) in adults. Drugs such as sofosbuvir, chloroquine, and suramin have been found to be effective against ZIKV infections, but further evaluation of their safety in pregnant women is needed. Although temoporfin can be given to pregnant women, it needs to be tested further for side effects. Many vaccine types based on protein, vector, DNA, and mRNA have been formulated. Some vaccines, such as mRNA-1325 and VRC-ZKADNA090-00-VP, have reached Phase II clinical trials. Some new techniques should be used for formulating and testing the efficacy of vaccines. Although there have been no recent outbreaks of ZIKV infection, several studies have shown continuous circulation of ZIKV in mosquito vectors, and there is a risk of re-emergence of ZIKV in the near future. Therefore, vaccines and drugs for ZIKV should be tested further, and safe and effective therapeutic techniques should be licensed for use during outbreaks.
Collapse
|
5
|
Liang W, Yu Q, Zheng Z, Liu J, Cai Q, Liu S, Lin S. Design and Synthesis of Phenyl Sulfide-Based Cationic Amphiphiles as Membrane-Targeting Antimicrobial Agents against Gram-Positive Pathogens. J Med Chem 2022; 65:14221-14236. [PMID: 36256884 DOI: 10.1021/acs.jmedchem.2c01437] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Due to the emergence of antimicrobial resistance and the lack of new antibacterial agents, it has become urgent to discover and develop new antibacterial agents against multidrug-resistant pathogens. Antimicrobial peptides (AMPs) serve as the first line of defense for the host. In this work, we have designed, synthesized, and biologically evaluated a series of phenyl sulfide derivatives by biomimicking the structural features and biological functions of AMPs. Among these derivatives, the most promising compound 17 exhibited potent antibacterial activity against Gram-positive bacteria (minimum inhibitory concentrations = 0.39-1.56 μg/mL), low hemolytic activity (HC50 > 200 μg/mL), and high membrane selectivity. In addition, 17 can rapidly kill Gram-positive bacteria within 0.5 h through membrane-targeting action and avoid antibiotic resistance. More importantly, 17 showed high in vivo efficacy against Staphylococcus aureus in a murine corneal infection model. Therefore, 17 has great potential as a lead compound for the treatment of Gram-positive bacterial infections.
Collapse
Affiliation(s)
- Wanxin Liang
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Qian Yu
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Zixian Zheng
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Jiayong Liu
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Qiongna Cai
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Shouping Liu
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Shuimu Lin
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
6
|
Tan LY, Komarasamy TV, James W, Balasubramaniam VRMT. Host Molecules Regulating Neural Invasion of Zika Virus and Drug Repurposing Strategy. Front Microbiol 2022; 13:743147. [PMID: 35308394 PMCID: PMC8931420 DOI: 10.3389/fmicb.2022.743147] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
Zika virus (ZIKV) is a mosquito-borne, single-stranded RNA virus belonging to the genus Flavivirus. Although ZIKV infection is usually known to exhibit mild clinical symptoms, intrauterine ZIKV infections have been associated with severe neurological manifestations, including microcephaly and Guillain Barre syndrome (GBS). Therefore, it is imperative to understand the mechanisms of ZIKV entry into the central nervous system (CNS) and its effect on brain cells. Several routes of neuro-invasion have been identified, among which blood–brain barrier (BBB) disruption is the commonest mode of access. The molecular receptors involved in viral entry remain unknown; with various proposed molecular ZIKV-host interactions including potential non-receptor mediated cellular entry. As ZIKV invade neuronal cells, they trigger neurotoxic mechanisms via cell-autonomous and non-cell autonomous pathways, resulting in neurogenesis dysfunction, viral replication, and cell death, all of which eventually lead to microcephaly. Together, our understanding of the biological mechanisms of ZIKV exposure would aid in the development of anti-ZIKV therapies targeting host cellular and/or viral components to combat ZIKV infection and its neurological manifestations. In this present work, we review the current understanding of ZIKV entry mechanisms into the CNS and its implications on the brain. We also highlight the status of the drug repurposing approach for the development of potential antiviral drugs against ZIKV.
