1
|
Shepherd AI, James TJ, Gould AAM, Mayes H, Neal R, Shute J, Tipton MJ, Massey H, Saynor ZL, Perissiou M, Montgomery H, Sturgess C, Makaronidis J, Murray AJ, Grocott MPW, Cummings M, Young-Min S, Rennell-Smyth J, McNarry MA, Mackintosh KA, Dent H, Robson SC, Corbett J. Impact of nocturnal hypoxia on glycaemic control, appetite, gut microbiota and inflammation in adults with type 2 diabetes mellitus: A single-blind cross-over trial. J Physiol 2024; 602:5835-5854. [PMID: 38769692 DOI: 10.1113/jp285322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/22/2024] [Indexed: 05/22/2024] Open
Abstract
High altitude residents have a lower incidence of type 2 diabetes mellitus (T2DM). Therefore, we examined the effect of repeated overnight normobaric hypoxic exposure on glycaemic control, appetite, gut microbiota and inflammation in adults with T2DM. Thirteen adults with T2DM [glycated haemoglobin (HbA1c): 61.1 ± 14.1 mmol mol-1; aged 64.2 ± 9.4 years; four female] completed a single-blind, randomised, sham-controlled, cross-over study for 10 nights, sleeping when exposed to hypoxia (fractional inspired O2 [F I O 2 ${{F}_{{\mathrm{I}}{{{\mathrm{O}}}_{\mathrm{2}}}}}$ ] = 0.155; ∼2500 m simulated altitude) or normoxic conditions (F I O 2 ${{F}_{{\mathrm{I}}{{{\mathrm{O}}}_{\mathrm{2}}}}}$ = 0.209) in a randomised order. Outcome measures included: fasted plasma [glucose]; [hypoxia inducible factor-1α]; [interleukin-6]; [tumour necrosis factor-α]; [interleukin-10]; [heat shock protein 70]; [butyric acid]; peak plasma [glucose] and insulin sensitivity following a 2 h oral glucose tolerance test; body composition; appetite indices ([leptin], [acyl ghrelin], [peptide YY], [glucagon-like peptide-1]); and gut microbiota diversity and abundance [16S rRNA amplicon sequencing]. During intervention periods, accelerometers measured physical activity, sleep duration and efficiency, whereas continuous glucose monitors were used to assess estimated HbA1c and glucose management indicator and time in target range. Overnight hypoxia was not associated with changes in any outcome measure (P > 0.05 with small effect sizes) except fasting insulin sensitivity and gut microbiota alpha diversity, which exhibited trends (P = 0.10; P = 0.08 respectively) for a medium beneficial effect (d = 0.49; d = 0.59 respectively). Ten nights of overnight moderate hypoxic exposure did not significantly affect glycaemic control, gut microbiome, appetite, or inflammation in adults with T2DM. However, the intervention was well tolerated and a medium effect-size for improved insulin sensitivity and reduced alpha diversity warrants further investigation. KEY POINTS: Living at altitude lowers the incidence of type 2 diabetes mellitus (T2DM). Animal studies suggest that exposure to hypoxia may lead to weight loss and suppressed appetite. In a single-blind, randomised sham-controlled, cross-over trial, we assessed the effects of 10 nights of hypoxia (fractional inspired O2 ∼0.155) on glucose homeostasis, appetite, gut microbiota, inflammatory stress ([interleukin-6]; [tumour necrosis factor-α]; [interleukin-10]) and hypoxic stress ([hypoxia inducible factor 1α]; heat shock protein 70]) in 13 adults with T2DM. Appetite and inflammatory markers were unchanged following hypoxic exposure, but an increased insulin sensitivity and reduced gut microbiota alpha diversity were associated with a medium effect-size and statistical trends, which warrant further investigation using a definitive large randomised controlled trial. Hypoxic exposure may represent a viable therapeutic intervention in people with T2DM and particularly those unable or unwilling to exercise because barriers to uptake and adherence may be lower than for other lifestyle interventions (e.g. diet and exercise).
