1
|
Colombel N, Ferreira G, Sullivan RM, Coureaud G. Dynamic developmental changes in neurotransmitters supporting infant attachment learning. Neurosci Biobehav Rev 2023; 151:105249. [PMID: 37257712 PMCID: PMC10754360 DOI: 10.1016/j.neubiorev.2023.105249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/15/2023] [Accepted: 05/26/2023] [Indexed: 06/02/2023]
Abstract
Infant survival relies on rapid identification, remembering and behavioral responsiveness to caregivers' sensory cues. While neural circuits supporting infant attachment learning have largely remained elusive in children, use of invasive techniques has uncovered some of its features in rodents. During a 10-day sensitive period from birth, newborn rodents associate maternal odors with maternal pleasant or noxious thermo-tactile stimulation, which gives rise to a preference and approach behavior towards these odors, and blockade of avoidance learning. Here we review the neural circuitry supporting this neonatal odor learning, unique compared to adults, focusing specifically on the early roles of neurotransmitters such as glutamate, GABA (Gamma-AminoButyric Acid), serotonin, dopamine and norepinephrine, in the olfactory bulb, the anterior piriform cortex and amygdala. The review highlights the importance of deepening our knowledge of age-specific infant brain neurotransmitters and behavioral functioning that can be translated to improve the well-being of children during typical development and aid in treatment during atypical development in childhood clinical practice, and the care during rearing of domestic animals.
Collapse
Affiliation(s)
- Nina Colombel
- Ecole Normale Supérieure de Lyon, Lyon 1 Claude Bernard University, Lyon, France
| | - Guillaume Ferreira
- FoodCircus group, NutriNeuro Lab, INRAE 1286, Bordeaux University, Bordeaux, France
| | - Regina M Sullivan
- Emotional Brain Institute, The Nathan Kline Institute, Orangeburg, NY, USA; Child and Adolescent Psychiatry, New York University Langone Medical Center, New York, USA
| | - Gérard Coureaud
- Sensory NeuroEthology Group, Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR 5292, Lyon 1 University, Jean-Monnet University, Bron, France.
| |
Collapse
|
2
|
Maziar A, Critch TNRHY, Ghosh S, Rajani V, Flynn CM, Qin T, Reinhardt C, Man KNM, Lee A, Hell JW, Yuan Q. Aging differentially affects LTCC function in hippocampal CA1 and piriform cortex pyramidal neurons. Cereb Cortex 2023; 33:1489-1503. [PMID: 35437602 PMCID: PMC9930631 DOI: 10.1093/cercor/bhac152] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/25/2022] [Accepted: 03/27/2022] [Indexed: 11/14/2022] Open
Abstract
Aging is associated with cognitive decline and memory loss in humans. In rats, aging-associated neuronal excitability changes and impairments in learning have been extensively studied in the hippocampus. Here, we investigated the roles of L-type calcium channels (LTCCs) in the rat piriform cortex (PC), in comparison with those of the hippocampus. We employed spatial and olfactory tasks that involve the hippocampus and PC. LTCC blocker nimodipine administration impaired spontaneous location recognition in adult rats (6-9 months). However, the same blocker rescued the spatial learning deficiency in aged rats (19-23 months). In an odor-associative learning task, infusions of nimodipine into either the PC or dorsal CA1 impaired the ability of adult rats to learn a positive odor association. Again, in contrast, nimodipine rescued odor associative learning in aged rats. Aged CA1 neurons had higher somatic expression of LTCC Cav1.2 subunits, exhibited larger afterhyperpolarization (AHP) and lower excitability compared with adult neurons. In contrast, PC neurons from aged rats showed higher excitability and no difference in AHP. Cav1.2 expression was similar in adult and aged PC somata, but relatively higher in PSD95- puncta in aged dendrites. Our data suggest unique features of aging-associated changes in LTCCs in the PC and hippocampus.