Collapse
Affiliation(s)
- Li Yin Tan
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
- Greenslopes Private Hospital, Greenslopes, QLD, Australia
| | - Thamil Vaani Komarasamy
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - William James
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Vinod R. M. T. Balasubramaniam
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
- *Correspondence: Vinod R. M. T. Balasubramaniam,
| |
Collapse
|
7
|
Wrzosek A, Gałecka S, Żochowska M, Olszewska A, Kulawiak B. Alternative Targets for Modulators of Mitochondrial Potassium Channels. Molecules 2022; 27:299. [PMID: 35011530 PMCID: PMC8746388 DOI: 10.3390/molecules27010299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 12/17/2022] Open
Abstract
Mitochondrial potassium channels control potassium influx into the mitochondrial matrix and thus regulate mitochondrial membrane potential, volume, respiration, and synthesis of reactive oxygen species (ROS). It has been found that pharmacological activation of mitochondrial potassium channels during ischemia/reperfusion (I/R) injury activates cytoprotective mechanisms resulting in increased cell survival. In cancer cells, the inhibition of these channels leads to increased cell death. Therefore, mitochondrial potassium channels are intriguing targets for the development of new pharmacological strategies. In most cases, however, the substances that modulate the mitochondrial potassium channels have a few alternative targets in the cell. This may result in unexpected or unwanted effects induced by these compounds. In our review, we briefly present the various classes of mitochondrial potassium (mitoK) channels and describe the chemical compounds that modulate their activity. We also describe examples of the multidirectional activity of the activators and inhibitors of mitochondrial potassium channels.
Collapse
Affiliation(s)
- Antoni Wrzosek
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.W.); (S.G.); (M.Ż.)
| | - Shur Gałecka
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.W.); (S.G.); (M.Ż.)
| | - Monika Żochowska
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.W.); (S.G.); (M.Ż.)
| | - Anna Olszewska
- Department of Histology, Medical University of Gdansk, 1a Debinki, 80-211 Gdansk, Poland;
| | - Bogusz Kulawiak
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.W.); (S.G.); (M.Ż.)
| |
Collapse
|
8
|
Oliveira G, Schneedorf JM. An Electrochemical Approach to Follow and Evaluate the Kinetic Catalysis of Ricin on hsDNA. Life (Basel) 2021; 11:life11050405. [PMID: 33946642 PMCID: PMC8145570 DOI: 10.3390/life11050405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 11/16/2022] Open
Abstract
International authorities classify the ricin toxin, present in castor seeds, as a potential agent for use in bioterrorism. Therefore, the detection, identification, and characterization of ricin are considered the first actions for its risk assessment during a suspected exposure, parallel to the development of therapeutic and medical countermeasures. In this study, we report the kinetic analysis of electro-oxidation of adenine released from hsDNA by the catalytic action of ricin by square wave voltammetry. The results suggest that ricin-mediated adenine release exhibited an unusual kinetic profile, with a progress curve controlled by the accumulation of the product and the values of the kinetic constants of 46.6 µM for Km and 2000 min−1 for kcat, leading to a catalytic efficiency of 7.1 × 105 s−1 M−1.
Collapse
|
9
|
Mwaliko C, Nyaruaba R, Zhao L, Atoni E, Karungu S, Mwau M, Lavillette D, Xia H, Yuan Z. Zika virus pathogenesis and current therapeutic advances. Pathog Glob Health 2021; 115:21-39. [PMID: 33191867 PMCID: PMC7850325 DOI: 10.1080/20477724.2020.1845005] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Zika virus (ZIKV) is an emerging arthropod-borne flavivirus that, upon infection, results in teratogenic effects and neurological disorders. ZIKV infections pose serious global public health concerns, prompting scientists to increase research on antivirals and vaccines against the virus. These efforts are still ongoing as the pathogenesis and immune evasion mechanisms of ZIKV have not yet been fully elaborated. Currently, no specific vaccines or drugs have been approved for ZIKV; however, some are undergoing clinical trials. Notably, several strategies have been used to develop antivirals, including drugs that target viral and host proteins. Additionally, drug repurposing is preferred since it is less costly and takes less time than other strategies because the drugs used have already been approved for human use. Likewise, different platforms have been evaluated for the design of vaccines, including DNA, mRNA, peptide, protein, viral vectors, virus-like particles (VLPSs), inactivated-virus, and live-attenuated virus vaccines. These vaccines have been shown to induce specific humoral and cellular immune responses and reduce viremia and viral RNA both in vitro and in vivo. Importantly, most of these vaccines have entered clinical trials. Understanding the viral disease mechanism will provide better strategies for developing therapeutic agents against ZIKV. This review provides a comprehensive summary of the viral pathogenesis of ZIKV and current advancements in the development of vaccines and drugs against this virus.
