1
|
Yao Z, Zhang X, Deng L, Zhang J, Wen Y, Zheng D, Liu L. Exploring the Genetic Relationship Between Type 2 Diabetes and Cardiovascular Disease: A Large-Scale Genetic Association and Polygenic Risk Score Study. Biomolecules 2024; 14:1467. [PMID: 39595643 PMCID: PMC11592259 DOI: 10.3390/biom14111467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Type 2 diabetes (T2D) is often comorbid with cardiovascular diseases (CVDs). The direction of causation between T2D and CVD is difficult to determine; however, there may be a common underlying pathway attributable to shared genetic factors. We aimed to determine whether there is a shared genetic susceptibility to T2D and CVD. This study utilizes large-scale datasets from the UK Biobank (UKB) and DIAGRAM consortium to investigate the genetic association between T2D and CVD through phenotypic association analyses, linkage disequilibrium score (LDSC) analysis, and polygenic risk score (PRS) analysis. LDSC analysis demonstrates significant genetic associations between T2D and various CVD subtypes, including angina, heart failure (HF), myocardial infarction (MI), peripheral vascular disease (PVD), and stroke. Although the genetic association between T2D and atrial fibrillation (AF) was not significant, individuals in the high-T2D PRS group had a significantly increased risk of CVD. These findings suggest a common genetic basis and suggest that genetic susceptibility to T2D may be a potential predictor of CVD risk.
Collapse
Affiliation(s)
- Ziwei Yao
- Academy of Medical Sciences, Shanxi Medical University, No 56 Xinjian South Road, Yingze District, Taiyuan 030001, China; (Z.Y.); (X.Z.)
- Department of Health Statistics, School of Public Health, Shanxi Medical University, No 56 Xinjian South Road, Yingze District, Taiyuan 030001, China; (L.D.); (J.Z.)
| | - Xiaomai Zhang
- Academy of Medical Sciences, Shanxi Medical University, No 56 Xinjian South Road, Yingze District, Taiyuan 030001, China; (Z.Y.); (X.Z.)
- Department of Health Statistics, School of Public Health, Shanxi Medical University, No 56 Xinjian South Road, Yingze District, Taiyuan 030001, China; (L.D.); (J.Z.)
| | - Liufei Deng
- Department of Health Statistics, School of Public Health, Shanxi Medical University, No 56 Xinjian South Road, Yingze District, Taiyuan 030001, China; (L.D.); (J.Z.)
| | - Jiayu Zhang
- Department of Health Statistics, School of Public Health, Shanxi Medical University, No 56 Xinjian South Road, Yingze District, Taiyuan 030001, China; (L.D.); (J.Z.)
| | - Yalu Wen
- Department of Statistics, University of Auckland, 38 Princes Street, Auckland Central, Auckland 1010, New Zealand;
| | - Deqiang Zheng
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing 100054, China
| | - Long Liu
- Academy of Medical Sciences, Shanxi Medical University, No 56 Xinjian South Road, Yingze District, Taiyuan 030001, China; (Z.Y.); (X.Z.)
- Department of Health Statistics, School of Public Health, Shanxi Medical University, No 56 Xinjian South Road, Yingze District, Taiyuan 030001, China; (L.D.); (J.Z.)
| |
Collapse
|
2
|
Calvo-López M, Ortega-Paz L, Jimenez-Trinidad FR, Brugaletta S, Sabaté M, Dantas AP. Sex-associated differences in cardiac ageing: Clinical aspects and molecular mechanisms. Eur J Clin Invest 2024; 54:e14215. [PMID: 38624065 DOI: 10.1111/eci.14215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/17/2024]
Abstract
Despite the extensive clinical and scientific advances in prevention, diagnostics and treatment, cardiovascular diseases (CVD) remain the leading cause of morbidity and mortality worldwide for people aged 65 and over. Of all ageing-related diseases, CVD are responsible for almost one-third of deaths in the elderly, being above all cancers combined. Age is an independent and unavoidable risk factor contributing to the impairment of heart and blood vessels. As the average age of the population in industrialized countries has doubled in the last century, and almost a fifth of the world's population is predicted to be over 65 in the next decade, we can assume that the burden of CVD will fall primarily on the elderly. Evidence from basic and clinical science has shown that sex significantly influences the onset and severity of CVD. In women, CVD usually develop later than in men and with atypical symptomatology. After menopause, however, the incidence and severity of CVD increase in women, reaching equality in both sexes. Although intrinsic sexual dimorphism in cardiovascular ageing may contribute to the sex differences in CVD progression, the molecular mechanisms associated with cardiovascular ageing and their clinical value are not known in detail. In this review, we discuss the scientific knowledge available, focusing on structural, hormonal, genetic/epigenetic and inflammatory pathways, seeking to transfer these findings to the cardiovascular clinic in terms of prevention, diagnosis, prognosis and management of these pathologies and proposing possible validation of target specifics.
Collapse
Affiliation(s)
- Margarita Calvo-López
- Clínic's Cardiovascular Institute (ICCV), Hospital Clinic of Barcelona, Barcelona, Spain
| | - Luis Ortega-Paz
- Department of Medicine, Division of Cardiology, UF Health Cardiovascular Center, University of Florida College of Medicine-Jacksonville, Jacksonville, Florida, USA
| | - Francisco Rafael Jimenez-Trinidad
- Institut de Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Salvatore Brugaletta
- Clínic's Cardiovascular Institute (ICCV), Hospital Clinic of Barcelona, Barcelona, Spain
- Institut de Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Manel Sabaté
- Clínic's Cardiovascular Institute (ICCV), Hospital Clinic of Barcelona, Barcelona, Spain
- Institut de Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Ana Paula Dantas
- Institut de Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| |
Collapse
|
3
|
Sakkers TR, Mokry M, Civelek M, Erdmann J, Pasterkamp G, Diez Benavente E, den Ruijter HM. Sex differences in the genetic and molecular mechanisms of coronary artery disease. Atherosclerosis 2023; 384:117279. [PMID: 37805337 DOI: 10.1016/j.atherosclerosis.2023.117279] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/09/2023] [Accepted: 09/01/2023] [Indexed: 10/09/2023]
Abstract
Sex differences in coronary artery disease (CAD) presentation, risk factors and prognosis have been widely studied. Similarly, studies on atherosclerosis have shown prominent sex differences in plaque biology. Our understanding of the underlying genetic and molecular mechanisms that drive these differences remains fragmented and largely understudied. Through reviewing genetic and epigenetic studies, we identified more than 40 sex-differential candidate genes (13 within known CAD loci) that may explain, at least in part, sex differences in vascular remodeling, lipid metabolism and endothelial dysfunction. Studies with transcriptomic and single-cell RNA sequencing data from atherosclerotic plaques highlight potential sex differences in smooth muscle cell and endothelial cell biology. Especially, phenotypic switching of smooth muscle cells seems to play a crucial role in female atherosclerosis. This matches the known sex differences in atherosclerotic phenotypes, with men being more prone to lipid-rich plaques, while women are more likely to develop fibrous plaques with endothelial dysfunction. To unravel the complex mechanisms that drive sex differences in CAD, increased statistical power and adjustments to study designs and analysis strategies are required. This entails increasing inclusion rates of women, performing well-defined sex-stratified analyses and the integration of multi-omics data.
Collapse
Affiliation(s)
- Tim R Sakkers
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3508, GA, Utrecht, the Netherlands
| | - Michal Mokry
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3508, GA, Utrecht, the Netherlands; Central Diagnostic Laboratory, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3508, GA, Utrecht, the Netherlands
| | - Mete Civelek
- Center for Public Health Genomics, University of Virginia, 1335 Lee St, Charlottesville, VA, 22908, USA; Department of Biomedical Engineering, University of Virginia, 351 McCormick Road, Charlottesville, VA, 22904, USA
| | - Jeanette Erdmann
- Institute for Cardiogenetics, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Gerard Pasterkamp
- Central Diagnostic Laboratory, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3508, GA, Utrecht, the Netherlands
| | - Ernest Diez Benavente
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3508, GA, Utrecht, the Netherlands
| | - Hester M den Ruijter
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3508, GA, Utrecht, the Netherlands.
| |
Collapse
|
4
|
Tcheandjieu C, Zhu X, Hilliard AT, Clarke SL, Napolioni V, Ma S, Lee KM, Fang H, Chen F, Lu Y, Tsao NL, Raghavan S, Koyama S, Gorman BR, Vujkovic M, Klarin D, Levin MG, Sinnott-Armstrong N, Wojcik GL, Plomondon ME, Maddox TM, Waldo SW, Bick AG, Pyarajan S, Huang J, Song R, Ho YL, Buyske S, Kooperberg C, Haessler J, Loos RJF, Do R, Verbanck M, Chaudhary K, North KE, Avery CL, Graff M, Haiman CA, Le Marchand L, Wilkens LR, Bis JC, Leonard H, Shen B, Lange LA, Giri A, Dikilitas O, Kullo IJ, Stanaway IB, Jarvik GP, Gordon AS, Hebbring S, Namjou B, Kaufman KM, Ito K, Ishigaki K, Kamatani Y, Verma SS, Ritchie MD, Kember RL, Baras A, Lotta LA, Kathiresan S, Hauser ER, Miller DR, Lee JS, Saleheen D, Reaven PD, Cho K, Gaziano JM, Natarajan P, Huffman JE, Voight BF, Rader DJ, Chang KM, Lynch JA, Damrauer SM, Wilson PWF, Tang H, Sun YV, Tsao PS, O'Donnell CJ, Assimes TL. Large-scale genome-wide association study of coronary artery disease in genetically diverse populations. Nat Med 2022; 28:1679-1692. [PMID: 35915156 PMCID: PMC9419655 DOI: 10.1038/s41591-022-01891-3] [Citation(s) in RCA: 184] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/08/2022] [Indexed: 02/03/2023]
Abstract
We report a genome-wide association study (GWAS) of coronary artery disease (CAD) incorporating nearly a quarter of a million cases, in which existing studies are integrated with data from cohorts of white, Black and Hispanic individuals from the Million Veteran Program. We document near equivalent heritability of CAD across multiple ancestral groups, identify 95 novel loci, including nine on the X chromosome, detect eight loci of genome-wide significance in Black and Hispanic individuals, and demonstrate that two common haplotypes at the 9p21 locus are responsible for risk stratification in all populations except those of African origin, in which these haplotypes are virtually absent. Moreover, in the largest GWAS for angiographically derived coronary atherosclerosis performed to date, we find 15 loci of genome-wide significance that robustly overlap with established loci for clinical CAD. Phenome-wide association analyses of novel loci and polygenic risk scores (PRSs) augment signals related to insulin resistance, extend pleiotropic associations of these loci to include smoking and family history, and precisely document the markedly reduced transferability of existing PRSs to Black individuals. Downstream integrative analyses reinforce the critical roles of vascular endothelial, fibroblast, and smooth muscle cells in CAD susceptibility, but also point to a shared biology between atherosclerosis and oncogenesis. This study highlights the value of diverse populations in further characterizing the genetic architecture of CAD.