Collapse
Affiliation(s)
- Aida Maziar
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John's, NL A1B 3V6, Canada
| | - Tristian N R H Y Critch
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John's, NL A1B 3V6, Canada
| | - Sourav Ghosh
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John's, NL A1B 3V6, Canada
| | - Vishaal Rajani
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John's, NL A1B 3V6, Canada
| | - Cassandra M Flynn
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John's, NL A1B 3V6, Canada
| | - Tian Qin
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John's, NL A1B 3V6, Canada
| | - Camila Reinhardt
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John's, NL A1B 3V6, Canada
| | - Kwun Nok Mimi Man
- Department of Pharmacology, School of Medicine, University of California-Davis, Sacramento, CA 95817, United States
| | - Amy Lee
- Department of Neuroscience, University of Texas-Austin, Austin, TX 78712, United States
| | - Johannes W Hell
- Department of Pharmacology, School of Medicine, University of California-Davis, Sacramento, CA 95817, United States
| | - Qi Yuan
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John's, NL A1B 3V6, Canada
| |
Collapse
|
3
|
Cothren TO, Evonko CJ, MacQueen DA. Olfactory Dysfunction in Schizophrenia: Evaluating Olfactory Abilities Across Species. Curr Top Behav Neurosci 2023; 63:363-392. [PMID: 36059004 DOI: 10.1007/7854_2022_390] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Though understudied relative to perturbations in the auditory and visual domains, olfactory dysfunction is a common symptom of schizophrenia. Over the past two decades, the availability of standardized assessments to quantify human olfactory abilities, and enhance understanding of the neurophysiology supporting olfaction, has increased, enabling a more thorough characterization of these deficits. In contrast to other psychiatric conditions for which olfactory dysfunction has been observed (e.g., major depressive disorder, bipolar disorder, Alzheimer's disease), the impairments observed in schizophrenia are particularly global and profound. At this level, such deficits in olfactory abilities likely impact the enjoyment of food, detection of environmental hazards, and influence social relationships. More broadly, the study of olfactory phenotypes in schizophrenia presents new avenues for detection of those at-risk for the condition, identification of therapeutic targets for treatment development, and for the characterization of novel animal models relevant to schizophrenia and psychosis. This review will consider the olfactory performance of individuals with schizophrenia in domains for which standardized assessments are available (odor sensitivity, discrimination, identification, and memory). Paradigms available for assessing these abilities in rodents will also be discussed with the aim of facilitating translation. Thus, future studies will be able to include cross-species translation of mechanisms relevant to olfactory function and cognition, what has gone awry in the disease state, and test potential therapeutics.
Collapse
Affiliation(s)
- Taitum O Cothren
- Department of Psychology, University of North Carolina at Wilmington, Wilmington, NC, USA
| | - Christopher J Evonko
- Department of Psychology, University of North Carolina at Wilmington, Wilmington, NC, USA
| | - David A MacQueen
- Department of Psychology, University of North Carolina at Wilmington, Wilmington, NC, USA.
| |
Collapse
|
4
|
Wang B, Yang X, Lu J, Ntim M, Xia M, Kundu S, Jiang R, Chen D, Wang Y, Yang JY, Li S. Two-hour acute restraint stress facilitates escape behavior and learning outcomes through the activation of the Cdk5/GR P S211 pathway in male mice. Exp Neurol 2022; 354:114023. [PMID: 35218707 DOI: 10.1016/j.expneurol.2022.114023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/03/2022] [Accepted: 02/20/2022] [Indexed: 11/18/2022]
Abstract
Acute stress exerts pleiotropic actions on learning behaviors. The induced negative effects are sometimes adopted to measure the efficacy of particular drugs. Until now, there are no detailed experimental data on the time-gradient effects of acute stress. Here, we developed the time gradient acute restraint stress (ARS) model to precisely assess the roles of different restrain times on inducing acute stress. Time gradient ARS facilitates escape behaviors and learning outcomes, peaking at 2 h-ARS and then declining to baseline at 3.5 h-ARS as confirmed by time gradient post-stress data. Furthermore, time gradient ARS activates glucocorticoid receptor (GR) phosphorylation site at Serine211 (P S221) as an inverted V-shaped pattern peaking at 2 h-ARS, whereas that of the GR phosphorylation site at Serine226 (P S226) from 2 h-ARS to 3.5 h-ARS. The 2 h-ARS but not 3.5 h-ARS enhances synaptic plasticity and genes transcription associated with learning and memory in the hippocampus of male mice. The Cdk5 inhibitor, roscovitine, blocks this facilitation effect by intervening in GR phosphorylation at Serine211 in the 2 h-ARS mice. Altogether, these findings show that the time gradient ARS selectively activates GR phospho-isoforms and differentially influences the behaviors along with maintaining a relationship between 2 h-ARS and Cdk5/GR P S211-mediated transcriptional activity.