Collapse
Affiliation(s)
- Caroline Mwaliko
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China,International College, University of Chinese Academy of Sciences, Beijing, China,Microbiology, Sino-Africa Joint Research Center, Nairobi, Kenya
| | - Raphael Nyaruaba
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China,International College, University of Chinese Academy of Sciences, Beijing, China,Microbiology, Sino-Africa Joint Research Center, Nairobi, Kenya
| | - Lu Zhao
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China,International College, University of Chinese Academy of Sciences, Beijing, China
| | - Evans Atoni
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China,International College, University of Chinese Academy of Sciences, Beijing, China,Microbiology, Sino-Africa Joint Research Center, Nairobi, Kenya
| | - Samuel Karungu
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China,International College, University of Chinese Academy of Sciences, Beijing, China,Microbiology, Sino-Africa Joint Research Center, Nairobi, Kenya
| | - Matilu Mwau
- Center for Infectious and Parasitic Diseases Control Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Dimitri Lavillette
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Han Xia
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China,CONTACT Han Xia ; Zhiming Yuan Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Zhiming Yuan
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
10
|
Hinca SB, Salcedo C, Wagner A, Goldeman C, Sadat E, Aibar MMD, Maechler P, Brodin B, Aldana BI, Helms HCC. Brain endothelial cells metabolize glutamate via glutamate dehydrogenase to replenish TCA-intermediates and produce ATP under hypoglycemic conditions. J Neurochem 2020; 157:1861-1875. [PMID: 33025588 DOI: 10.1111/jnc.15207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 12/15/2022]
Abstract
The endothelial cells of the blood-brain barrier participate in the regulation of glutamate concentrations in the brain interstitial fluid by taking up brain glutamate. However, endothelial glutamate metabolism has not been characterized, nor is its role in brain glutamate homeostasis and endothelial energy production known. The aim of this study was to investigate endothelial glutamate dehydrogenase (GDH) expression and glutamate metabolism and probe its functional significance. The primary brain endothelial cells were isolated from bovine and mouse brains, and human brain endothelial cells were derived from induced pluripotent stem cells. GDH expression on the protein level and GDH function were investigated in the model systems using western blotting, confocal microscopy, 13 C-glutamate metabolism, and Seahorse assay. In this study, it was shown that GDH was expressed in murine and bovine brain capillaries and in cultured primary mouse and bovine brain endothelial cells as well as in human-induced pluripotent stem cell-derived endothelial cells. The endothelial GDH expression was confirmed in brain capillaries from mice carrying a central nervous system-specific GDH knockout. Endothelial cells from all tested species metabolized 13 C-glutamate to α-ketoglutarate, which subsequently entered the tricarboxylic acid (TCA)-cycle. Brain endothelial cells maintained mitochondrial oxygen consumption rates, when supplied with glutamate alone, whereas glutamate supplied in addition to glucose did not lead to additional oxygen consumption. In conclusion, brain endothelial cells directly take up and metabolize glutamate and utilize the resulting α-ketoglutarate in the tricarboxylic acid cycle to ultimately yield ATP if glucose is unavailable.
Collapse
Affiliation(s)
- Sven B Hinca
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Claudia Salcedo
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Antonie Wagner
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte Goldeman
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Edris Sadat
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marco M D Aibar
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pierre Maechler
- Department of Cell Physiology and Metabolism, CMU, University of Geneva, Geneva, Switzerland
| | - Birger Brodin
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Blanca I Aldana
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hans C C Helms
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
11
|
Khaw T, Wong SM, Herle G, Dahua JPG, Logan A, Alameh S, Martchenko Shilman M, Levitin A. Identification of Bithionol, Dichlorophen, and Miconazole as Antibacterial Agents against Acinetobacter calcoaceticus. ACS OMEGA 2020; 5:23951-23959. [PMID: 32984715 PMCID: PMC7513344 DOI: 10.1021/acsomega.0c03211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
The rising prevalence of multidrug-resistant hospital-acquired infections has increased the need for new antibacterial agents. In this study, a library of 1586 FDA-approved drugs was screened against A. calcoaceticus, a representative of the Acinetobacter calcoaceticus-baumannii complex. Three compounds were found to have previously undiscovered antibacterial properties against A. calcoaceticus: antifungal Miconazole, anthelminthic Dichlorophen, and Bithionol. These three drugs were tested against a wide range of Gram-positive and Gram-negative bacteria and confirmed to have broad-spectrum antibacterial properties. Combinations of these three drugs were also tested against the same bacteria, and two novel combination therapies with synergistic effects were discovered. In the future, antibacterial properties of these three drugs and two combination therapies will be evaluated against pathogenic bacteria using an animal model.
