1
|
Austvold CK, Keable SM, Procopio M, Usselman RJ. Quantitative measurements of reactive oxygen species partitioning in electron transfer flavoenzyme magnetic field sensing. Front Physiol 2024; 15:1348395. [PMID: 38370016 PMCID: PMC10869518 DOI: 10.3389/fphys.2024.1348395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/16/2024] [Indexed: 02/20/2024] Open
Abstract
Biological magnetic field sensing that gives rise to physiological responses is of considerable importance in quantum biology. The radical pair mechanism (RPM) is a fundamental quantum process that can explain some of the observed biological magnetic effects. In magnetically sensitive radical pair (RP) reactions, coherent spin dynamics between singlet and triplet pairs are modulated by weak magnetic fields. The resulting singlet and triplet reaction products lead to distinct biological signaling channels and cellular outcomes. A prevalent RP in biology is between flavin semiquinone and superoxide (O2 •-) in the biological activation of molecular oxygen. This RP can result in a partitioning of reactive oxygen species (ROS) products to form either O2 •- or hydrogen peroxide (H2O2). Here, we examine magnetic sensing of recombinant human electron transfer flavoenzyme (ETF) reoxidation by selectively measuring O2 •- and H2O2 product distributions. ROS partitioning was observed between two static magnetic fields at 20 nT and 50 μT, with a 13% decrease in H2O2 singlet products and a 10% increase in O2 •- triplet products relative to 50 µT. RPM product yields were calculated for a realistic flavin/superoxide RP across the range of static magnetic fields, in agreement with experimental results. For a triplet born RP, the RPM also predicts about three times more O2 •- than H2O2, with experimental results exhibiting about four time more O2 •- produced by ETF. The method presented here illustrates the potential of a novel magnetic flavoprotein biological sensor that is directly linked to mitochondria bioenergetics and can be used as a target to study cell physiology.
Collapse
Affiliation(s)
- Chase K. Austvold
- Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States
| | - Stephen M. Keable
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Maria Procopio
- Biophysics, Johns Hopkins University, Baltimore, MD, United States
| | - Robert J. Usselman
- Chemistry and Chemical Engineering, Florida Institute of Technology, Melbourne, FL, United States
- Computational Research At Florida Tech, Melbourne, FL, United States
| |
Collapse
|
2
|
Deviers J, Cailliez F, Gutiérrez BZ, Kattnig DR, de la Lande A. Ab initio derivation of flavin hyperfine interactions for the protein magnetosensor cryptochrome. Phys Chem Chem Phys 2022; 24:16784-16798. [PMID: 35775941 DOI: 10.1039/d1cp05804e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The radicals derived from flavin adenine dinucleotide (FAD) are a corner stone of recent hypotheses about magnetoreception, including the compass of migratory songbirds. These models attribute a magnetic sense to coherent spin dynamics in radical pairs within the flavo-protein cryptochrome. The primary determinant of sensitivity and directionality of this process are the hyperfine interactions of the involved radicals. Here, we present a comprehensive computational study of the hyperfine couplings in the protonated and unprotonated FAD radicals in cryptochrome 4 from C. livia. We combine long (800 ns) molecular dynamics trajectories to accurate quantum chemistry calculations. Hyperfine parameters are derived using auxiliary density functional theory applied to cluster and hybrid QM/MM (Quantum Mechanics/Molecular Mechanics) models comprising the FAD and its significant surrounding environment, as determined by a detailed sensitivity analysis. Thanks to this protocol we elucidate the sensitivity of the hyperfine interaction parameters to structural fluctuations and the polarisation effect of the protein environment. We find that the ensemble-averaged hyperfine interactions are predominantly governed by thermally induced geometric distortions of the flavin. We discuss our results in view of the expected performance of these radicals as part of a magnetoreceptor. Our data could be used to parametrize spin Hamiltonians including not only average values but also standard deviations.
Collapse
Affiliation(s)
- Jean Deviers
- Living Systems Institute and Department of Physics, University of Exeter, Stocker Road, Exeter, Devon, EX4 4QD, UK.,Institut de Chimie Physique, CNRS UMR 8000, Université Paris-Saclay, 91405 Orsay, France.
| | - Fabien Cailliez
- Institut de Chimie Physique, CNRS UMR 8000, Université Paris-Saclay, 91405 Orsay, France.
| | - Bernardo Zúñiga Gutiérrez
- Departamento de Química, Universidad de Guadalajara, Blvd. Marcelino García Barragán 1421, C. P. 44430, Guadalajara Jal, Mexico
| | - Daniel R Kattnig
- Living Systems Institute and Department of Physics, University of Exeter, Stocker Road, Exeter, Devon, EX4 4QD, UK
| | - Aurélien de la Lande
- Institut de Chimie Physique, CNRS UMR 8000, Université Paris-Saclay, 91405 Orsay, France.