Collapse
Affiliation(s)
- Bin Wang
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning, China
| | - Xuewei Yang
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning, China
| | - Jincheng Lu
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning, China
| | - Michael Ntim
- Department of Physiology, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Min Xia
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning, China
| | - Supratik Kundu
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning, China
| | - Rong Jiang
- Department of Physiology, Binzhou Medical University, Yantai Campus, 346 Guanhai Road, Laishan District, Yantai, Shandong, China
| | - Defang Chen
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning, China
| | - Ying Wang
- Department of Cardiology, Institute of Heart and Vessel Diseases of Dalian Medical University, the Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Jin-Yi Yang
- Department of Urology, Affiliated Dalian Friendship Hospital of Dalian Medical University, Dalian, China.
| | - Shao Li
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning, China.
| |
Collapse
|
5
|
Rajani V, Yuan Q. Noradrenergic Modulation of the Piriform Cortex: A Possible Avenue for Understanding Pre-Clinical Alzheimer’s Disease Pathogenesis. Front Cell Neurosci 2022; 16:908758. [PMID: 35722616 PMCID: PMC9204642 DOI: 10.3389/fncel.2022.908758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Olfactory dysfunction is one of the biomarkers for Alzheimer’s disease (AD) diagnosis and progression. Deficits with odor identification and discrimination are common symptoms of pre-clinical AD, preceding severe memory disorder observed in advanced stages. As a result, understanding mechanisms of olfactory impairment is a major focus in both human studies and animal models of AD. Pretangle tau, a precursor to tau tangles, is first observed in the locus coeruleus (LC). In a recent animal model, LC pretangle tau leads to LC fiber degeneration in the piriform cortex (PC), a cortical area associated with olfactory dysfunction in both human AD and rodent models. Here, we review the role of LC-sourced NE in modulation of PC activity and suggest mechanisms by which pretangle tau-mediated LC dysfunction may impact olfactory processing in preclinical stage of AD. Understanding mechanisms of early olfactory impairment in AD may provide a critical window for detection and intervention of disease progression.
Collapse
|
6
|
Age-Dependent Contributions of NMDA Receptors and L-Type Calcium Channels to Long-Term Depression in the Piriform Cortex. Int J Mol Sci 2021; 22:ijms222413551. [PMID: 34948347 PMCID: PMC8706958 DOI: 10.3390/ijms222413551] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 11/17/2022] Open
Abstract
In the hippocampus, the contributions of N-methyl-D-aspartate receptors (NMDARs) and L-type calcium channels (LTCCs) to neuronal transmission and synaptic plasticity change with aging, underlying calcium dysregulation and cognitive dysfunction. However, the relative contributions of NMDARs and LTCCs in other learning encoding structures during aging are not known. The piriform cortex (PC) plays a significant role in odor associative memories, and like the hippocampus, exhibits forms of long-term synaptic plasticity. Here, we investigated the expression and contribution of NMDARs and LTCCs in long-term depression (LTD) of the PC associational fiber pathway in three cohorts of Sprague Dawley rats: neonatal (1-2 weeks), young adult (2-3 months) and aged (20-25 months). Using a combination of slice electrophysiology, Western blotting, fluorescent immunohistochemistry and confocal imaging, we observed a shift from an NMDAR to LTCC mediation of LTD in aged rats, despite no difference in the amount of LTD expression. These changes in plasticity are related to age-dependent differential receptor expression in the PC. LTCC Cav1.2 expression relative to postsynaptic density protein 95 is increased in the associational pathway of the aged PC layer Ib. Enhanced LTCC contribution in synaptic depression in the PC may contribute to altered olfactory function and learning with aging.