Collapse
Affiliation(s)
- Catherine Tcheandjieu
- VA Palo Alto Health Care System, Palo Alto, CA, USA.
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA, USA.
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA.
| | - Xiang Zhu
- VA Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Statistics, Stanford University, Stanford, CA, USA
- Department of Statistics, The Pennsylvania State University, University Park, PA, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | | | - Shoa L Clarke
- VA Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Valerio Napolioni
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Shining Ma
- Department of Statistics, Stanford University, Stanford, CA, USA
| | - Kyung Min Lee
- VA Informatics and Computing Infrastructure, VA Salt Lake City Health Care System, Salt Lake City, UT, USA
| | - Huaying Fang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Fei Chen
- Department of Preventive Medicine, Center for Genetic Epidemiology, University of Southern California, Los Angeles, CA, USA
| | - Yingchang Lu
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Noah L Tsao
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sridharan Raghavan
- Medicine Service, VA Eastern Colorado Health Care System, Aurora, CO, USA
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Satoshi Koyama
- Laboratory for Cardiovascular Genomics and Informatics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Bryan R Gorman
- VA Boston Healthcare System, Boston, MA, USA
- Booz Allen Hamilton, McLean, VA, USA
| | - Marijana Vujkovic
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Derek Klarin
- VA Palo Alto Health Care System, Palo Alto, CA, USA
- VA Boston Healthcare System, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Vascular Surgery and Endovascular Therapy, University of Florida School of Medicine, Gainesville, FL, USA
- Stanford University School of Medicine, Stanford, CA, USA
| | - Michael G Levin
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Nasa Sinnott-Armstrong
- VA Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Genevieve L Wojcik
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Mary E Plomondon
- Department of Medicine, Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
- CART Program, VHA Office of Quality and Patient Safety, Washington, DC, USA
| | - Thomas M Maddox
- Healthcare Innovation Lab, JC HealthCare/Washington University School of Medicine, St Louis, MO, USA
- Division of Cardiology, Washington University School of Medicine, St Louis, MO, USA
| | - Stephen W Waldo
- Department of Medicine, Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
- CART Program, VHA Office of Quality and Patient Safety, Washington, DC, USA
- Division of Cardiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Alexander G Bick
- Department of Biomedical Informatics, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Saiju Pyarajan
- VA Boston Healthcare System, Boston, MA, USA
- Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jie Huang
- VA Boston Healthcare System, Boston, MA, USA
- Department of Global Health, Peking University School of Public Health, Beijing, China
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, China
| | | | - Yuk-Lam Ho
- VA Boston Healthcare System, Boston, MA, USA
| | - Steven Buyske
- Department of Statistics, Rutgers University, Piscataway, NJ, USA
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Jeffrey Haessler
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Ruth J F Loos
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ron Do
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marie Verbanck
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- EA 7537 BioSTM, Université de Paris, Paris, France
| | - Kumardeep Chaudhary
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kari E North
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Christy L Avery
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Mariaelisa Graff
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Christopher A Haiman
- Department of Preventive Medicine, Center for Genetic Epidemiology, University of Southern California, Los Angeles, CA, USA
| | - Loïc Le Marchand
- Cancer Epidemiology Program, University of Hawaii Cancer Center, University of Hawaii, Honolulu, HI, USA
| | - Lynne R Wilkens
- Cancer Epidemiology Program, University of Hawaii Cancer Center, University of Hawaii, Honolulu, HI, USA
| | - Joshua C Bis
- Department of Medicine, Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
| | - Hampton Leonard
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
- Data Tecnica Int'l, LLC, Glen Echo, MD, USA
| | - Botong Shen
- Health Disparities Research Section, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Leslie A Lange
- Department of Medicine, Division of Biomedical Informatics and Personalized Medicine, Aurora, CO, USA
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, Aurora, CO, USA
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ayush Giri
- Department of Medicine, Division of Epidemiology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Obstetrics and Gynecology, Division of Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ozan Dikilitas
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Iftikhar J Kullo
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Ian B Stanaway
- Department of Medicine, Division of Nephrology, University of Washington, Seattle, WA, USA
| | - Gail P Jarvik
- Department of Medicine, Medical Genetics, University of Washington School of Medicine, Seattle, WA, USA
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Adam S Gordon
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Scott Hebbring
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI, USA
| | - Bahram Namjou
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kenneth M Kaufman
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kaoru Ito
- Laboratory for Cardiovascular Genomics and Informatics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Kazuyoshi Ishigaki
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Yoichiro Kamatani
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences - The University of Tokyo, Tokyo, Japan
| | - Shefali S Verma
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Biomedical Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Marylyn D Ritchie
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Biomedical Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Rachel L Kember
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Aris Baras
- Regeneron Genetics Center, Tarrytown, NY, USA
| | | | - Sekar Kathiresan
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Cardiology Division, Massachusetts General Hospital, Boston, MA, USA
- Verve Therapeutics, Cambridge, MA, USA
| | - Elizabeth R Hauser
- Cooperative Studies Program Epidemiology Center-Durham, Durham VA Health Care System, Durham, NC, USA
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, USA
| | - Donald R Miller
- Center for Healthcare Organization and Implementation Research, Bedford VA Healthcare System, Bedford, MA, USA
- Center for Population Health, Department of Biomedical and Nutritional Sciences, University of Massachusetts, Lowell, MA, USA
| | - Jennifer S Lee
- VA Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Danish Saleheen
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Medicine, Division of Cardiology, Columbia University, New York, NY, USA
| | - Peter D Reaven
- Phoenix VA Health Care System, Phoenix, AZ, USA
- College of Medicine, University of Arizona, Phoenix, AZ, USA
| | - Kelly Cho
- VA Boston Healthcare System, Boston, MA, USA
- Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - J Michael Gaziano
- VA Boston Healthcare System, Boston, MA, USA
- Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Pradeep Natarajan
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Cardiology Division, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | | | - Benjamin F Voight
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Institute of Translational Medicine and Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Daniel J Rader
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kyong-Mi Chang
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Julie A Lynch
- VA Salt Lake City Health Care System, Salt Lake City, UT, USA
- College of Nursing and Health Sciences, University of Massachusetts, Boston, MA, USA
| | - Scott M Damrauer
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Peter W F Wilson
- Atlanta VA Medical Center, Atlanta, GA, USA
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Hua Tang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Yan V Sun
- Atlanta VA Health Care System, Atlanta, GA, USA
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Philip S Tsao
- VA Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Christopher J O'Donnell
- VA Boston Healthcare System, Boston, MA, USA
- Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Themistocles L Assimes
- VA Palo Alto Health Care System, Palo Alto, CA, USA.
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
5
|
Abstract
Sex is a key risk factor for many types of cardiovascular disease. It is imperative to understand the mechanisms underlying sex differences to devise optimal preventive and therapeutic approaches for all individuals. Both biological sex (determined by sex chromosomes and gonadal hormones) and gender (social and cultural behaviors associated with femininity or masculinity) influence differences between men and women in disease susceptibility and pathology. Here, we focus on the application of experimental mouse models that elucidate the influence of 2 components of biological sex-sex chromosome complement (XX or XY) and gonad type (ovaries or testes). These models have revealed that in addition to well-known effects of gonadal hormones, sex chromosome complement influences cardiovascular risk factors, such as plasma cholesterol levels and adiposity, as well as the development of atherosclerosis and pulmonary hypertension. One mechanism by which sex chromosome dosage influences cardiometabolic traits is through sex-biased expression of X chromosome genes that escape X inactivation. These include chromatin-modifying enzymes that regulate gene expression throughout the genome. The identification of factors that determine sex-biased gene expression and cardiometabolic traits will expand our mechanistic understanding of cardiovascular disease processes and provide insight into sex differences that remain throughout the lifespan as gonadal hormone levels alter with age.
Collapse
Affiliation(s)
- Karen Reue
- Department of Human Genetics, David Geffen School of Medicine at UCLA
- Department of Medicine, David Geffen School of Medicine at UCLA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095
| | - Carrie B. Wiese
- Department of Human Genetics, David Geffen School of Medicine at UCLA
| |
Collapse
|
6
|
Pott J, Horn K, Zeidler R, Kirsten H, Ahnert P, Kratzsch J, Loeffler M, Isermann B, Ceglarek U, Scholz M. Sex-Specific Causal Relations between Steroid Hormones and Obesity-A Mendelian Randomization Study. Metabolites 2021; 11:738. [PMID: 34822396 PMCID: PMC8624973 DOI: 10.3390/metabo11110738] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 12/15/2022] Open
Abstract
Steroid hormones act as important regulators of physiological processes including gene expression. They provide possible mechanistic explanations of observed sex-dimorphisms in obesity and coronary artery disease (CAD). Here, we aim to unravel causal relationships between steroid hormones, obesity, and CAD in a sex-specific manner. In genome-wide meta-analyses of four steroid hormone levels and one hormone ratio, we identified 17 genome-wide significant loci of which 11 were novel. Among loci, seven were female-specific, four male-specific, and one was sex-related (stronger effects in females). As one of the loci was the human leukocyte antigen (HLA) region, we analyzed HLA allele counts and found four HLA subtypes linked to 17-OH-progesterone (17-OHP), including HLA-B*14*02. Using Mendelian randomization approaches with four additional hormones as exposure, we detected causal effects of dehydroepiandrosterone sulfate (DHEA-S) and 17-OHP on body mass index (BMI) and waist-to-hip ratio (WHR). The DHEA-S effect was stronger in males. Additionally, we observed the causal effects of testosterone, estradiol, and their ratio on WHR. By mediation analysis, we found a direct sex-unspecific effect of 17-OHP on CAD while the other four hormone effects on CAD were mediated by BMI or WHR. In conclusion, we identified the sex-specific causal networks of steroid hormones, obesity-related traits, and CAD.