| |
Collapse
|
3
|
Smith LD, Deviers J, Kattnig DR. Observations about utilitarian coherence in the avian compass. Sci Rep 2022; 12:6011. [PMID: 35397661 PMCID: PMC8994785 DOI: 10.1038/s41598-022-09901-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/29/2022] [Indexed: 11/09/2022] Open
Abstract
It is hypothesised that the avian compass relies on spin dynamics in a recombining radical pair. Quantum coherence has been suggested as a resource to this process that nature may utilise to achieve increased compass sensitivity. To date, the true functional role of coherence in these natural systems has remained speculative, lacking insights from sufficiently complex models. Here, we investigate realistically large radical pair models with up to 21 nuclear spins, inspired by the putative magnetosensory protein cryptochrome. By varying relative radical orientations, we reveal correlations of several coherence measures with compass fidelity. Whilst electronic coherence is found to be an ineffective predictor of compass sensitivity, a robust correlation of compass sensitivity and a global coherence measure is established. The results demonstrate the importance of realistic models, and appropriate choice of coherence measure, in elucidating the quantum nature of the avian compass.
Collapse
Affiliation(s)
- Luke D Smith
- Living Systems Institute and Department of Physics, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Jean Deviers
- Living Systems Institute and Department of Physics, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Daniel R Kattnig
- Living Systems Institute and Department of Physics, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.
| |
Collapse
|
4
|
Deviers J, Cailliez F, de la Lande A, Kattnig DR. Anisotropic magnetic field effects in the re-oxidation of cryptochrome in the presence of scavenger radicals. J Chem Phys 2022; 156:025101. [PMID: 35032990 DOI: 10.1063/5.0078115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The avian compass and many other of nature's magnetoreceptive traits are widely ascribed to the protein cryptochrome. There, magnetosensitivity is thought to emerge as the spin dynamics of radicals in the applied magnetic field enters in competition with their recombination. The first and dominant model makes use of a radical pair. However, recent studies have suggested that magnetosensitivity could be markedly enhanced for a radical triad, the primary radical pair of which undergoes a spin-selective recombination reaction with a third radical. Here, we test the practicality of this supposition for the reoxidation reaction of the reduced FAD cofactor in cryptochrome, which has been implicated with light-independent magnetoreception but appears irreconcilable with the classical radical pair mechanism (RPM). Based on the available realistic cryptochrome structures, we predict the magnetosensitivity of radical triad systems comprising the flavin semiquinone, the superoxide, and a tyrosine or ascorbyl scavenger radical. We consider many hyperfine-coupled nuclear spins, the relative orientation and placement of the radicals, their coupling by the electron-electron dipolar interaction, and spin relaxation in the superoxide radical in the limit of instantaneous decoherence, which have not been comprehensively considered before. We demonstrate that these systems can provide superior magnetosensitivity under realistic conditions, with implications for dark-state cryptochrome magnetoreception and other biological magneto- and isotope-sensitive radical recombination reactions.
Collapse
Affiliation(s)
- Jean Deviers
- Department of Physics and Living Systems Institute, University of Exeter, Stocker Road, EX4 4QD Exeter, United Kingdom
| | - Fabien Cailliez
- Institut de Chimie Physique, Université Paris Saclay, CNRS (UMR 8000), 15 avenue Jean Perrin, 91405 Orsay, France
| | - Aurélien de la Lande
- Institut de Chimie Physique, Université Paris Saclay, CNRS (UMR 8000), 15 avenue Jean Perrin, 91405 Orsay, France
| | - Daniel R Kattnig
- Department of Physics and Living Systems Institute, University of Exeter, Stocker Road, EX4 4QD Exeter, United Kingdom
| |
Collapse
|
5
|
Smith MA, Waugh DA, McBurney DL, George JC, Suydam RS, Thewissen JGM, Crish SD. A comparative analysis of cone photoreceptor morphology in bowhead and beluga whales. J Comp Neurol 2020; 529:2376-2390. [PMID: 33377221 DOI: 10.1002/cne.25101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/30/2022]
Abstract
The cetacean visual system is a product of selection pressures favoring underwater vision, yet relatively little is known about it across taxa. Previous studies report several mutations in the opsin genetic sequence in cetaceans, suggesting the evolutionary complete or partial loss of retinal cone photoreceptor function in mysticete and odontocete lineages, respectively. Despite this, limited anatomical evidence suggests cone structures are partially maintained but with absent outer and inner segments in the bowhead retina. The functional consequence and anatomical distributions associated with these unique cone morphologies remain unclear. The current study further investigates the morphology and distribution of cone photoreceptors in the bowhead whale and beluga retina and evaluates the potential functional capacity of these cells' alternative to photoreception. Refined histological and advanced microscopic techniques revealed two additional cone morphologies in the bowhead and beluga retina that have not been previously described. Two proteins involved in magnetosensation were present in these cone structures suggesting the possibility for an alternative functional role in responding to changes in geomagnetic fields. These findings highlight a revised understanding of the unique evolution of cone and gross retinal anatomy in cetaceans, and provide prefatory evidence of potential functional reassignment of these cells.