Collapse
|
7
|
Traub RD, Tu Y, Whittington MA. Cell assembly formation and structure in a piriform cortex model. Rev Neurosci 2021; 33:111-132. [PMID: 34271607 DOI: 10.1515/revneuro-2021-0056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 06/19/2021] [Indexed: 11/15/2022]
Abstract
The piriform cortex is rich in recurrent excitatory synaptic connections between pyramidal neurons. We asked how such connections could shape cortical responses to olfactory lateral olfactory tract (LOT) inputs. For this, we constructed a computational network model of anterior piriform cortex with 2000 multicompartment, multiconductance neurons (500 semilunar, 1000 layer 2 and 500 layer 3 pyramids; 200 superficial interneurons of two types; 500 deep interneurons of three types; 500 LOT afferents), incorporating published and unpublished data. With a given distribution of LOT firing patterns, and increasing the strength of recurrent excitation, a small number of firing patterns were observed in pyramidal cell networks: first, sparse firings; then temporally and spatially concentrated epochs of action potentials, wherein each neuron fires one or two spikes; then more synchronized events, associated with bursts of action potentials in some pyramidal neurons. We suggest that one function of anterior piriform cortex is to transform ongoing streams of input spikes into temporally focused spike patterns, called here "cell assemblies", that are salient for downstream projection areas.
Collapse
Affiliation(s)
- Roger D Traub
- AI Foundations, IBM T.J. Watson Research Center, Yorktown Heights, NY10598, USA
| | - Yuhai Tu
- AI Foundations, IBM T.J. Watson Research Center, Yorktown Heights, NY10598, USA
| | | |
Collapse
|
8
|
Zhou J, Lin Y, Huynh T, Noguchi H, Bush JO, Pleasure SJ. NMDA receptors control development of somatosensory callosal axonal projections. eLife 2021; 10:59612. [PMID: 33661095 PMCID: PMC7959694 DOI: 10.7554/elife.59612] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 02/22/2021] [Indexed: 11/25/2022] Open
Abstract
Callosal projections from primary somatosensory cortex (S1) are key for processing somatosensory inputs and integrating sensory-motor information. How the callosal innervation pattern in S1 is formed during early postnatal development is not clear. We found that the normal termination pattern of these callosal projections is disrupted in cortex specific NMDAR mutants. Rather than projecting selectively to the primary/secondary somatosensory cortex (S1/S2) border, axons were uniformly distributed throughout S1. In addition, the density of this projection increased over postnatal life until the mice died by P30. By combining genetic and antibody-mediated loss of function, we demonstrated that it is GluN2B-containing NMDA receptors in target S1 that mediate this guidance phenotype, thus playing a central role in interhemispheric connectivity. Furthermore, we found that this function of NMDA receptors in callosal circuit formation is independent of ion channel function and works with the EPHRIN-B/EPHB system. Thus, NMDAR in target S1 cortex regulates the formation callosal circuits perhaps by modulating EPH-dependent repulsion.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Neurology, University of California, San Francisco, San Francisco, United States.,Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, United States
| | - Yong Lin
- Department of Neurology, University of California, San Francisco, San Francisco, United States.,Department of Neurological Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Trung Huynh
- Department of Neurology, University of California, San Francisco, San Francisco, United States.,Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, United States
| | - Hirofumi Noguchi
- Department of Neurology, University of California, San Francisco, San Francisco, United States.,Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, United States
| | - Jeffrey O Bush
- Department of Cell and Tissue Biology, Program in Craniofacial Biology and Institute for Human Genetics, University of California, San Francisco, San Francisco, United States.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, United States
| | - Samuel J Pleasure
- Department of Neurology, University of California, San Francisco, San Francisco, United States.,Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, United States.,Programs in Neuroscience and Developmental Stem Cell Biology, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Kavli Institute for Fundamental Neuroscience, San Francisco, United States