Collapse
Affiliation(s)
- Janne Pott
- Institute for Medical Informatics, Statistics and Epidemiology, Medical Faculty, University of Leipzig, 04107 Leipzig, Germany; (K.H.); (H.K.); (P.A.); (M.L.)
- LIFE Research Center for Civilization Diseases, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany; (J.K.); (B.I.); (U.C.)
| | - Katrin Horn
- Institute for Medical Informatics, Statistics and Epidemiology, Medical Faculty, University of Leipzig, 04107 Leipzig, Germany; (K.H.); (H.K.); (P.A.); (M.L.)
- LIFE Research Center for Civilization Diseases, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany; (J.K.); (B.I.); (U.C.)
| | - Robert Zeidler
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, 04103 Leipzig, Germany;
| | - Holger Kirsten
- Institute for Medical Informatics, Statistics and Epidemiology, Medical Faculty, University of Leipzig, 04107 Leipzig, Germany; (K.H.); (H.K.); (P.A.); (M.L.)
- LIFE Research Center for Civilization Diseases, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany; (J.K.); (B.I.); (U.C.)
| | - Peter Ahnert
- Institute for Medical Informatics, Statistics and Epidemiology, Medical Faculty, University of Leipzig, 04107 Leipzig, Germany; (K.H.); (H.K.); (P.A.); (M.L.)
- LIFE Research Center for Civilization Diseases, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany; (J.K.); (B.I.); (U.C.)
| | - Jürgen Kratzsch
- LIFE Research Center for Civilization Diseases, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany; (J.K.); (B.I.); (U.C.)
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, 04103 Leipzig, Germany;
| | - Markus Loeffler
- Institute for Medical Informatics, Statistics and Epidemiology, Medical Faculty, University of Leipzig, 04107 Leipzig, Germany; (K.H.); (H.K.); (P.A.); (M.L.)
- LIFE Research Center for Civilization Diseases, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany; (J.K.); (B.I.); (U.C.)
| | - Berend Isermann
- LIFE Research Center for Civilization Diseases, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany; (J.K.); (B.I.); (U.C.)
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, 04103 Leipzig, Germany;
| | - Uta Ceglarek
- LIFE Research Center for Civilization Diseases, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany; (J.K.); (B.I.); (U.C.)
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, 04103 Leipzig, Germany;
| | - Markus Scholz
- Institute for Medical Informatics, Statistics and Epidemiology, Medical Faculty, University of Leipzig, 04107 Leipzig, Germany; (K.H.); (H.K.); (P.A.); (M.L.)
- LIFE Research Center for Civilization Diseases, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany; (J.K.); (B.I.); (U.C.)
| |
Collapse
|
7
|
Hartiala JA, Hilser JR, Biswas S, Lusis AJ, Allayee H. Gene-Environment Interactions for Cardiovascular Disease. Curr Atheroscler Rep 2021; 23:75. [PMID: 34648097 PMCID: PMC8903169 DOI: 10.1007/s11883-021-00974-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE OF REVIEW We provide an overview of recent findings with respect to gene-environment (GxE) interactions for cardiovascular disease (CVD) risk and discuss future opportunities for advancing the field. RECENT FINDINGS Over the last several years, GxE interactions for CVD have mostly been identified for smoking and coronary artery disease (CAD) or related risk factors. By comparison, there is more limited evidence for GxE interactions between CVD outcomes and other exposures, such as physical activity, air pollution, diet, and sex. The establishment of large consortia and population-based cohorts, in combination with new computational tools and mouse genetics platforms, can potentially overcome some of the limitations that have hindered human GxE interaction studies and reveal additional association signals for CVD-related traits. The identification of novel GxE interactions is likely to provide a better understanding of the pathogenesis and genetic liability of CVD, with significant implications for healthy lifestyles and therapeutic strategies.
Collapse
Affiliation(s)
- Jaana A Hartiala
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSC202, Los Angeles, CA, 90033, USA
| | - James R Hilser
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSC202, Los Angeles, CA, 90033, USA
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Subarna Biswas
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSC202, Los Angeles, CA, 90033, USA
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Aldons J Lusis
- Department of Medicine, David Geffen School of Medicine of UCLA, Los Angeles, CA, 90095, USA
- Department of Microbiology, David Geffen School of Medicine of UCLA, Los Angeles, CA, 90095, USA
- Department of Human Genetics, David Geffen School of Medicine of UCLA, Los Angeles, CA, 90095, USA
| | - Hooman Allayee
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSC202, Los Angeles, CA, 90033, USA.
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
8
|
Abraham G, Rutten-Jacobs L, Inouye M. Risk Prediction Using Polygenic Risk Scores for Prevention of Stroke and Other Cardiovascular Diseases. Stroke 2021; 52:2983-2991. [PMID: 34399584 PMCID: PMC7611731 DOI: 10.1161/strokeaha.120.032619] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Early prediction of risk of cardiovascular disease (CVD), including stroke, is a cornerstone of disease prevention. Clinical risk scores have been widely used for predicting CVD risk from known risk factors. Most CVDs have a substantial genetic component, which also has been confirmed for stroke in recent gene discovery efforts. However, the role of genetics in prediction of risk of CVD, including stroke, has been limited to testing for highly penetrant monogenic disorders. In contrast, the importance of polygenic variation, the aggregated effect of many common genetic variants across the genome with individually small effects, has become more apparent in the last 5 to 10 years, and powerful polygenic risk scores for CVD have been developed. Here we review the current state of the field of polygenic risk scores for CVD including stroke, and their potential to improve CVD risk prediction. We present findings and lessons from diseases such as coronary artery disease as these will likely be useful to inform future research in stroke polygenic risk prediction.
Collapse
Affiliation(s)
- Gad Abraham
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Clinical Pathology, University of Melbourne, Parkville, VIC, Australia
| | - Loes Rutten-Jacobs
- Personalized Health Care Data Science, Real World Data, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Michael Inouye
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Clinical Pathology, University of Melbourne, Parkville, VIC, Australia
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
- National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- The Alan Turing Institute, London, UK
| |
Collapse
|
9
|
Sex and gender aspects in vascular pathophysiology. Clin Sci (Lond) 2020; 134:2203-2207. [PMID: 32844996 DOI: 10.1042/cs20200876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/11/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022]
Abstract
Cardiovascular disease (CVD) is a leading cause of global mortality in men and women. The prevalence, pathophysiology, clinical manifestations and outcomes of CVD observed in these two populations is being increasingly recognized as distinct. In this editorial, we provide an overview of mechanisms related to differences in vascular pathophysiology between men and women and explore the contributions of both sex and gender.
Collapse
|
10
|
Feofanova EV, Chen H, Dai Y, Jia P, Grove ML, Morrison AC, Qi Q, Daviglus M, Cai J, North KE, Laurie CC, Kaplan RC, Boerwinkle E, Yu B. A Genome-wide Association Study Discovers 46 Loci of the Human Metabolome in the Hispanic Community Health Study/Study of Latinos. Am J Hum Genet 2020; 107:849-863. [PMID: 33031748 PMCID: PMC7675000 DOI: 10.1016/j.ajhg.2020.09.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/10/2020] [Indexed: 02/08/2023] Open
Abstract
Variation in levels of the human metabolome reflect changes in homeostasis, providing a window into health and disease. The genetic impact on circulating metabolites in Hispanics, a population with high cardiometabolic disease burden, is largely unknown. We conducted genome-wide association analyses on 640 circulating metabolites in 3,926 Hispanic Community Health Study/Study of Latinos participants. The estimated heritability for 640 metabolites ranged between 0%-54% with a median at 2.5%. We discovered 46 variant-metabolite pairs (p value < 1.2 × 10-10, minor allele frequency ≥ 1%, proportion of variance explained [PEV] mean = 3.4%, PEVrange = 1%-22%) with generalized effects in two population-based studies and confirmed 301 known locus-metabolite associations. Half of the identified variants with generalized effect were located in genes, including five nonsynonymous variants. We identified co-localization with the expression quantitative trait loci at 105 discovered and 151 known loci-metabolites sets. rs5855544, upstream of SLC51A, was associated with higher levels of three steroid sulfates and co-localized with expression levels of SLC51A in several tissues. Mendelian randomization (MR) analysis identified several metabolites associated with coronary heart disease (CHD) and type 2 diabetes. For example, two variants located in or near CYP4F2 (rs2108622 and rs79400241, respectively), involved in vitamin E metabolism, were associated with the levels of octadecanedioate and vitamin E metabolites (gamma-CEHC and gamma-CEHC glucuronide); MR analysis showed that genetically high levels of these metabolites were associated with lower odds of CHD. Our findings document the genetic architecture of circulating metabolites in an underrepresented Hispanic/Latino community, shedding light on disease etiology.
Collapse
Affiliation(s)
- Elena V Feofanova
- Human Genetics Center, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Han Chen
- Human Genetics Center, University of Texas Health Science Center, Houston, TX 77030, USA; Center for Precision Health, School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Yulin Dai
- Center for Precision Health, School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Peilin Jia
- Center for Precision Health, School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Megan L Grove
- Human Genetics Center, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Alanna C Morrison
- Human Genetics Center, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Qibin Qi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Martha Daviglus
- Institute for Minority Health Research, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Jianwen Cai
- Department of Biostatistics, University of North Carolina Gilling School of Global Public Health, Chapel Hill, NC 27599, USA
| | - Kari E North
- Department of Epidemiology, University of North Carolina Gilling School of Global Public Health, Chapel Hill, NC 27599, USA; Carolina Center of Genome Sciences, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Cathy C Laurie
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Robert C Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Eric Boerwinkle
- Human Genetics Center, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Bing Yu
- Human Genetics Center, University of Texas Health Science Center, Houston, TX 77030, USA.