Collapse
Affiliation(s)
- Anthony I Shepherd
- Extreme Environments Laboratory, School of Sport, Health and Exercise Science, Faculty of Science and Health, University of Portsmouth, Portsmouth, UK
- Clinical Health and Rehabilitation Team, School of Sport, Health and Exercise Science, Faculty of Science and Health, University of Portsmouth, Portsmouth, UK
- Diabetes and Endocrinology Department, Portsmouth Hospitals University NHS Trust, Portsmouth, UK
| | - Thomas J James
- Extreme Environments Laboratory, School of Sport, Health and Exercise Science, Faculty of Science and Health, University of Portsmouth, Portsmouth, UK
- Clinical Health and Rehabilitation Team, School of Sport, Health and Exercise Science, Faculty of Science and Health, University of Portsmouth, Portsmouth, UK
| | - Alex A M Gould
- Extreme Environments Laboratory, School of Sport, Health and Exercise Science, Faculty of Science and Health, University of Portsmouth, Portsmouth, UK
| | - Harry Mayes
- Extreme Environments Laboratory, School of Sport, Health and Exercise Science, Faculty of Science and Health, University of Portsmouth, Portsmouth, UK
| | - Rebecca Neal
- Department of Rehabilitation and Sport Sciences, Bournemouth University, Poole, UK
| | - Janis Shute
- School of Pharmacy and Biomedical Sciences, Faculty of Science and Health, University of Portsmouth, Portsmouth, UK
| | - Michael J Tipton
- Extreme Environments Laboratory, School of Sport, Health and Exercise Science, Faculty of Science and Health, University of Portsmouth, Portsmouth, UK
| | - Heather Massey
- Extreme Environments Laboratory, School of Sport, Health and Exercise Science, Faculty of Science and Health, University of Portsmouth, Portsmouth, UK
| | - Zoe L Saynor
- Clinical Health and Rehabilitation Team, School of Sport, Health and Exercise Science, Faculty of Science and Health, University of Portsmouth, Portsmouth, UK
| | - Maria Perissiou
- Clinical Health and Rehabilitation Team, School of Sport, Health and Exercise Science, Faculty of Science and Health, University of Portsmouth, Portsmouth, UK
| | - Hugh Montgomery
- Centre for Human Health and Performance, Dept Medicine, University College London, London, UK
| | - Connie Sturgess
- Centre for Human Health and Performance, Dept Medicine, University College London, London, UK
| | - Janine Makaronidis
- Centre for Obesity Research, University College London, London, UK
- National Institute for Health and Care Research, University College London Hospitals Biomedical Research Centre, London, UK
| | - Andrew J Murray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Michael P W Grocott
- Perioperative and Critical Care Theme, NIHR Southampton Biomedical Research Centre, University Hospital Southampton & University of Southampton, Southampton, UK
| | - Michael Cummings
- Diabetes and Endocrinology Department, Portsmouth Hospitals University NHS Trust, Portsmouth, UK
| | - Steven Young-Min
- Rheumatology Department, Portsmouth Hospitals University NHS Trust, Portsmouth, UK
| | - Janet Rennell-Smyth
- Clinical Health and Rehabilitation Team, School of Sport, Health and Exercise Science, Faculty of Science and Health, University of Portsmouth, Portsmouth, UK
- Patient and public involvement member
| | - Melitta A McNarry
- School of Biological Science, Faculty of Science and Health, University of Portsmouth, Portsmouth, UK
| | - Kelly A Mackintosh
- School of Biological Science, Faculty of Science and Health, University of Portsmouth, Portsmouth, UK
| | - Hannah Dent
- School of Pharmacy and Biomedical Sciences, Faculty of Science and Health, University of Portsmouth, Portsmouth, UK
- Institute of Life Sciences and Healthcare, Faculty of Science and Health, University of Portsmouth, Portsmouth, UK
| | - Samuel C Robson
- School of Pharmacy and Biomedical Sciences, Faculty of Science and Health, University of Portsmouth, Portsmouth, UK
- Applied Sports, Technology, Exercise and Medicine (A-STEM) Research Centre, School of Sport and Exercise Sciences, Swansea University, Swansea, UK
- Institute of Life Sciences and Healthcare, Faculty of Science and Health, University of Portsmouth, Portsmouth, UK
| | - Jo Corbett
- Extreme Environments Laboratory, School of Sport, Health and Exercise Science, Faculty of Science and Health, University of Portsmouth, Portsmouth, UK
| |
Collapse
|
2
|
Schroeder HT, De Lemos Muller CH, Heck TG, Krause M, Homem de Bittencourt PI. Resolution of inflammation in chronic disease via restoration of the heat shock response (HSR). Cell Stress Chaperones 2024; 29:66-87. [PMID: 38309688 PMCID: PMC10939035 DOI: 10.1016/j.cstres.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024] Open