| |
Collapse
|
9
|
Oruro EM, Pardo GVE, Lucion AB, Calcagnotto ME, Idiart MAP. The maturational characteristics of the GABA input in the anterior piriform cortex may also contribute to the rapid learning of the maternal odor during the sensitive period. ACTA ACUST UNITED AC 2020; 27:493-502. [PMID: 33199474 PMCID: PMC7670864 DOI: 10.1101/lm.052217.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 09/27/2020] [Indexed: 11/25/2022]
Abstract
During the first ten postnatal days (P), infant rodents can learn olfactory preferences for novel odors if they are paired with thermo-tactile stimuli that mimic components of maternal care. After P10, the thermo-tactile pairing becomes ineffective for conditioning. The current explanation for this change in associative learning is the alteration in the norepinephrine (NE) inputs from the locus coeruleus (LC) to the olfactory bulb (OB) and the anterior piriform cortex (aPC). By combining patch-clamp electrophysiology and computational simulations, we showed in a recent work that a transitory high responsiveness of the OB-aPC circuit to the maternal odor is an alternative mechanism that could also explain early olfactory preference learning and its cessation after P10. That result relied solely on the maturational properties of the aPC pyramidal cells. However, the GABAergic system undergoes important changes during the same period. To address the importance of the maturation of the GABAergic system for early olfactory learning, we incorporated data from the GABA inputs, obtained from in vitro patch-clamp experiment in the aPC of rat pups aged P5–P7 reported here, to the model proposed in our previous publication. In the younger than P10 OB-aPC circuit with GABA synaptic input, the number of responsive aPC pyramidal cells to the conditioned maternal odor was amplified in 30% compared to the circuit without GABAergic input. When compared with the circuit with other younger than P10 OB-aPC circuit with adult GABAergic input profile, this amplification was 88%. Together, our results suggest that during the olfactory preference learning in younger than P10, the GABAergic synaptic input presumably acts by depolarizing the aPC pyramidal neurons in such a way that it leads to the amplification of the pyramidal neurons response to the conditioned maternal odor. Furthermore, our results suggest that during this developmental period, the aPC pyramidal cells themselves seem to resolve the apparent lack of GABAergic synaptic inhibition by a strong firing adaptation in response to increased depolarizing inputs.
Collapse
Affiliation(s)
- Enver Miguel Oruro
- Neurocomputational and Language Processing Laboratory, Institute of Physics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 91501-970, Brazil.,Neuroscience Graduate Program, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90050-170, Brazil.,Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory, Department of Biochemistry, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90035-003, Brazil
| | - Grace V E Pardo
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory, Department of Biochemistry, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90035-003, Brazil.,Department of Physiology, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90050-170, Brazil.,Centre for Interdisciplinary Science and Society Studies, Universidad de Ciencias y Humanidades, Los Olivos, Lima 15314, Peru.,Center for Biomedical Research, Universidad Andina del Cusco, San Jerónimo, Cuzco 08006, Peru
| | - Aldo Bolten Lucion
- Neuroscience Graduate Program, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90050-170, Brazil.,Department of Physiology, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90050-170, Brazil
| | - Maria Elisa Calcagnotto
- Neuroscience Graduate Program, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90050-170, Brazil.,Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory, Department of Biochemistry, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90035-003, Brazil
| | - Marco A P Idiart
- Neurocomputational and Language Processing Laboratory, Institute of Physics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 91501-970, Brazil.,Neuroscience Graduate Program, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90050-170, Brazil