| |
Collapse
|
11
|
Scholz M, Henger S, Beutner F, Teren A, Baber R, Willenberg A, Ceglarek U, Pott J, Burkhardt R, Thiery J. Cohort Profile: The Leipzig Research Center for Civilization Diseases–Heart Study (LIFE-Heart). Int J Epidemiol 2020; 49:1439-1440h. [DOI: 10.1093/ije/dyaa075] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 04/06/2020] [Indexed: 12/12/2022] Open
Affiliation(s)
- Markus Scholz
- Institute for Medical Informatics, Statistic and Epidemiology, University of Leipzig, Leipzig, Germany
- Leipzig Research Center for Civilization Diseases (LIFE), University of Leipzig, Leipzig, Germany
| | - Sylvia Henger
- Institute for Medical Informatics, Statistic and Epidemiology, University of Leipzig, Leipzig, Germany
- Leipzig Research Center for Civilization Diseases (LIFE), University of Leipzig, Leipzig, Germany
| | - Frank Beutner
- Leipzig Research Center for Civilization Diseases (LIFE), University of Leipzig, Leipzig, Germany
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
- Heart Center Leipzig, Leipzig, Germany
| | - Andrej Teren
- Leipzig Research Center for Civilization Diseases (LIFE), University of Leipzig, Leipzig, Germany
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
- Heart Center Leipzig, Leipzig, Germany
| | - Ronny Baber
- Leipzig Research Center for Civilization Diseases (LIFE), University of Leipzig, Leipzig, Germany
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Anja Willenberg
- Leipzig Research Center for Civilization Diseases (LIFE), University of Leipzig, Leipzig, Germany
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Uta Ceglarek
- Leipzig Research Center for Civilization Diseases (LIFE), University of Leipzig, Leipzig, Germany
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Janne Pott
- Institute for Medical Informatics, Statistic and Epidemiology, University of Leipzig, Leipzig, Germany
- Leipzig Research Center for Civilization Diseases (LIFE), University of Leipzig, Leipzig, Germany
| | - Ralph Burkhardt
- Leipzig Research Center for Civilization Diseases (LIFE), University of Leipzig, Leipzig, Germany
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Joachim Thiery
- Leipzig Research Center for Civilization Diseases (LIFE), University of Leipzig, Leipzig, Germany
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| |
Collapse
|
12
|
Hartman RJG, Kapteijn DMC, Haitjema S, Bekker MN, Mokry M, Pasterkamp G, Civelek M, den Ruijter HM. Intrinsic transcriptomic sex differences in human endothelial cells at birth and in adults are associated with coronary artery disease targets. Sci Rep 2020; 10:12367. [PMID: 32704153 PMCID: PMC7378217 DOI: 10.1038/s41598-020-69451-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023] Open
Abstract
Sex differences in endothelial cell (EC) biology may reflect intrinsic differences driven by chromosomes or sex steroid exposure and gender differences accumulated over life. We analysed EC gene expression data from boy-girl twins at birth and in non-twin adults to detect sex differences at different stages of life, and show that 14-25% of the EC transcriptome is sex-biased. By combining data from both stages of life, we identified sex differences that are present at birth and maintained throughout life, and those that are acquired over life. Promisingly, we found that genes that present with an acquired sex difference in ECs are more likely to be targets of sex steroids. Annotating both gene sets with data from multiple genome-wide association studies (GWAS) revealed that genes with an intrinsic sex difference in ECs are enriched for coronary artery disease GWAS hits. This study underscores the need for treating sex as a biological variable.
Collapse
Affiliation(s)
- Robin J G Hartman
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Daniek M C Kapteijn
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Saskia Haitjema
- Central Diagnostics Laboratory, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mireille N Bekker
- Department of Obstetrics and Gynecology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Michal Mokry
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
- Central Diagnostics Laboratory, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gerard Pasterkamp
- Central Diagnostics Laboratory, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mete Civelek
- Center for Public Health Genomics, Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22908, USA
| | - Hester M den Ruijter
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands.
- Division of Heart and Lungs, Department of Experimental Cardiology, University Medical Center Utrecht, Heidelberglaan 100, PO Box 85500, 3508GA, Utrecht, The Netherlands.
| |
Collapse
|
13
|
Perrino C, Ferdinandy P, Bøtker HE, Brundel BJJM, Collins P, Davidson SM, den Ruijter HM, Engel FB, Gerdts E, Girao H, Gyöngyösi M, Hausenloy DJ, Lecour S, Madonna R, Marber M, Murphy E, Pesce M, Regitz-Zagrosek V, Sluijter JPG, Steffens S, Gollmann-Tepeköylü C, Van Laake LW, Van Linthout S, Schulz R, Ytrehus K. Improving translational research in sex-specific effects of comorbidities and risk factors in ischaemic heart disease and cardioprotection: position paper and recommendations of the ESC Working Group on Cellular Biology of the Heart. Cardiovasc Res 2020; 117:367-385. [PMID: 32484892 DOI: 10.1093/cvr/cvaa155] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 03/29/2020] [Accepted: 05/27/2020] [Indexed: 12/17/2022] Open
Abstract
Ischaemic heart disease (IHD) is a complex disorder and a leading cause of death and morbidity in both men and women. Sex, however, affects several aspects of IHD, including pathophysiology, incidence, clinical presentation, diagnosis as well as treatment and outcome. Several diseases or risk factors frequently associated with IHD can modify cellular signalling cascades, thus affecting ischaemia/reperfusion injury as well as responses to cardioprotective interventions. Importantly, the prevalence and impact of risk factors and several comorbidities differ between males and females, and their effects on IHD development and prognosis might differ according to sex. The cellular and molecular mechanisms underlying these differences are still poorly understood, and their identification might have important translational implications in the prediction or prevention of risk of IHD in men and women. Despite this, most experimental studies on IHD are still undertaken in animal models in the absence of risk factors and comorbidities, and assessment of potential sex-specific differences are largely missing. This ESC WG Position Paper will discuss: (i) the importance of sex as a biological variable in cardiovascular research, (ii) major biological mechanisms underlying sex-related differences relevant to IHD risk factors and comorbidities, (iii) prospects and pitfalls of preclinical models to investigate these associations, and finally (iv) will provide recommendations to guide future research. Although gender differences also affect IHD risk in the clinical setting, they will not be discussed in detail here.
Collapse
Affiliation(s)
- Cinzia Perrino
- Department of Advanced Biomedical Sciences, Federico II University, Via Pansini 5, 80131 Naples, Italy
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary.,Pharmahungary Group, Hajnoczy str. 6., H-6722 Szeged, Hungary
| | - Hans E Bøtker
- Department of Cardiology, Aarhus University Hospital, Palle Juul-Jensens Blvd. 161, 8200 Aarhus, Denmark
| | - Bianca J J M Brundel
- Department of Physiology, Amsterdam UMC, Vrije Universiteit, Amsterdam Cardiovascular Sciences, De Boelelaan 1117, Amsterdam, 1108 HV, the Netherlands
| | - Peter Collins
- Imperial College, Faculty of Medicine, National Heart & Lung Institute, South Kensington Campus, London SW7 2AZ, UK.,Royal Brompton Hospital, Sydney St, Chelsea, London SW3 6NP, UK
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, WC1E 6HX London, UK
| | - Hester M den Ruijter
- Experimental Cardiology Laboratory, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Felix B Engel
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Muscle Research Center Erlangen (MURCE), Schwabachanlage 12, 91054 Erlangen, Germany
| | - Eva Gerdts
- Department for Clinical Science, University of Bergen, PO Box 7804, 5020 Bergen, Norway
| | - Henrique Girao
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Azinhaga Santa Comba, Celas, 3000-548 Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, and Clinical Academic Centre of Coimbra (CACC), 3000-548 Coimbra, Portugal
| | - Mariann Gyöngyösi
- Department of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Derek J Hausenloy
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, 8 College Road, 169857, Singapore.,National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, 169609, Singapore.,Yong Loo Lin School of Medicine, National University Singapore, 1E Kent Ridge Road, 119228, Singapore.,The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London WC1E 6HX, UK.,Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, 500, Lioufeng Rd., Wufeng, Taichung 41354, Taiwan
| | - Sandrine Lecour
- Hatter Institute for Cardiovascular Research in Africa, Faculty of Health Sciences, Chris Barnard Building, University of Cape Town, Private Bag X3 7935 Observatory, Cape Town, South Africa
| | - Rosalinda Madonna
- Institute of Cardiology, University of Pisa, Lungarno Antonio Pacinotti 43, 56126 Pisa, Italy.,Department of Internal Medicine, University of Texas Medical School in Houston, 6410 Fannin St #1014, Houston, TX 77030, USA
| | - Michael Marber
- King's College London BHF Centre, The Rayne Institute, St Thomas' Hospital, Westminster Bridge Road, London SE1 7EH, UK
| | - Elizabeth Murphy
- Laboratory of Cardiac Physiology, Cardiovascular Branch, NHLBI, NIH, 10 Center Drive, Bethesda, MD 20892, USA
| | - Maurizio Pesce
- Unità di Ingegneria Tissutale Cardiovascolare, Centro Cardiologico Monzino, IRCCS Via Parea, 4, I-20138 Milan, Italy
| | - Vera Regitz-Zagrosek
- Berlin Institute of Gender in Medicine, Center for Cardiovascular Research, DZHK, partner site Berlin, Geschäftsstelle Potsdamer Str. 58, 10785 Berlin, Germany.,University of Zürich, Rämistrasse 71, 8006 Zürich, Germany
| | - Joost P G Sluijter
- Experimental Cardiology Laboratory, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 8, 3584 CS Utrecht, the Netherlands.,Circulatory Health Laboratory, Regenerative Medicine Center, University Medical Center Utrecht, Utrecht University, Heidelberglaan 8, 3584 CS Utrecht, the Netherlands
| | - Sabine Steffens
- Institute for Cardiovascular Prevention and German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Pettenkoferstr. 9, Ludwig-Maximilians-University, 80336 Munich, Germany
| | - Can Gollmann-Tepeköylü
- Department of Cardiac Surgery, Medical University of Innsbruck, Anichstr.35, A - 6020 Innsbruck, Austria
| | - Linda W Van Laake
- Cardiology and UMC Utrecht Regenerative Medicine Center, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Sophie Van Linthout
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité, University Medicine Berlin, 10178 Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité, University Medicine Berlin, 10178 Berlin, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany
| | - Rainer Schulz
- Institute of Physiology, Justus-Liebig University Giessen, Ludwigstraße 23, 35390 Giessen, Germany
| | - Kirsti Ytrehus
- Department of Medical Biology, UiT The Arctic University of Norway, Hansine Hansens veg 18, 9037 Tromsø, Norway
| |
Collapse
|
14
|
Pott J, Beutner F, Horn K, Kirsten H, Olischer K, Wirkner K, Loeffler M, Scholz M. Genome-wide analysis of carotid plaque burden suggests a role of IL5 in men. PLoS One 2020; 15:e0233728. [PMID: 32469969 PMCID: PMC7259763 DOI: 10.1371/journal.pone.0233728] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 05/11/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Carotid artery plaque is an established marker of subclinical atherosclerosis with pronounced sex-dimorphism. Here, we aimed to identify genetic variants associated with carotid plaque burden (CPB) and to examine potential sex-specific genetic effects on plaque sizes. METHODS AND RESULTS We defined six operationalizations of CPB considering plaques in common carotid arteries, carotid bulb, and internal carotid arteries. We performed sex-specific genome-wide association analyses for all traits in the LIFE-Adult cohort (n = 727 men and n = 550 women) and tested significantly associated loci for sex-specific effects. In order to identify causal genes, we analyzed candidate gene expression data for correlation with CPB traits and corresponding sex-specific effects. Further, we tested if previously reported SNP associations with CAD and plaque prevalence are also associated with CBP. We found seven loci with suggestive significance for CPB (p<3.33x10-7), explaining together between 6 and 13% of the CPB variance. Sex-specific analysis showed a genome-wide significant hit for men at 5q31.1 (rs201629990, β = -0.401, p = 5.22x10-9), which was not associated in women (β = -0.127, p = 0.093) with a significant difference in effect size (p = 0.008). Analyses of gene expression data suggested IL5 as the most plausible candidate, as it reflected the same sex-specific association with CPBs (p = 0.037). Known plaque prevalence or CAD loci showed no enrichment in the association with CPB. CONCLUSIONS We showed that CPB is a complementary trait in analyzing genetics of subclinical atherosclerosis. We detected a novel locus for plaque size in men only suggesting a role of IL5. Several estrogen response elements in this locus point towards a functional explanation of the observed sex-specific effect.