Collapse
|
12
|
Amakawa M, Gunawardana S, Jabbour A, Hernandez A, Pasos C, Alameh S, Martchenko Shilman M, Levitin A. Repurposing Clinically Approved Drugs for the Treatment of Bacillus cereus, a Surrogate for Bacillus anthracis. ACS OMEGA 2020; 5:21929-21939. [PMID: 32905429 PMCID: PMC7469645 DOI: 10.1021/acsomega.0c03207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/10/2020] [Indexed: 05/28/2023]
Abstract
Of the numerous infectious diseases afflicting humans, anthrax disease, caused by Bacillus anthracis, poses a major threat in its virulence and lack of effective treatment. The currently lacking standards of care, as well as the lengthy drug approval process, demonstrate the pressing demand for treatment for B. anthracis infections. The present study screened 1586 clinically approved drugs in an attempt to identify repurposable compounds against B. cereus, a relative strain that shares many physical and genetic characteristics with B. anthracis. Our study yielded five drugs that successfully inhibited B. cereus growth: dichlorophen, oxiconazole, suloctidil, bithionol, and hexestrol. These drugs exhibited varying levels of efficacy in broad-spectrum experiments against several Gram-positive and Gram-negative bacterial strains, with hexestrol showing the greatest inhibition across all tested strains. Through tests for the efficacy of each drug on B. cereus, bithionol was the single most potent compound on both solid and liquid media and exhibited even greater eradication of B. cereus in combination with suloctidil on solid agar. This multifaceted in vitro study of approved drugs demonstrates the potential to repurpose these drugs as treatments for anthrax disease in a time-efficient manner to address a global health need.
Collapse
|
13
|
Marra RKF, Kümmerle AE, Guedes GP, Barros CDS, Gomes RSP, Cirne-Santos CC, Paixão ICNP, Neves AP. Quinolone-N-acylhydrazone hybrids as potent Zika and Chikungunya virus inhibitors. Bioorg Med Chem Lett 2019; 30:126881. [PMID: 31843348 DOI: 10.1016/j.bmcl.2019.126881] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/04/2019] [Accepted: 11/30/2019] [Indexed: 12/20/2022]
Abstract
This work reports the synthesis of quinolone-N-acylhydrazone hybrids, namely 6-R-N'-(2-hydxoxybenzylidene)-4-oxo-1,4-dihydroquinoline-3-carbohydrazide (R = H: 5a, F: 5b, Cl: 5c and Br: 5d), which exhibited excellent activity against arbovirus Zika (ZIKV) and Chikungunya (CHIKV). In vitro screening towards ZIKV and CHIKV inhibition revealed that all substances have significant antiviral activity, most of them being more potent than standard Ribavirin (5a-d: EC50 = 0.75-0.81 μM, Ribavirin: EC50 = 3.95 μM for ZIKV and 5a-d: 1.16-2.85 μM, Ribavirin: EC50 = 2.42 μM for CHIKV). The quinolone-N-acylhydrazone hybrids were non-toxic against Vero cells, in which compounds 5c and 5d showed the best selectivities (SI = 1410 and 630 against ZIKV and CHIKV, respectively). Antiviral activity was identified by inhibition of viral RNA production in a dose-dependent manner. In the evaluation of the time of addition of the compounds, we observed that 5b and 5c remain with strong effect even in the addition for 12 h after infection. The above results indicate that quinolone-N-acylhydrazones represent a new and promising class to be further investigated as anti-ZIKV and anti-CHIKV agents.