| |
Collapse
|
10
|
Role of Projections between Piriform Cortex and Orbitofrontal Cortex in Relapse to Fentanyl Seeking after Palatable Food Choice-Induced Voluntary Abstinence. J Neurosci 2020; 40:2485-2497. [PMID: 32051327 DOI: 10.1523/jneurosci.2693-19.2020] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 12/26/2019] [Accepted: 01/31/2020] [Indexed: 01/19/2023] Open
Abstract
We recently developed a rat model of relapse to drug seeking after food choice-induced voluntary abstinence. Here, we used this model to study the role of the orbitofrontal cortex (OFC) and its afferent projections in relapse to fentanyl seeking. We trained male and female rats to self-administer palatable food pellets for 6 d (6 h/d) and intravenous fentanyl (2.5 μg/kg/infusion) for 12 d (6 h/d). We assessed relapse to fentanyl seeking after 13-14 voluntary abstinence days, achieved through a discrete choice procedure between fentanyl infusions and palatable food (20 trials/d). In both sexes, relapse after food choice-induced abstinence was associated with increased expression of the activity marker Fos in the OFC. Pharmacological inactivation of the OFC with muscimol plus baclofen (50 + 50 ng/side) decreased relapse to fentanyl seeking. We then determined projection-specific activation of OFC afferents during the relapse test by using Fos plus the retrograde tracer cholera toxin B (injected into the OFC). Relapse to fentanyl seeking was associated with increased Fos expression in the piriform cortex (Pir) neurons projecting to the OFC, but not in projections from the basolateral amygdala and thalamus. Pharmacological inactivation of the Pir with muscimol plus baclofen decreased relapse to fentanyl seeking after voluntary abstinence. Next, we used an anatomical disconnection procedure to determine whether projections between the Pir and OFC are critical for relapse to fentanyl seeking. Unilateral muscimol plus baclofen injections into the Pir in one hemisphere plus unilateral muscimol plus baclofen injections into the OFC in the contralateral, but not ipsilateral, hemisphere decreased relapse. Our results identify Pir-OFC projections as a new motivation-related pathway critical to relapse to opioid seeking after voluntary abstinence.SIGNIFICANCE STATEMENT There are few preclinical studies of fentanyl relapse, and these studies have used experimenter-imposed extinction or forced abstinence procedures. In humans, however, abstinence is often voluntary, with drug available in the drug environment but forgone in favor of nondrug alternative reinforcers. We recently developed a rat model of drug relapse after palatable food choice-induced voluntary abstinence. Here, we used classical pharmacology, immunohistochemistry, and retrograde tracing to demonstrate a critical role of the piriform and orbitofrontal cortices in relapse to opioid seeking after voluntary abstinence.
Collapse
|
11
|
Cheng H, Wang Y, Chen J, Chen Z. The piriform cortex in epilepsy: What we learn from the kindling model. Exp Neurol 2020; 324:113137. [DOI: 10.1016/j.expneurol.2019.113137] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 11/25/2019] [Accepted: 11/29/2019] [Indexed: 12/14/2022]
|
12
|
Wang B, Wu Q, Lei L, Sun H, Michael N, Zhang X, Wang Y, Zhang Y, Ge B, Wu X, Wang Y, Xin Y, Zhao J, Li S. Long-term social isolation inhibits autophagy activation, induces postsynaptic dysfunctions and impairs spatial memory. Exp Neurol 2019; 311:213-224. [PMID: 30219732 DOI: 10.1016/j.expneurol.2018.09.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 08/14/2018] [Accepted: 09/12/2018] [Indexed: 12/23/2022]
Abstract
Social isolation in adolescence leads to lasting deficits in hippocampal-dependent tasks. The reported effects of isolation on learning and memory in the Morris water maze and synaptic-related proteins have been inconsistent. Moreover, the autophagy level and its effect on cognition in the isolation model are also not clear. In the present study, we did an extended isolation period up to six months to establish a stable and appropriate isolation model to investigate the cognitive changes associated with it. The mTOR inhibitor rapamycin was systemically administered to mice to determine the roles of autophagy activation on cognitive changes. We discovered that long-term post-weaning social isolation (L-PWSI) produced marked deficits in spatial