Collapse
Affiliation(s)
- Janne Pott
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
- LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
- Leipzig University Medical Center, IFB Adiposity Diseases, University of Leipzig, Leipzig, Germany
| | - Frank Beutner
- LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
- Heart Center Leipzig, Leipzig, Germany
| | - Katrin Horn
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
- LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Holger Kirsten
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
- LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Kay Olischer
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
- LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Kerstin Wirkner
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
- LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Markus Loeffler
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
- LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Markus Scholz
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
- LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
- Leipzig University Medical Center, IFB Adiposity Diseases, University of Leipzig, Leipzig, Germany
| |
Collapse
|
15
|
de Jong L, Bobeldijk-Pastorova I, Erdmann J, Bijker-Schreurs M, Schunkert H, Kuivenhoven JA, van Gool AJ. Sharing lessons learnt across European cardiovascular research consortia. Drug Discov Today 2020; 25:787-792. [PMID: 31981480 DOI: 10.1016/j.drudis.2020.01.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 01/03/2020] [Accepted: 01/03/2020] [Indexed: 12/21/2022]
Abstract
Research consortia in Europe often compete with each other for skills, human and technical resources and, eventually, recognition of the scientific impact of their work. In response to the same EU Horizon2020 call, we received funding for our research project proposals to identify and validate novel drug targets for cardiovascular disease treatment. Each consortium followed a unique and independent research strategy. However, as coordinators of these consortia we envisioned we could increase impact, outcomes and efficiency by intensifying our interaction. At an agreed stage during our projects we chose to share our knowledge, vision and ideas. In this paper we present what we learned, in the hope that future consortia will see the benefits of this approach.
Collapse
Affiliation(s)
| | | | - Jeanette Erdmann
- Institute for Cardiogenetics and University Heart Center Luebeck, University of Lübeck, Maria-Goeppert-Straße 1, 23562 Lübeck, Germany
| | - Marijke Bijker-Schreurs
- Department of Pediatrics, Molecular Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Heribert Schunkert
- Deutsches Herzzentrum München, Klinik für Herz- und Kreislauferkrankungen, Technische Universität München, and Deutsches Zentrum für Herz- und Kreislaufforschung (DZHK), 80636 Munich, Germany
| | - Jan Albert Kuivenhoven
- Department of Pediatrics, Molecular Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Alain J van Gool
- Metabolic Health Research, TNO Innovation for Life, Leiden, The Netherlands; Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
16
|
Eltermaa M, Jakobson M, Utt M, Kõks S, Mägi R, Starkopf J. Genetic variants in humanin nuclear isoform gene regions show no association with coronary artery disease. BMC Res Notes 2019; 12:759. [PMID: 31753007 PMCID: PMC6873426 DOI: 10.1186/s13104-019-4807-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/14/2019] [Indexed: 12/11/2022] Open
Abstract
Objective Coronary artery disease contributes to noncommunicable disease deaths worldwide. In order to make preventive methods more accurate, we need to know more about the development and progress of this pathology, including the genetic aspects. Humanin is a small peptide known for its cytoprotective and anti-apoptotic properties. Our study looked for genomic associations between humanin-like nuclear isoform genes and coronary artery disease using CARDIoGRAMplusC4D Consortium data. Results Lookup from meta-analysis datasets gave single nucleotide polymorphisms in all 13 humanin-like nuclear isoform genes with the lowest P value for rs6151662 from the MTRNR2L2 gene including the 50 kb flanking region in both directions (P-value = 0.0037). Within the gene region alone the top variant was rs78083998 from the MTRNR2L13 region (meta-analysis P-value = 0.042). None of the found associations were statistically significant after correction for multiple testing. Lookup for expression trait loci in these gene regions gave no statistically significant variants.
Collapse
Affiliation(s)
- Mall Eltermaa
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.
| | - Maili Jakobson
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Meeme Utt
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.,Institute of Pharmacy, University of Tartu, Tartu, Estonia
| | - Sulev Kõks
- Murdoch University, Murdoch, WA, Australia.,Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
| | - Reedik Mägi
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Joel Starkopf
- Department of Anaesthesiology and Intensive Care, Tartu University Hospital, Tartu, Estonia
| |
Collapse
|
17
|
Sabater-Lleal M, Huffman JE, de Vries PS, Marten J, Mastrangelo MA, Song C, Pankratz N, Ward-Caviness CK, Yanek LR, Trompet S, Delgado GE, Guo X, Bartz TM, Martinez-Perez A, Germain M, de Haan HG, Ozel AB, Polasek O, Smith AV, Eicher JD, Reiner AP, Tang W, Davies NM, Stott DJ, Rotter JI, Tofler GH, Boerwinkle E, de Maat MPM, Kleber ME, Welsh P, Brody JA, Chen MH, Vaidya D, Soria JM, Suchon P, van Hylckama Vlieg A, Desch KC, Kolcic I, Joshi PK, Launer LJ, Harris TB, Campbell H, Rudan I, Becker DM, Li JZ, Rivadeneira F, Uitterlinden AG, Hofman A, Franco OH, Cushman M, Psaty BM, Morange PE, McKnight B, Chong MR, Fernandez-Cadenas I, Rosand J, Lindgren A, Gudnason V, Wilson JF, Hayward C, Ginsburg D, Fornage M, Rosendaal FR, Souto JC, Becker LC, Jenny NS, März W, Jukema JW, Dehghan A, Trégouët DA, Morrison AC, Johnson AD, O'Donnell CJ, Strachan DP, Lowenstein CJ, Smith NL. Genome-Wide Association Transethnic Meta-Analyses Identifies Novel Associations Regulating Coagulation Factor VIII and von Willebrand Factor Plasma Levels. Circulation 2019; 139:620-635. [PMID: 30586737 DOI: 10.1161/circulationaha.118.034532] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Factor VIII (FVIII) and its carrier protein von Willebrand factor (VWF) are associated with risk of arterial and venous thrombosis and with hemorrhagic disorders. We aimed to identify and functionally test novel genetic associations regulating plasma FVIII and VWF. METHODS We meta-analyzed genome-wide association results from 46 354 individuals of European, African, East Asian, and Hispanic ancestry. All studies performed linear regression analysis using an additive genetic model and associated ≈35 million imputed variants with natural log-transformed phenotype levels. In vitro gene silencing in cultured endothelial cells was performed for candidate genes to provide additional evidence on association and function. Two-sample Mendelian randomization analyses were applied to test the causal role of FVIII and VWF plasma levels on the risk of arterial and venous thrombotic events. RESULTS We identified 13 novel genome-wide significant ( P≤2.5×10-8) associations, 7 with FVIII levels ( FCHO2/TMEM171/TNPO1, HLA, SOX17/RP1, LINC00583/NFIB, RAB5C-KAT2A, RPL3/TAB1/SYNGR1, and ARSA) and 11 with VWF levels ( PDHB/PXK/KCTD6, SLC39A8, FCHO2/TMEM171/TNPO1, HLA, GIMAP7/GIMAP4, OR13C5/NIPSNAP, DAB2IP, C2CD4B, RAB5C-KAT2A, TAB1/SYNGR1, and ARSA), beyond 10 previously reported associations with these phenotypes. Functional validation provided further evidence of association for all loci on VWF except ARSA and DAB2IP. Mendelian randomization suggested causal effects of plasma FVIII activity levels on venous thrombosis and coronary artery disease risk and plasma VWF levels on ischemic stroke risk. CONCLUSIONS The meta-analysis identified 13 novel genetic loci regulating FVIII and VWF plasma levels, 10 of which we validated functionally. We provide some evidence for a causal role of these proteins in thrombotic events.
Collapse
Affiliation(s)
- Maria Sabater-Lleal
- Cardiovascular Medicine Unit, Department of Medicine, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden (M.S.-L.).,Unit of Genomics of Complex Diseases, Institut d'Investigació Biomèdica Sant Pau, IIB-Sant Pau, Barcelona, Spain (M.S.-L., A.M.-P., J.M.S.)
| | - Jennifer E Huffman
- Population Sciences Branch, National Heart, Lung, and Blood Institute, Framingham, MA (J.E.H., C.S., J.D.E., M.-H.C., A.D.J., C.J.O.).,Framingham Heart Study, MA (J.E.H., C.S., J.D.E., M.-H.C., A.D.J., C.J.O.)
| | - Paul S de Vries
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health (P.S.d.V., E.B., M.F., A.C.M.), University of Texas Health Science Center at Houston.,Department of Epidemiology (P.S.d.V., A.H., O.H.F., A.D.), Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Jonathan Marten
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine (J.M., J.F.W., C.H.), University of Edinburgh, Scotland
| | - Michael A Mastrangelo
- Aab Cardiovascular Research Institute, University of Rochester Medical Center, NY (M.A.M., C.J.L.)
| | - Ci Song
- Population Sciences Branch, National Heart, Lung, and Blood Institute, Framingham, MA (J.E.H., C.S., J.D.E., M.-H.C., A.D.J., C.J.O.).,Framingham Heart Study, MA (J.E.H., C.S., J.D.E., M.-H.C., A.D.J., C.J.O.)