Collapse
Affiliation(s)
- Roberta K F Marra
- Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ 23897-000, Brazil
| | - Arthur E Kümmerle
- Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ 23897-000, Brazil
| | - Guilherme P Guedes
- Instituto de Química, Universidade Federal Fluminense, Niterói, RJ 24020-141, Brazil
| | - Caroline de S Barros
- Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ 24020-141, Brazil
| | - Rafaela S P Gomes
- Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ 24020-141, Brazil
| | | | | | - Amanda P Neves
- Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ 23897-000, Brazil.
| |
Collapse
|
14
|
Brycht M, Konecka K, Sipa K, Skrzypek S, Mirčeski V. Electroanalysis of the Anthelmintic Drug Bithionol at Edge Plane Pyrolytic Graphite Electrode. ELECTROANAL 2019. [DOI: 10.1002/elan.201900322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mariola Brycht
- University of Lodz, Faculty of ChemistryDepartment of Inorganic and Analytical Chemistry Tamka 12 91-403 Lodz Poland
- Charles University, Faculty of Science, Department of Analytical ChemistryUNESCO Laboratory of Environmental Electrochemistry Albertov 6 CZ-12843 Prague 2 Czech Republic
| | - Kinga Konecka
- University of Lodz, Faculty of ChemistryDepartment of Inorganic and Analytical Chemistry Tamka 12 91-403 Lodz Poland
| | - Karolina Sipa
- University of Lodz, Faculty of ChemistryDepartment of Inorganic and Analytical Chemistry Tamka 12 91-403 Lodz Poland
| | - Sławomira Skrzypek
- University of Lodz, Faculty of ChemistryDepartment of Inorganic and Analytical Chemistry Tamka 12 91-403 Lodz Poland
| | - Valentin Mirčeski
- University of Lodz, Faculty of ChemistryDepartment of Inorganic and Analytical Chemistry Tamka 12 91-403 Lodz Poland
- Ss. Cyril and Methodius University, Faculty of Natural Sciences and MathematicsInstitute of Chemistry Arhimedova 5, P.O. Box 162 1001 Skopje R. Macedonia
| |
Collapse
|
15
|
Therapeutic Advances Against ZIKV: A Quick Response, a Long Way to Go. Pharmaceuticals (Basel) 2019; 12:ph12030127. [PMID: 31480297 PMCID: PMC6789873 DOI: 10.3390/ph12030127] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 01/07/2023] Open
Abstract
Zika virus (ZIKV) is a mosquito-borne flavivirus that spread throughout the American continent in 2015 causing considerable worldwide social and health alarm due to its association with ocular lesions and microcephaly in newborns, and Guillain-Barré syndrome (GBS) cases in adults. Nowadays, no licensed vaccines or antivirals are available against ZIKV, and thus, in this very short time, the scientific community has conducted enormous efforts to develop vaccines and antivirals. So that, different platforms (purified inactivated and live attenuated viruses, DNA and RNA nucleic acid based candidates, virus-like particles, subunit elements, and recombinant viruses) have been evaluated as vaccine candidates. Overall, these vaccines have shown the induction of vigorous humoral and cellular responses, the decrease of viremia and viral RNA levels in natural target organs, the prevention of vertical and sexual transmission, as well as that of ZIKV-associated malformations, and the protection of experimental animal models. Some of these vaccine candidates have already been assayed in clinical trials. Likewise, the search for antivirals have also been the focus of recent investigations, with dozens of compounds tested in cell culture and a few in animal models. Both direct acting antivirals (DAAs), directed to viral structural proteins and enzymes, and host acting antivirals (HAAs), directed to cellular factors affecting all steps of the viral life cycle (binding, entry, fusion, transcription, translation, replication, maturation, and egress), have been evaluated. It is expected that this huge collaborative effort will produce affordable and effective therapeutic and prophylactic tools to combat ZIKV and other related still unknown or nowadays neglected flaviviruses. Here, a comprehensive overview of the advances made in the development of therapeutic measures against ZIKV and the questions that still have to be faced are summarized.