Collapse
Affiliation(s)
- Matthew A Smith
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA.,Rebecca D. Considine Research Institute, Akron Children's Hospital, Akron, Ohio, USA
| | - David A Waugh
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Denise L McBurney
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - John C George
- Department of Wildlife Management, North Slope Borough, Utqiagvik, Alaska, USA
| | - Robert S Suydam
- Department of Wildlife Management, North Slope Borough, Utqiagvik, Alaska, USA
| | - Johannes G M Thewissen
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Samuel D Crish
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| |
Collapse
|
6
|
Procopio M, Ritz T. The reference-probe model for a robust and optimal radical-pair-based magnetic compass sensor. J Chem Phys 2020; 152:065104. [PMID: 32061231 DOI: 10.1063/1.5128128] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Radical-pair reactions have been suggested to be sensitive to the direction of weak magnetic fields, thereby providing a mechanism for the magnetic compass in animals. Discovering the general principles that make radical pairs particularly sensitive to the direction of weak magnetic fields will be essential for designing bioinspired compass sensors and for advancing our understanding of the spin physics behind directional effects. The reference-probe model is a conceptual model introduced as a guide to identify radical-pair parameters for optimal directional effects. Radical pairs with probe character have been extensively shown to enhance directional sensitivity to weak magnetic fields, but investigations on the role of the reference radical are lacking. Here, we evaluate whether a radical has reference character and then study its relevance for optimal directional effects. We investigate a simple radical-pair model with one axially anisotropic hyperfine interaction using both analytical and numerical calculations. Analytical calculations result in a general expression of the radical-pair reaction yield, which in turn provides useful insights into directional effects. We further investigate the relevance of the reference character to robustness against variations of earth-strength magnetic fields and find that the reference character captures robust features as well. Extending this study to radical pairs with more hyperfine interactions, we discuss the interplay between reference character and optimal and robust directional effects in such more complex radical pairs.
Collapse
Affiliation(s)
- Maria Procopio
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Thorsten Ritz
- Department of Physics and Astronomy, University of California, Irvine, California 92697, USA
| |
Collapse
|
7
|
Barnes F, Greenebaum B. Possible Mechanism for Synchronized Detection of Weak Magnetic Fields by Nerve Cells. Bioelectromagnetics 2020; 41:213-218. [PMID: 31990074 DOI: 10.1002/bem.22251] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 01/13/2020] [Indexed: 11/07/2022]
Abstract
We propose that biological systems may detect static and slowly varying magnetic fields by the modification of the timing of firing of adjacent nerve cells through the local influence of the magnetic field generated by current from one cell's firing on its nearest neighbors. The time delay of an adjacent nerve cell pulse with respect to the initial clock nerve cell pulse could serve as a signal for sensing the magnitude and direction of the magnetic field in a direction perpendicular to the current flows in the cells. It has been shown that changes in static magnetic fields modify concentrations of reactive oxygen species, calcium, pH, the growth rates of fibrosarcoma cells, and membrane potentials. These are linked to changes in membrane potentials that can either inhibit or accelerate the firing rate of pacemaker or clock cells. This mechanism may have applications to animals' use of magnetic fields for navigation or other purposes, possibly in conjunction with other mechanisms. Bioelectromagnetics. © 2020 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Frank Barnes
- Department of Electrical Computer and Energy Engineering, University of Colorado, Boulder, Colorado
| | - Ben Greenebaum
- Department of Physics, University of Wisconsin-Parkside, Kenosha, Wisconsin
| |
Collapse
|
8
|
Atkins C, Bajpai K, Rumball J, Kattnig DR. On the optimal relative orientation of radicals in the cryptochrome magnetic compass. J Chem Phys 2019. [DOI: 10.1063/1.5115445] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Chadsley Atkins
- Institute and Department of Physics, University of Exeter, North Park Road, Exeter EX4 4QL, United Kingdom
| | - Kieran Bajpai
- Institute and Department of Physics, University of Exeter, North Park Road, Exeter EX4 4QL, United Kingdom
| | - Jeremy Rumball
- Institute and Department of Physics, University of Exeter, North Park Road, Exeter EX4 4QL, United Kingdom
| | - Daniel R. Kattnig
- Institute and Department of Physics, University of Exeter, North Park Road, Exeter EX4 4QL, United Kingdom
- Living Systems Institute and Department of Physics, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom
| |
Collapse
|