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota School of Medicine, Minneapolis (N.P.)
| | - Cavin K Ward-Caviness
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Chapel Hill, NC (C.K.W.-C.)
| | - Lisa R Yanek
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD (L.R.Y., D.V., D.M.B., L.C.B.)
| | - Stella Trompet
- Department of Geriatrics and Gerontology (S.T.), Leiden University Medical Center, the Netherlands.,Department of Cardiology (S.T., J.W.J.), Leiden University Medical Center, the Netherlands
| | - Graciela E Delgado
- Department of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany (G.E.D., M.E.K., W.M.)
| | - Xiuqing Guo
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics and Medicine, LABioMed at Harbor-UCLA Medical Center, Torrance, CA (X.G., J.I.R.)
| | - Traci M Bartz
- Department of Biostatistics (T.M.B., B.M.), University of Washington, Seattle
| | - Angel Martinez-Perez
- Unit of Genomics of Complex Diseases, Institut d'Investigació Biomèdica Sant Pau, IIB-Sant Pau, Barcelona, Spain (M.S.-L., A.M.-P., J.M.S.)
| | - Marine Germain
- Institut national de la santé et de la recherche médicale (INSERM), UMR_S 1166, Team Genomics and Pathophysiology of Cardiovascular Diseases, Sorbonne Universités, Université Pierre-et-Marie-Curie, Paris, France (M.G., D.-A.T.).,ICAN Institute for Cardiometabolism and Nutrition, Paris, France (M.G., D.-A.T.)
| | - Hugoline G de Haan
- Department of Clinical Epidemiology (H.G.d.H., A.v.H.V., F.R.R.), Leiden University Medical Center, the Netherlands
| | - Ayse B Ozel
- Department of Human Genetics (A.B.O., J.Z.L., D.G.), University of Michigan, Ann Arbor
| | - Ozren Polasek
- Faculty of Medicine, University of Split, Croatia (O.P., I.K.)
| | - Albert V Smith
- School of Public Health, Department of Biostatistics (A.V.S.), University of Michigan, Ann Arbor
| | - John D Eicher
- Framingham Heart Study, MA (J.E.H., C.S., J.D.E., M.-H.C., A.D.J., C.J.O.)
| | - Alex P Reiner
- Department of Epidemiology, (A.P.R., B.M.P., N.L.S.), University of Washington, Seattle.,Fred Hutchinson Cancer Research Center, Seattle, WA (A.P.R.)
| | - Weihong Tang
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis (W.T.)
| | - Neil M Davies
- Medical Research Council Integrative Epidemiology Unit and Bristol Medical School (N.M.D.), University of Bristol, UK
| | - David J Stott
- Academic Section of Geriatrics, Faculty of Medicine (J.D.S.), University of Glasgow, UK
| | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics and Medicine, LABioMed at Harbor-UCLA Medical Center, Torrance, CA (X.G., J.I.R.)
| | - Geoffrey H Tofler
- Royal North Shore Hospital, University of Sydney, Australia (G.H.T.)
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health (P.S.d.V., E.B., M.F., A.C.M.), University of Texas Health Science Center at Houston.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX (E.B.)
| | - Moniek P M de Maat
- Department of Hematology (M.P.M.d.M.), Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Marcus E Kleber
- Department of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany (G.E.D., M.E.K., W.M.).,Institute of Nutrition, Friedrich-Schiller-University Jena, Mannheim, Germany (M.E.K.)
| | - Paul Welsh
- Institute of Cardiovascular and Medical Sciences (P.W.), University of Glasgow, UK
| | - Jennifer A Brody
- Department of Medicine (J.A.B., B.M.P.), University of Washington, Seattle
| | - Ming-Huei Chen
- Population Sciences Branch, National Heart, Lung, and Blood Institute, Framingham, MA (J.E.H., C.S., J.D.E., M.-H.C., A.D.J., C.J.O.).,Framingham Heart Study, MA (J.E.H., C.S., J.D.E., M.-H.C., A.D.J., C.J.O.)
| | - Dhananjay Vaidya
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD (L.R.Y., D.V., D.M.B., L.C.B.)
| | - José Manuel Soria
- Unit of Genomics of Complex Diseases, Institut d'Investigació Biomèdica Sant Pau, IIB-Sant Pau, Barcelona, Spain (M.S.-L., A.M.-P., J.M.S.)
| | - Pierre Suchon
- Laboratory of Haematology, La Timone Hospital, Marseille, France (P.S., P.-E.M.).,Institut national de la santé et de la recherche médicale (INSERM), UMR_S 1062, Nutrition Obesity and Risk of Thrombosis, Marseille, France (P.S., P.-E.M.)
| | - Astrid van Hylckama Vlieg
- Department of Clinical Epidemiology (H.G.d.H., A.v.H.V., F.R.R.), Leiden University Medical Center, the Netherlands
| | - Karl C Desch
- Department of Pediatrics and Communicable Disease (K.D.C.), University of Michigan, Ann Arbor
| | - Ivana Kolcic
- Faculty of Medicine, University of Split, Croatia (O.P., I.K.)
| | - Peter K Joshi
- Centre for Global Health Research, Usher Institute for Population Health Sciences and Informatics (P.K.J., H.C., I.R., J.F.W.), University of Edinburgh, Scotland
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences National Institute on Aging, Bethesda, MD (L.J.L., T.B.H.)
| | - Tamara B Harris
- Laboratory of Epidemiology and Population Sciences National Institute on Aging, Bethesda, MD (L.J.L., T.B.H.)
| | - Harry Campbell
- Centre for Global Health Research, Usher Institute for Population Health Sciences and Informatics (P.K.J., H.C., I.R., J.F.W.), University of Edinburgh, Scotland
| | - Igor Rudan
- Centre for Global Health Research, Usher Institute for Population Health Sciences and Informatics (P.K.J., H.C., I.R., J.F.W.), University of Edinburgh, Scotland
| | - Diane M Becker
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD (L.R.Y., D.V., D.M.B., L.C.B.)
| | - Jun Z Li
- Department of Human Genetics (A.B.O., J.Z.L., D.G.), University of Michigan, Ann Arbor
| | - Fernando Rivadeneira
- Department of Internal Medicine (F.R., A.G.U.), Erasmus University Medical Center, Rotterdam, the Netherlands
| | - André G Uitterlinden
- Department of Internal Medicine (F.R., A.G.U.), Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Albert Hofman
- Department of Epidemiology (P.S.d.V., A.H., O.H.F., A.D.), Erasmus University Medical Center, Rotterdam, the Netherlands.,Department of Epidemiology, Harvard H.T. Chan School of Public Health, Boston, MA (A.H.)
| | - Oscar H Franco
- Department of Epidemiology (P.S.d.V., A.H., O.H.F., A.D.), Erasmus University Medical Center, Rotterdam, the Netherlands.,Institute of Social and Preventive Medicine, University of Bern, Switzerland (O.H.F.)
| | - Mary Cushman
- Larner College of Medicine, University of Vermont, Colchester (M.C.)
| | - Bruce M Psaty
- Department of Epidemiology, (A.P.R., B.M.P., N.L.S.), University of Washington, Seattle.,Department of Medicine (J.A.B., B.M.P.), University of Washington, Seattle.,Department of Health Services (B.M.P.), University of Washington, Seattle.,Kaiser Permanente Washington Research Institute, Kaiser Permanente Washington, Seattle (B.M.P., N.L.S.)
| | - Pierre-Emmanuel Morange
- Laboratory of Haematology, La Timone Hospital, Marseille, France (P.S., P.-E.M.).,Institut national de la santé et de la recherche médicale (INSERM), UMR_S 1062, Nutrition Obesity and Risk of Thrombosis, Marseille, France (P.S., P.-E.M.)
| | - Barbara McKnight
- Department of Biostatistics (T.M.B., B.M.), University of Washington, Seattle.,Cardiovascular Health Research Unit (B.M.), University of Washington, Seattle
| | - Michael R Chong
- McMaster University, Population Health Research Institute, Population Health Research Institute, Biochemistry and Biomedical Sciences, Hamilton, Canada (M.R.C.)
| | - Israel Fernandez-Cadenas
- Stroke Pharmacogenomics and genetics, Department of Neurology, Institut d'Investigació Biomedica Sant Pau, IIB-Sant Pau, Barcelona, Spain (I.F.-C.)
| | - Jonathan Rosand
- Massachusetts General Hospital, Broad Institute, Harvard Medical School, Boston (J.R.)
| | - Arne Lindgren
- Department of Clinical Sciences Lund, Neurology, Lund University, Sweden (A.L.).,Department of Neurology and Rehabilitation Medicine, Neurology, Skåne University Hospital, Lund, Sweden (A.L.)
| | | | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur (V.G.).,Faculty of Medicine, University of Iceland, Reykjavik (V.G.)
| | - James F Wilson
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine (J.M., J.F.W., C.H.), University of Edinburgh, Scotland.,Centre for Global Health Research, Usher Institute for Population Health Sciences and Informatics (P.K.J., H.C., I.R., J.F.W.), University of Edinburgh, Scotland
| | - Caroline Hayward
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine (J.M., J.F.W., C.H.), University of Edinburgh, Scotland
| | - David Ginsburg
- Department of Human Genetics (A.B.O., J.Z.L., D.G.), University of Michigan, Ann Arbor
| | - Myriam Fornage
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health (P.S.d.V., E.B., M.F., A.C.M.), University of Texas Health Science Center at Houston.,Brown Foundation Institute of Molecular Medicine (M.F.), University of Texas Health Science Center at Houston
| | - Frits R Rosendaal
- Department of Clinical Epidemiology (H.G.d.H., A.v.H.V., F.R.R.), Leiden University Medical Center, the Netherlands.,Einthoven Laboratory of Experimental Vascular Medicine (F.R.R., J.W.J.), Leiden University Medical Center, the Netherlands
| | - Juan Carlos Souto
- Unit of Hemostasis and Thrombosis, Hospital de la Sant Creu i Sant Pau, Barcelona, Spain (J.C.S.)
| | - Lewis C Becker
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD (L.R.Y., D.V., D.M.B., L.C.B.)
| | - Nancy S Jenny
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Colchester (N.S.J.)
| | - Winfried März
- Department of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany (G.E.D., M.E.K., W.M.).,SYNLAB Academy, SYNLAB Holding Deutschland GmbH, Mannheim, Germany (W.M.).,Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University Graz, Mannheim, Germany (W.M.)
| | - J Wouter Jukema
- Department of Cardiology (S.T., J.W.J.), Leiden University Medical Center, the Netherlands.,Einthoven Laboratory of Experimental Vascular Medicine (F.R.R., J.W.J.), Leiden University Medical Center, the Netherlands.,Interuniversity Cardiology Institute of the Netherlands, Utrecht (J.W.J.)
| | - Abbas Dehghan
- Department of Epidemiology (P.S.d.V., A.H., O.H.F., A.D.), Erasmus University Medical Center, Rotterdam, the Netherlands.,Department of Epidemiology and Biostatistics, Imperial College London, UK (A.D.)
| | - David-Alexandre Trégouët
- Institut national de la santé et de la recherche médicale (INSERM), UMR_S 1166, Team Genomics and Pathophysiology of Cardiovascular Diseases, Sorbonne Universités, Université Pierre-et-Marie-Curie, Paris, France (M.G., D.-A.T.).,ICAN Institute for Cardiometabolism and Nutrition, Paris, France (M.G., D.-A.T.)