Collapse
|
16
|
Souza INO, Barros-Aragão FGQ, Frost PS, Figueiredo CP, Clarke JR. Late Neurological Consequences of Zika Virus Infection: Risk Factors and Pharmaceutical Approaches. Pharmaceuticals (Basel) 2019; 12:E60. [PMID: 30999590 PMCID: PMC6631207 DOI: 10.3390/ph12020060] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/15/2019] [Accepted: 03/17/2019] [Indexed: 12/16/2022] Open
Abstract
Zika virus (ZIKV) infection was historically considered a disease with mild symptoms and no major consequences to human health. However, several long-term, late onset, and chronic neurological complications, both in congenitally-exposed babies and in adult patients, have been reported after ZIKV infection, especially after the 2015 epidemics in the American continent. The development or severity of these conditions cannot be fully predicted, but it is possible that genetic, epigenetic, and environmental factors may contribute to determine ZIKV infection outcomes. This reinforces the importance that individuals exposed to ZIKV are submitted to long-term clinical surveillance and highlights the urgent need for the development of therapeutic approaches to reduce or eliminate the neurological burden of infection. Here, we review the epidemiology of ZIKV-associated neurological complications and the role of factors that may influence disease outcome. Moreover, we discuss experimental and clinical evidence of drugs that have shown promising results in vitro or in vitro against viral replication and and/or ZIKV-induced neurotoxicity.
Collapse
Affiliation(s)
- Isis N O Souza
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro 21944-590, Brazil.
| | - Fernanda G Q Barros-Aragão
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro 21944-590, Brazil.
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21944-590, Brazil.
| | - Paula S Frost
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro 21944-590, Brazil.
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21944-590, Brazil.
| | - Claudia P Figueiredo
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro 21944-590, Brazil.
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21944-590, Brazil.
| | - Julia R Clarke
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro 21944-590, Brazil.
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21944-590, Brazil.
| |
Collapse
|
17
|
Rabaan AA. Cholera: an overview with reference to the Yemen epidemic. Front Med 2019; 13:213-228. [PMID: 29934743 DOI: 10.1007/s11684-018-0631-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 12/18/2017] [Indexed: 12/12/2022]
Abstract
Cholera is a secretory diarrhoeal disease caused by infection with Vibrio cholerae, primarily the V. cholerae O1 El Tor biotype. There are approximately 2.9 million cases in 69 endemic countries annually, resulting in 95 000 deaths. Cholera is associated with poor infrastructure and lack of access to sanitation and clean drinking water. The current cholera epidemic in Yemen, linked to spread of V. cholerae O1 (Ogawa serotype), is associated with the ongoing war. This has devastated infrastructure and health services. The World Health Organization had estimated that 172 286 suspected cases arose between 27th April and 19th June 2017, including 1170 deaths. While there are three oral cholera vaccines prequalified by the World Health Organization, there are issues surrounding vaccination campaigns in conflict situations, exacerbated by external factors such as a global vaccine shortage. Major movements of people complicates surveillance and administration of double doses of vaccines. Cholera therapy mainly depends on rehydration, with use of antibiotics in more severe infections. Concerns have arisen about the rise of antibiotic resistance in cholera, due to mobile genetic elements. In this review, we give an overview of cholera epidemiology, virulence, antibiotic resistance, therapy and vaccines, in the light of the ongoing epidemic in Yemen.
Collapse
Affiliation(s)
- Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, 31311, Saudi Arabia.
| |
Collapse
|
18
|
Saiz JC, Oya NJD, Blázquez AB, Escribano-Romero E, Martín-Acebes MA. Host-Directed Antivirals: A Realistic Alternative to Fight Zika Virus. Viruses 2018; 10:v10090453. [PMID: 30149598 PMCID: PMC6163279 DOI: 10.3390/v10090453] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/17/2018] [Accepted: 08/22/2018] [Indexed: 12/21/2022] Open
Abstract
Zika virus (ZIKV), a mosquito-borne flavivirus, was an almost neglected pathogen until its introduction in the Americas in 2015, where it has been responsible for a threat to global health, causing a great social and sanitary alarm due to its increased virulence, rapid spread, and an association with severe neurological and ophthalmological complications. Currently, no specific antiviral therapy against ZIKV is available, and treatments are palliative and mainly directed toward the relief of symptoms, such as fever and rash, by administering antipyretics, anti-histamines, and fluids for dehydration. Nevertheless, lately, search for antivirals has been a major aim in ZIKV investigations. To do so, screening of libraries from different sources, testing of natural compounds, and repurposing of drugs with known antiviral activity have allowed the identification of several antiviral candidates directed to both viral (structural proteins and enzymes) and cellular elements. Here, we present an updated review of current knowledge about anti-ZIKV strategies, focusing on host-directed antivirals as a realistic alternative to combat ZIKV infection.