learning and memory and inhibited CA1 long-term potentiation (LTP), but paired-pulse facilitation (PPF) and input/output (I/O) curve were unaffected. The results further showed that the L-PWSI significantly decreased the protein expression levels of PSD-95, GluA1, NR1 and NR2B in the hippocampus, and no significant changes in the extracellular release of glutamate and the protein expression levels of synaptophysin, synapsin I, GAP-43, NR2A and GABAA. Moreover, we found that L-PWSI increased the protein expression of p-AKT/AKT, p-mTOR/mTOR and p62, whereas the protein levels of LC3B and Beclin1 were decreased indicating an inhibition in autophagy activity. Intraperitoneal injection of rapamycin significantly potentiated fEPSP slope and cognition-related proteins expression in the L-PWSI mice. These results therefore suggest that L-PWSI induces postsynaptic dysfunction by disrupting the interaction between AMPAR, NMDAR and PSD-95, and inhibit the autophagy activity which led to impaired spatial memory and cognitive function.
Collapse
Affiliation(s)
- Bin Wang
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, Dalian Medical University, Dalian, Liaoning, China.
| | - Qiong Wu
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, Dalian Medical University, Dalian, Liaoning, China
| | - Lei Lei
- Technology Centre of Target-based Nature Products for Prevention and Treatment of Ageing-related Neurodegeneration, Dalian Medical University, Dalian, Liaoning, China
| | - Hailun Sun
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, Dalian Medical University, Dalian, Liaoning, China
| | - Ntim Michael
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, Dalian Medical University, Dalian, Liaoning, China
| | - Xuan Zhang
- Technology Centre of Target-based Nature Products for Prevention and Treatment of Ageing-related Neurodegeneration, Dalian Medical University, Dalian, Liaoning, China
| | - Ying Wang
- Department of Cardiology, Institute of Heart and Vessel Diseases of Dalian Medical University, the Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China; Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, Liaoning, China
| | - Yue Zhang
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, Dalian Medical University, Dalian, Liaoning, China
| | - Biying Ge
- Technology Centre of Target-based Nature Products for Prevention and Treatment of Ageing-related Neurodegeneration, Dalian Medical University, Dalian, Liaoning, China
| | - Xuefei Wu
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, Dalian Medical University, Dalian, Liaoning, China
| | - Yue Wang
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, Liaoning, China
| | - Yi Xin
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, Liaoning, China.
| | - Jie Zhao
- Technology Centre of Target-based Nature Products for Prevention and Treatment of Ageing-related Neurodegeneration, Dalian Medical University, Dalian, Liaoning, China.
| | - Shao Li
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, Dalian Medical University, Dalian, Liaoning, China.
| |
Collapse
|
13
|
Ghosh A, Carew SJ, Chen X, Yuan Q. The Role of L-type Calcium Channels in Olfactory Learning and Its Modulation by Norepinephrine. Front Cell Neurosci 2017; 11:394. [PMID: 29321726 PMCID: PMC5732138 DOI: 10.3389/fncel.2017.00394] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 11/28/2017] [Indexed: 11/25/2022] Open
Abstract
L type calcium channels (LTCCs) are prevalent in different systems and hold immense importance for maintaining/performing selective functions. In the nervous system, CaV1.2 and CaV1.3 are emerging as critical modulators of neuronal functions. Although the general role of these calcium channels in modulating synaptic plasticity and memory has been explored, their role in olfactory learning is not well understood. In this review article we first discuss the role of LTCCs in olfactory learning especially focusing on early odor preference learning in neonate rodents, presenting evidence that while NMDARs initiate stimulus-specific learning, LTCCs promote protein-synthesis dependent long-term memory (LTM). Norepinephrine (NE) release from the locus coeruleus (LC) is essential for early olfactory learning, thus noradrenergic modulation of LTCC function and its implication in olfactory learning is discussed here. We then address the differential roles of LTCCs in adult learning and learning in aged animals.