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health (P.S.d.V., E.B., M.F., A.C.M.), University of Texas Health Science Center at Houston
| | - Andrew D Johnson
- Population Sciences Branch, National Heart, Lung, and Blood Institute, Framingham, MA (J.E.H., C.S., J.D.E., M.-H.C., A.D.J., C.J.O.).,Framingham Heart Study, MA (J.E.H., C.S., J.D.E., M.-H.C., A.D.J., C.J.O.)
| | - Christopher J O'Donnell
- Population Sciences Branch, National Heart, Lung, and Blood Institute, Framingham, MA (J.E.H., C.S., J.D.E., M.-H.C., A.D.J., C.J.O.).,Framingham Heart Study, MA (J.E.H., C.S., J.D.E., M.-H.C., A.D.J., C.J.O.).,Cardiology Section Administration, Boston VA Healthcare System, West Roxbury, MA (C.J.O.)
| | - David P Strachan
- Population Health Research Institute, St George's, University of London, UK (D.P.S.)
| | - Charles J Lowenstein
- Aab Cardiovascular Research Institute, University of Rochester Medical Center, NY (M.A.M., C.J.L.)
| | - Nicholas L Smith
- Department of Epidemiology, (A.P.R., B.M.P., N.L.S.), University of Washington, Seattle.,Kaiser Permanente Washington Research Institute, Kaiser Permanente Washington, Seattle (B.M.P., N.L.S.).,Seattle Epidemiologic Research and Information Center, Department of Veterans Affairs Office of Research and Development, WA (N.L.S.)
| |
Collapse
|
18
|
Pott J, Bae YJ, Horn K, Teren A, Kühnapfel A, Kirsten H, Ceglarek U, Loeffler M, Thiery J, Kratzsch J, Scholz M. Genetic Association Study of Eight Steroid Hormones and Implications for Sexual Dimorphism of Coronary Artery Disease. J Clin Endocrinol Metab 2019; 104:5008-5023. [PMID: 31169883 DOI: 10.1210/jc.2019-00757] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/31/2019] [Indexed: 02/09/2023]
Abstract
CONTEXT Steroid hormones are important regulators of physiological processes in humans and are under genetic control. A link to coronary artery disease (CAD) is supposed. OBJECTIVE Our main objective was to identify genetic loci influencing steroid hormone levels. As a secondary aim, we searched for causal effects of steroid hormones on CAD. DESIGN We conducted genome-wide meta-association studies for eight steroid hormones: cortisol, dehydroepiandrosterone sulfate (DHEAS), estradiol, and testosterone in two independent cohorts (LIFE-Adult, LIFE-Heart, maximum n = 7667), and progesterone, 17-hydroxyprogesterone, androstenedione, and aldosterone in LIFE-Heart only (maximum n = 2070). All genome-wide significant loci were tested for sex interactions. Furthermore, we tested whether previously reported CAD single-nucleotide polymorphisms were associated with our steroid hormone panel and investigated causal links between hormone levels and CAD status using Mendelian randomization (MR) approaches. RESULTS We discovered 15 novel associated loci for 17-hydroxyprogesterone, progesterone, DHEAS, cortisol, androstenedione, and estradiol. Five of these loci relate to genes directly involved in steroid metabolism, that is, CYP21A1, CYP11B1, CYP17A1, STS, and HSD17B12, almost completing the set of steroidogenic enzymes with genetic associations. Sexual dimorphisms were found for seven of the novel loci. Other loci correspond, for example, to the WNT4/β-catenin pathway. MR revealed that cortisol, androstenedione, 17-hydroxyprogesterone, and DHEA-S had causal effects on CAD. We also observed enrichment of cortisol and testosterone associations among known CAD hits. CONCLUSION Our study greatly improves insight into genetic regulation of steroid hormones and their dependency on sex. These results could serve as a basis for analyzing sexual dimorphism in other complex diseases.
Collapse
Affiliation(s)
- Janne Pott
- Institute for Medical Informatics, Statistics, and Epidemiology, University of Leipzig, Leipzig, Germany
- LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
- Leipzig University Medical Center, IFB Adiposity Diseases, University of Leipzig, Leipzig, Germany
| | - Yoon Ju Bae
- LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
- Institute of Laboratory Medicine, Clinical Chemistry, and Molecular Diagnostics, University Hospital, Leipzig, Germany
| | - Katrin Horn
- Institute for Medical Informatics, Statistics, and Epidemiology, University of Leipzig, Leipzig, Germany
- LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Andrej Teren
- LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
- Heart Center Leipzig, Leipzig, Germany
| | - Andreas Kühnapfel
- Institute for Medical Informatics, Statistics, and Epidemiology, University of Leipzig, Leipzig, Germany
- LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
- Leipzig University Medical Center, IFB Adiposity Diseases, University of Leipzig, Leipzig, Germany
| | - Holger Kirsten
- Institute for Medical Informatics, Statistics, and Epidemiology, University of Leipzig, Leipzig, Germany
- LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Uta Ceglarek
- LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
- Institute of Laboratory Medicine, Clinical Chemistry, and Molecular Diagnostics, University Hospital, Leipzig, Germany
| | - Markus Loeffler
- Institute for Medical Informatics, Statistics, and Epidemiology, University of Leipzig, Leipzig, Germany
- LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Joachim Thiery
- LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
- Institute of Laboratory Medicine, Clinical Chemistry, and Molecular Diagnostics, University Hospital, Leipzig, Germany
| | - Jürgen Kratzsch
- LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
- Institute of Laboratory Medicine, Clinical Chemistry, and Molecular Diagnostics, University Hospital, Leipzig, Germany
| | - Markus Scholz
- Institute for Medical Informatics, Statistics, and Epidemiology, University of Leipzig, Leipzig, Germany
- LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
- Leipzig University Medical Center, IFB Adiposity Diseases, University of Leipzig, Leipzig, Germany
| |
Collapse
|
19
|
Lusis AJ. Y-Chromosome Genetic Variation Associated With Atherosclerosis and Inflammation. Arterioscler Thromb Vasc Biol 2019; 39:2201-2202. [PMID: 31644351 DOI: 10.1161/atvbaha.119.313369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Aldons J Lusis
- Department of Medicine/Division of Cardiology, Department of Human Genetics, Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles
| |
Collapse
|
20
|
Erdmann J, Kessler T, Munoz Venegas L, Schunkert H. A decade of genome-wide association studies for coronary artery disease: the challenges ahead. Cardiovasc Res 2019; 114:1241-1257. [PMID: 29617720 DOI: 10.1093/cvr/cvy084] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/29/2018] [Indexed: 12/12/2022] Open
Abstract
In this review, we summarize current knowledge on the genetics of coronary artery disease, based on 10 years of genome-wide association studies. The discoveries began with individual studies using 200K single nucleotide polymorphism arrays and progressed to large-scale collaborative efforts, involving more than a 100 000 people and up to 40 Mio genetic variants. We discuss the challenges ahead, including those involved in identifying causal genes and deciphering the links between risk variants and disease pathology. We also describe novel insights into disease biology based on the findings of genome-wide association studies. Moreover, we discuss the potential for discovery of novel treatment targets through the integration of different layers of 'omics' data and the application of systems genetics approaches. Finally, we provide a brief outlook on the potential for precision medicine to be enhanced by genome-wide association study findings in the cardiovascular field.
Collapse
Affiliation(s)
- Jeanette Erdmann
- Institute for Cardiogenetics, University of Lübeck, Maria-Geoppert-Str. 1, Lübeck, Germany.,DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany.,University Heart Center Lübeck, Ratzeburger Allee 160, Lübeck, Germany
| | - Thorsten Kessler
- Deutsches Herzzentrum München, Klinik für Herz- und Kreislauferkrankungen, Technische Universität München, Lazarettstraβe 36, Munich, Germany.,DZHK (German Center for Cardiovascular Research) e.V., Partner Site Munich Heart Alliance, Munich, Germany
| | - Loreto Munoz Venegas
- Institute for Cardiogenetics, University of Lübeck, Maria-Geoppert-Str. 1, Lübeck, Germany.,DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany.,University Heart Center Lübeck, Ratzeburger Allee 160, Lübeck, Germany
| | - Heribert Schunkert
- Deutsches Herzzentrum München, Klinik für Herz- und Kreislauferkrankungen, Technische Universität München, Lazarettstraβe 36, Munich, Germany.,DZHK (German Center for Cardiovascular Research) e.V., Partner Site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
21
|
Malik R, Dichgans M. Challenges and opportunities in stroke genetics. Cardiovasc Res 2019; 114:1226-1240. [PMID: 29554300 DOI: 10.1093/cvr/cvy068] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 03/14/2018] [Indexed: 12/13/2022] Open
Abstract
Stroke, ischaemic stroke and subtypes of ischaemic stroke display substantial heritability. When compared with related vascular conditions, the number of established risk loci reaching genome-wide significance for association with stroke is still in the lower range, particularly for aetiological stroke subtypes such as large artery atherosclerotic stroke or small vessel stroke. Nevertheless, for individual loci substantial progress has been made in determining the specific mechanisms mediating stroke risk. In this review, we present a roadmap for functional follow-up of common risk variants associated with stroke. First, we discuss in silico strategies for characterizing signals in non-coding regions and highlight databases providing information on quantitative trait loci for mRNA and protein expression, as well as methylation, focussing on those with presumed relevance for stroke. Next, we discuss experimental strategies for following up on non-coding risk variants and regions such as massively parallel reporter assays, proteome-wide association studies, and chromatin conformation capture (3C) assays. These and other approaches are relevant for gaining insight into the specific variants and mechanisms mediating genetic stroke risk. Finally, we discuss how genetic findings could influence clinical practice by adding to diagnostic algorithms and eventually improve treatment options for stroke.