Collapse
Affiliation(s)
- Juan-Carlos Saiz
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040 Madrid, Spain.
| | - Nereida Jiménez de Oya
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040 Madrid, Spain.
| | - Ana-Belén Blázquez
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040 Madrid, Spain.
| | - Estela Escribano-Romero
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040 Madrid, Spain.
| | - Miguel A Martín-Acebes
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040 Madrid, Spain.
| |
Collapse
|
19
|
ABMA, a small molecule that inhibits intracellular toxins and pathogens by interfering with late endosomal compartments. Sci Rep 2017; 7:15567. [PMID: 29138439 PMCID: PMC5686106 DOI: 10.1038/s41598-017-15466-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/24/2017] [Indexed: 12/30/2022] Open
Abstract
Intracellular pathogenic microorganisms and toxins exploit host cell mechanisms to enter, exert their deleterious effects as well as hijack host nutrition for their development. A potential approach to treat multiple pathogen infections and that should not induce drug resistance is the use of small molecules that target host components. We identified the compound 1-adamantyl (5-bromo-2-methoxybenzyl) amine (ABMA) from a cell-based high throughput screening for its capacity to protect human cells and mice against ricin toxin without toxicity. This compound efficiently protects cells against various toxins and pathogens including viruses, intracellular bacteria and parasite. ABMA provokes Rab7-positive late endosomal compartment accumulation in mammalian cells without affecting other organelles (early endosomes, lysosomes, the Golgi apparatus, the endoplasmic reticulum or the nucleus). As the mechanism of action of ABMA is restricted to host-endosomal compartments, it reduces cell infection by pathogens that depend on this pathway to invade cells. ABMA may represent a novel class of broad-spectrum compounds with therapeutic potential against diverse severe infectious diseases.
Collapse
|
20
|
Gal Y, Mazor O, Falach R, Sapoznikov A, Kronman C, Sabo T. Treatments for Pulmonary Ricin Intoxication: Current Aspects and Future Prospects. Toxins (Basel) 2017; 9:E311. [PMID: 28972558 PMCID: PMC5666358 DOI: 10.3390/toxins9100311] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 09/26/2017] [Accepted: 09/29/2017] [Indexed: 12/13/2022] Open
Abstract
Ricin, a plant-derived toxin originating from the seeds of Ricinus communis (castor beans), is one of the most lethal toxins known, particularly if inhaled. Ricin is considered a potential biological threat agent due to its high availability and ease of production. The clinical manifestation of pulmonary ricin intoxication in animal models is closely related to acute respiratory distress syndrome (ARDS), which involves pulmonary proinflammatory cytokine upregulation, massive neutrophil infiltration and severe edema. Currently, the only post-exposure measure that is effective against pulmonary ricinosis at clinically relevant time-points following intoxication in pre-clinical studies is passive immunization with anti-ricin neutralizing antibodies. The efficacy of this antitoxin treatment depends on antibody affinity and the time of treatment initiation within a limited therapeutic time window. Small-molecule compounds that interfere directly with the toxin or inhibit its intracellular trafficking may also be beneficial against ricinosis. Another approach relies on the co-administration of antitoxin antibodies with immunomodulatory drugs, thereby neutralizing the toxin while attenuating lung injury. Immunomodulators and other pharmacological-based treatment options should be tailored according to the particular pathogenesis pathways of pulmonary ricinosis. This review focuses on the current treatment options for pulmonary ricin intoxication using anti-ricin antibodies, disease-modifying countermeasures, anti-ricin small molecules and their various combinations.
Collapse
Affiliation(s)
- Yoav Gal
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| | - Ohad Mazor
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| | - Reut Falach
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| | - Anita Sapoznikov
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| | - Chanoch Kronman
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| | - Tamar Sabo
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| |
Collapse
|
21
|
Zheng W, Park JA, Abd El-Aty A, Kim SK, Cho SH, Choi JM, Yi H, Cho SM, El-Banna H, Shim JH, Chang BJ, Wang J, Kim JS, Shin HC. Bithionol residue analysis in animal-derived food products by an effective and rugged extraction method coupled with liquid chromatography–tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1064:100-108. [DOI: 10.1016/j.jchromb.2017.08.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/31/2017] [Accepted: 08/26/2017] [Indexed: 12/15/2022]
|
22
|
Abrams RPM, Solis J, Nath A. Therapeutic Approaches for Zika Virus Infection of the Nervous System. Neurotherapeutics 2017; 14:1027-1048. [PMID: 28952036 PMCID: PMC5722777 DOI: 10.1007/s13311-017-0575-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Zika virus has spread rapidly in the Americas and has caused devastation of human populations affected in these regions. The virus causes teratogenic effects involving the nervous system, and in adults and children can cause a neuropathy similar to Guillain-Barré syndrome, an anterior myelitis, or, rarely, an encephalitis. While major efforts have been undertaken to control mosquito populations that spread the virus and to develop a vaccine, drug development that directly targets the virus in an infected individual to prevent or treat the neurological manifestations is necessary. Rational and targeted drug development is possible since the viral life cycle and the structure of the key viral proteins are now well understood. While several groups have identified therapeutic candidates, their approaches differ in the types of screening processes and viral assays used. Animal studies are available for only a few compounds. Here we provide an exhaustive review and compare each of the classes of drugs discovered, the methods used for drug discovery, and their potential use in humans for the prevention or treatment of neurological complications of Zika virus infection.