Collapse
Affiliation(s)
- Abhinaba Ghosh
- Laboratory of Neuroscience, Department of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Samantha J Carew
- Laboratory of Neuroscience, Department of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Xihua Chen
- Laboratory of Neuroscience, Department of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Qi Yuan
- Laboratory of Neuroscience, Department of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
14
|
Laine MA, Sokolowska E, Dudek M, Callan SA, Hyytiä P, Hovatta I. Brain activation induced by chronic psychosocial stress in mice. Sci Rep 2017; 7:15061. [PMID: 29118417 PMCID: PMC5678090 DOI: 10.1038/s41598-017-15422-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/27/2017] [Indexed: 02/02/2023] Open
Abstract
Chronic psychosocial stress is a well-established risk factor for neuropsychiatric diseases. Abnormalities in brain activity have been demonstrated in patients with stress-related disorders. Global brain activation patterns during chronic stress exposure are less well understood but may have strong modifying effects on specific brain circuits and thereby influence development of stress-related pathologies. We determined neural activation induced by chronic social defeat stress, a mouse model of psychosocial stress. To assess chronic activation with an unbiased brain-wide focus we used manganese-enhanced magnetic resonance imaging (MEMRI) and immunohistochemical staining of ∆FOSB, a transcription factor induced by repeated neural activity. One week after 10-day social defeat we observed significantly more activation in several brain regions known to regulate depressive and anxiety-like behaviour, including the prefrontal cortex, bed nucleus of stria terminalis, ventral hippocampus and periaqueductal grey in stressed compared to control mice. We further established that the correlation of ∆FOSB positive cells between specific brain regions was altered following chronic social defeat. Chronic activation of these neural circuits may relate to persistent brain activity changes occurring during chronic psychosocial stress exposure, with potential relevance for the development of anxiety and depression in humans.
Collapse
Affiliation(s)
- Mikaela A Laine
- Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Ewa Sokolowska
- Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Mateusz Dudek
- Department of Pharmacology, University of Helsinki, Helsinki, Finland
| | | | - Petri Hyytiä
- Department of Pharmacology, University of Helsinki, Helsinki, Finland.
| | - Iiris Hovatta
- Department of Biosciences, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
15
|
Ghosh A, Mukherjee B, Chen X, Yuan Q. β-Adrenoceptor activation enhances L-type calcium channel currents in anterior piriform cortex pyramidal cells of neonatal mice: implication for odor learning. ACTA ACUST UNITED AC 2017; 24:132-135. [PMID: 28202717 PMCID: PMC5311384 DOI: 10.1101/lm.044818.116] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 01/03/2017] [Indexed: 01/05/2023]
Abstract
Early odor preference learning occurs in one-week-old rodents when a novel odor is paired with a tactile stimulation mimicking maternal care. β-Adrenoceptors and L-type calcium channels (LTCCs) in the anterior piriform cortex (aPC) are critically involved in this learning. However, whether β-adrenoceptors interact directly with LTCCs in aPC pyramidal cells is unknown. Here we show that pyramidal cells expressed significant LTCC currents that declined with age. β-Adrenoceptor activation via isoproterenol age-dependently enhanced LTCC currents. Nifedipine-sensitive, isoproterenol enhancement of calcium currents was only observed in post-natal day 7–10 mice. APC β-adrenoceptor activation induced early odor preference learning was blocked by nifedipine coinfusion.
Collapse
Affiliation(s)
- Abhinaba Ghosh
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador A1B 3V6, Canada
| | - Bandhan Mukherjee
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador A1B 3V6, Canada
| | - Xihua Chen
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador A1B 3V6, Canada
| | - Qi Yuan
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador A1B 3V6, Canada
| |
Collapse
|