Abstract
Effective resolution of inflammation via the heat shock response (HSR) is pivotal in averting the transition to chronic inflammatory states. This transition characterizes a spectrum of debilitating conditions, including insulin resistance, obesity, type 2 diabetes, nonalcoholic fatty liver disease, and cardiovascular ailments. This manuscript explores a range of physiological, pharmacological, and nutraceutical interventions aimed at reinstating the HSR in the context of chronic low-grade inflammation, as well as protocols to assess the HSR. Monitoring the progression or suppression of the HSR in patients and laboratory animals offers predictive insights into the organism's capacity to combat chronic inflammation, as well as the impact of exercise and hyperthermic treatments (e.g., sauna or hot tub baths) on the HSR. Interestingly, a reciprocal correlation exists between the expression of HSR components in peripheral blood leukocytes (PBL) and the extent of local tissue proinflammatory activity in individuals afflicted by chronic inflammatory disorders. Therefore, the Heck index, contrasting extracellular 70 kDa family of heat shock proteins (HSP70) (proinflammatory) and intracellular HSP70 (anti-inflammatory) in PBL, serves as a valuable metric for HSR assessment. Our laboratory has also developed straightforward protocols for evaluating HSR by subjecting whole blood samples from both rodents and human volunteers to ex vivo heat challenges. Collectively, this discussion underscores the critical role of HSR disruption in the pathogenesis of chronic inflammatory states and emphasizes the significance of simple, cost-effective tools for clinical HSR assessment. This understanding is instrumental in the development of innovative strategies for preventing and managing chronic inflammatory diseases, which continue to exert a substantial global burden on morbidity and mortality.
Collapse
Affiliation(s)
- Helena Trevisan Schroeder
- Laboratory of Cellular Physiology (FisCel), Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Carlos Henrique De Lemos Muller
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, ICBS, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Thiago Gomes Heck
- Post Graduate Program in Integral Health Care (PPGAIS-UNIJUÍ/UNICRUZ/URI), Regional University of Northwestern Rio Grande Do Sul State (UNIJUI) and Post Graduate Program in Mathematical and Computational Modeling (PPGMMC), UNIJUI, Ijuí, Rio Grande do Sul, Brazil
| | - Mauricio Krause
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, ICBS, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Paulo Ivo Homem de Bittencourt
- Laboratory of Cellular Physiology (FisCel), Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
3
|
Kuppuswami J, Senthilkumar GP. Nutri-stress, mitochondrial dysfunction, and insulin resistance-role of heat shock proteins. Cell Stress Chaperones 2023; 28:35-48. [PMID: 36441381 PMCID: PMC9877269 DOI: 10.1007/s12192-022-01314-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 10/05/2022] [Accepted: 11/17/2022] [Indexed: 11/29/2022] Open
Abstract
Excess nutrient flux into the cellular energy system results in a scenario of cellular metabolic stress in diseases involving insulin resistance, such as type 2 diabetes, referred to as nutri-stress and results in cellular bioenergetic imbalance, which leads to insulin resistance and disease. Under nutri-stress, the heat shock response system is compromised due to metabolic abnormalities that disturb energy homeostasis. Heat shock proteins (HSPs) are the chief protectors of intracellular homeostasis during stress. Heat shock response (HSR) impairment contributes to several metabolic pathways that aggravate chronic hyperglycaemia and insulin resistance, highlighting a central role in disease pathogenesis. This article discusses the role of nutri-stress-related molecular events in causing insulin resistance and the nature of the roles played by heat shock proteins in some of the crucial checkpoints of the molecular networks involved in insulin resistance. Ample evidence suggests that the heat shock machinery regulates critical pathways in mitochondrial function and energy metabolism and that cellular energy status highly influences it. Weakening of HSPs, therefore, leads to loss of their vital cytoprotective functions, propagating nutri-stress in the system. Further research into the mechanistic roles of HSPs in metabolic homeostasis will help widen our understanding of lifestyle diseases, their onset, and complications. These inducible proteins may be crucial to attenuating lifestyle risk factors and disease management.