Collapse
Affiliation(s)
- Rachel P M Abrams
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Jamie Solis
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Avindra Nath
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
23
|
Munjal A, Khandia R, Dhama K, Sachan S, Karthik K, Tiwari R, Malik YS, Kumar D, Singh RK, Iqbal HMN, Joshi SK. Advances in Developing Therapies to Combat Zika Virus: Current Knowledge and Future Perspectives. Front Microbiol 2017; 8:1469. [PMID: 28824594 PMCID: PMC5541032 DOI: 10.3389/fmicb.2017.01469] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 07/20/2017] [Indexed: 02/05/2023] Open
Abstract
Zika virus (ZIKV) remained largely quiescent for nearly six decades after its first appearance in 1947. ZIKV reappeared after 2007, resulting in a declaration of an international "public health emergency" in 2016 by the World Health Organization (WHO). Until this time, ZIKV was considered to induce only mild illness, but it has now been established as the cause of severe clinical manifestations, including fetal anomalies, neurological problems, and autoimmune disorders. Infection during pregnancy can cause congenital brain abnormalities, including microcephaly and neurological degeneration, and in other cases, Guillain-Barré syndrome, making infections with ZIKV a substantial public health concern. Genomic and molecular investigations are underway to investigate ZIKV pathology and its recent enhanced pathogenicity, as well as to design safe and potent vaccines, drugs, and therapeutics. This review describes progress in the design and development of various anti-ZIKV therapeutics, including drugs targeting virus entry into cells and the helicase protein, nucleosides, inhibitors of NS3 protein, small molecules, methyltransferase inhibitors, interferons, repurposed drugs, drugs designed with the aid of computers, neutralizing antibodies, convalescent serum, antibodies that limit antibody-dependent enhancement, and herbal medicines. Additionally, covalent inhibitors of viral protein expression and anti-Toll-like receptor molecules are discussed. To counter ZIKV-associated disease, we need to make rapid progress in developing novel therapies that work effectually to inhibit ZIKV.
Collapse
Affiliation(s)
- Ashok Munjal
- Department of Biochemistry and Genetics, Barkatullah UniversityBhopal, India
| | - Rekha Khandia
- Department of Biochemistry and Genetics, Barkatullah UniversityBhopal, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research InstituteBareilly, India
| | - Swati Sachan
- Immunology Section, ICAR-Indian Veterinary Research InstituteBareilly, India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences UniversityChennai, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan SansthanMathura, India
| | - Yashpal S. Malik
- Division of Biological Standardization, ICAR-Indian Veterinary Research InstituteBareilly, India
| | - Deepak Kumar
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research InstituteBareilly, India
| | - Raj K. Singh
- ICAR-Indian Veterinary Research InstituteBareilly, India
| | - Hafiz M. N. Iqbal
- School of Engineering and Science, Tecnologico de Monterrey, Campus MonterreyMonterrey, Mexico
| | - Sunil K. Joshi
- Cellular Immunology Lab, Frank Reidy Research Center of Bioelectrics, Old Dominion University, NorfolkVA, United States
| |
Collapse
|
24
|
Alam A, Imam N, farooqui A, Ali S, Malik MZ, Ishrat R. Recent trends in ZikV research: A step away from cure. Biomed Pharmacother 2017; 91:1152-1159. [DOI: 10.1016/j.biopha.2017.05.045] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/02/2017] [Accepted: 05/09/2017] [Indexed: 12/23/2022] Open
|