Collapse
Affiliation(s)
- Rainer Malik
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, Munich, Germany
| | - Martin Dichgans
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Feodor-Lynen-Straße 17, Munich, Germany
| |
Collapse
|
22
|
Wellek S, Ziegler A. Testing for goodness rather than lack of fit of an X-chromosomal SNP to the Hardy-Weinberg model. PLoS One 2019; 14:e0212344. [PMID: 30789927 PMCID: PMC6383894 DOI: 10.1371/journal.pone.0212344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 01/31/2019] [Indexed: 02/01/2023] Open
Abstract
The problem of checking the genotype distribution obtained for some diallelic marker for compatibility with the Hardy-Weinberg equilibrium (HWE) condition arises also for loci on the X chromosome. The possible genotypes depend on the sex of the individual in this case: for females, the genotype distribution is trinomial, as in the case of an autosomal locus, whereas a binomial proportion is observed for males. Like in genetic association studies with autosomal SNPs, interest is typically in establishing approximate compatibility of the observed genotype frequencies with HWE. This requires to replace traditional methods tailored for detecting lack of fit to the model with an equivalence testing procedure to be derived by treating approximate compatibility with the model as the alternative hypothesis. The test constructed here is based on an upper confidence bound and a simple to interpret combined measure of distance between true and HWE conforming genotype distributions in female and male subjects. A particular focus of the paper is on the derivation of the asymptotic distribution of the test statistic under null alternatives which is not of the usual Gaussian form. A closed sample size formula is also provided and shown to behave satisfactorily in terms of the approximation error.
Collapse
Affiliation(s)
- Stefan Wellek
- Department of Biostatistics, CIMH Mannheim, Mannheim Medical School of the University of Heidelberg, Mannheim, Germany
- Department of Medical Biostatistics, Epidemiology & Informatics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Andreas Ziegler
- Institute of Medical Biometry and Statistics, University of Lübeck, Lübeck, Germany
- StatSol, Moenring 2, Lübeck, Germany
- School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| |
Collapse
|
23
|
Yao C, Chen G, Song C, Keefe J, Mendelson M, Huan T, Sun BB, Laser A, Maranville JC, Wu H, Ho JE, Courchesne P, Lyass A, Larson MG, Gieger C, Graumann J, Johnson AD, Danesh J, Runz H, Hwang SJ, Liu C, Butterworth AS, Suhre K, Levy D. Genome-wide mapping of plasma protein QTLs identifies putatively causal genes and pathways for cardiovascular disease. Nat Commun 2018; 9:3268. [PMID: 30111768 PMCID: PMC6093935 DOI: 10.1038/s41467-018-05512-x] [Citation(s) in RCA: 237] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 07/09/2018] [Indexed: 01/17/2023] Open
Abstract
Identifying genetic variants associated with circulating protein concentrations (protein quantitative trait loci; pQTLs) and integrating them with variants from genome-wide association studies (GWAS) may illuminate the proteome's causal role in disease and bridge a knowledge gap regarding SNP-disease associations. We provide the results of GWAS of 71 high-value cardiovascular disease proteins in 6861 Framingham Heart Study participants and independent external replication. We report the mapping of over 16,000 pQTL variants and their functional relevance. We provide an integrated plasma protein-QTL database. Thirteen proteins harbor pQTL variants that match coronary disease-risk variants from GWAS or test causal for coronary disease by Mendelian randomization. Eight of these proteins predict new-onset cardiovascular disease events in Framingham participants. We demonstrate that identifying pQTLs, integrating them with GWAS results, employing Mendelian randomization, and prospectively testing protein-trait associations holds potential for elucidating causal genes, proteins, and pathways for cardiovascular disease and may identify targets for its prevention and treatment.
Collapse
Affiliation(s)
- Chen Yao
- Framingham Heart Study, Framingham, 01702, MA, USA
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, 20892, MD, USA
| | - George Chen
- Framingham Heart Study, Framingham, 01702, MA, USA
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Ci Song
- Framingham Heart Study, Framingham, 01702, MA, USA
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, 20892, MD, USA
- Department of Medical Sciences, Uppsala University, 75105, Uppsala, Sweden
- Department of Immunology, Genetics and Pathology, Uppsala University, 75105, Uppsala, Sweden
| | - Joshua Keefe
- Framingham Heart Study, Framingham, 01702, MA, USA
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Michael Mendelson
- Framingham Heart Study, Framingham, 01702, MA, USA
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, 20892, MD, USA
- Department of Cardiology, Boston Children's Hospital, Boston, 02115, MA, USA
| | - Tianxiao Huan
- Framingham Heart Study, Framingham, 01702, MA, USA
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Benjamin B Sun
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Annika Laser
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
- Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | | | - Hongsheng Wu
- Computer Science and Networking, Wentworth Institute of Technology, Boston, 02115, MA, USA
| | - Jennifer E Ho
- Cardiovascular Research Center and Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, 02114, MA, USA
| | - Paul Courchesne
- Framingham Heart Study, Framingham, 01702, MA, USA
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Asya Lyass
- Framingham Heart Study, Framingham, 01702, MA, USA
- Department of Mathematics and Statistics, Boston University, Boston, 02115, MA, USA
| | - Martin G Larson
- Framingham Heart Study, Framingham, 01702, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, 02118, MA, USA
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
- Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Johannes Graumann
- Scientific Service Group Biomolecular Mass Spectrometry, Max Planck Institute for Heart and Lung Research, W.G. Kerckhoff Institute, Ludwigstr. 43, D-61231, Bad Nauheim, Germany
| | - Andrew D Johnson
- Framingham Heart Study, Framingham, 01702, MA, USA
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, 20892, MD, USA
| | - John Danesh
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
- British Heart Foundation Cambridge Centre of Excellence, Division of Cardiovascular Medicine, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
- Department of Human Genetics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1RQ, UK
| | - Heiko Runz
- MRL, Merck & Co., Inc, Kenilworth, 07033, NJ, USA
| | - Shih-Jen Hwang
- Framingham Heart Study, Framingham, 01702, MA, USA
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Chunyu Liu
- Framingham Heart Study, Framingham, 01702, MA, USA
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Adam S Butterworth
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
- NIHR Blood and Transplant Research Unit in Donor Health and Genomics, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Karsten Suhre
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, PO 24144, Doha, Qatar
| | - Daniel Levy
- Framingham Heart Study, Framingham, 01702, MA, USA.
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, 20892, MD, USA.
| |
Collapse
|
24
|
Kowsar R, Keshtegar B, Marey MA, Miyamoto A. An autoregressive logistic model to predict the reciprocal effects of oviductal fluid components on in vitro spermophagy by neutrophils in cattle. Sci Rep 2017; 7:4482. [PMID: 28667317 PMCID: PMC5493678 DOI: 10.1038/s41598-017-04841-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 05/22/2017] [Indexed: 01/07/2023] Open
Abstract
After intercourse/insemination, large numbers of sperm are deposited in the female reproductive tract (FRT), triggering a massive recruitment of neutrophils (PMNs) into the FRT, possibly to eliminate excessive sperm via phagocytosis. Some bovine oviductal fluid components (BOFCs) have been shown to regulate in vitro sperm phagocytosis (spermophagy) by PMNs. The modeling approach-based logistic regression (LR) and autoregressive logistic regression (ALR) can be used to predict the behavior of complex biological systems. We, first, compared the LR and ALR models using in vitro data to find which of them provides a better prediction of in vitro spermophagy in bovine. Then, the best model was used to identify and classify the reciprocal effects of BOFCs in regulating spermophagy. The ALR model was calibrated using an iterative procedure with a dynamical search direction. The superoxide production data were used to illustrate the accuracy in validating logit model-based ALR and LR. The ALR model was more accurate than the LR model. Based on in vitro data, the ALR predicted that the regulation of spermophagy by PMNs in bovine oviduct is more sensitive to alpha-1 acid glycoprotein (AGP), PGE2, bovine serum albumin (BSA), and to the combination of AGP or BSA with other BOFCs.
Collapse
Affiliation(s)
- Rasoul Kowsar
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran. .,Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, 080-8555, Japan.
| | - Behrooz Keshtegar
- Department of Civil Engineering, Faculty of Engineering, University of Zabol, P.B. 9861335-856, Zabol, Iran.
| | - Mohamed A Marey
- Faculty of Veterinary Medicine, Damanhur University, Behera, Egypt.,Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, 080-8555, Japan
| | - Akio Miyamoto
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, 080-8555, Japan
| |
Collapse
|
25
|
Genetic Mechanisms Leading to Sex Differences Across Common Diseases and Anthropometric Traits. Genetics 2016; 205:979-992. [PMID: 27974502 DOI: 10.1534/genetics.116.193623] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 12/08/2016] [Indexed: 01/10/2023] Open
Abstract
Common diseases often show sex differences in prevalence, onset, symptomology, treatment, or prognosis. Although studies have been performed to evaluate sex differences at specific SNP associations, this work aims to comprehensively survey a number of complex heritable diseases and anthropometric traits. Potential genetically encoded sex differences we investigated include differential genetic liability thresholds or distributions, gene-sex interaction at autosomal loci, major contribution of the X-chromosome, or gene-environment interactions reflected in genes responsive to androgens or estrogens. Finally, we tested the overlap between sex-differential association with anthropometric traits and disease risk. We utilized complementary approaches of assessing GWAS association enrichment and SNP-based heritability estimation to explore explicit sex differences, as well as enrichment in sex-implicated functional categories. We do not find consistent increased genetic load in the lower-prevalence sex, or a disproportionate role for the X-chromosome in disease risk, despite sex-heterogeneity on the X for several traits. We find that all anthropometric traits show less than complete correlation between the genetic contribution to males and females, and find a convincing example of autosome-wide genome-sex interaction in multiple sclerosis (P = 1 × 10-9). We also find some evidence for hormone-responsive gene enrichment, and striking evidence of the contribution of sex-differential anthropometric associations to common disease risk, implying that general mechanisms of sexual dimorphism determining secondary sex characteristics have shared effects on disease risk.
Collapse
|