Collapse
Affiliation(s)
- Jayashree Kuppuswami
- Department of Biochemistry, Jawaharlal Institute of Post-Graduate Medical Education and Research (JIPMER), Puducherry, 605006 India
| | | |
Collapse
|
4
|
Sebők J, Édel Z, Dembrovszky F, Farkas N, Török Z, Balogh G, Péter M, Papp I, Balogi Z, Nusser N, Péter I, Hooper P, Geiger P, Erőss B, Wittmann I, Váncsa S, Vigh L, Hegyi P. Effect of HEAT therapy in patiEnts with type 2 Diabetes mellitus (HEATED): protocol for a randomised controlled trial. BMJ Open 2022; 12:e062122. [PMID: 35820741 PMCID: PMC9277369 DOI: 10.1136/bmjopen-2022-062122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/01/2022] [Indexed: 11/14/2022] Open
Abstract
INTRODUCTION The burden of type 2 diabetes mellitus (T2DM) is increasing worldwide. Heat therapy has been found effective in improving glycaemic control. However, to date, there is a lack of randomised controlled studies investigating the efficacy of heat therapy in T2DM. Therefore, we aim to investigate whether heat therapy with natural thermal mineral water can improve glycaemic control in patients with T2DM. METHODS AND ANALYSIS The HEAT therapy in patiEnts with type 2 Diabetes mellitus (HEATED) Study is a single-centre, two-arm randomised controlled trial being conducted at Harkány Thermal Rehabilitation Centre in Hungary. Patients with T2DM will be randomly assigned to group A (bath sessions in 38°C natural thermal mineral water) and group B (baths in thermoneutral water (30°C-32°C)). Both groups will complete a maximum of 5 weekly visits, averaging 50-60 visits over the 12-week study. Each session will last 30 min, with a physical check-up before the bath. At baseline, patients' T2DM status will be investigated thoroughly. Possible microvascular and macrovascular complications of T2DM will be assessed with physical and laboratory examinations. The short form-36 questionnaire will assess the quality of life. Patients will also be evaluated at weeks 4, 8 and 12. The primary endpoint will be the change of glycated haemoglobin from baseline to week 12. An estimated 65 patients will be enrolled per group, with a sample size re-estimation at the enrolment of 50% of the calculated sample size. ETHICS AND DISSEMINATION The study has been approved by the Scientific and Research Ethics Committee of the Hungarian Medical Research Council (818-2/2022/EÜIG). Written informed consent is required from all participants. We will disseminate our results to the medical community and will publish our results in peer-reviewed journals. TRIAL REGISTRATION NUMBER ClinicalTrials.gov, NCT05237219.
Collapse
Affiliation(s)
- Judit Sebők
- 2nd Department of Internal Medicine, University of Pecs Medical School, Pécs, Hungary
| | - Zsófia Édel
- 2nd Department of Internal Medicine, University of Pecs Medical School, Pécs, Hungary
| | - Fanni Dembrovszky
- Institute for Translational Medicine, Szentágothai Research Centre, University of Pecs Medical School, Pécs, Hungary
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Nelli Farkas
- Institute for Translational Medicine, Szentágothai Research Centre, University of Pecs Medical School, Pécs, Hungary
- Institute of Bioanalysis, University of Pecs Medical School, Pécs, Hungary
| | | | | | | | | | - Zsolt Balogi
- Institute of Biochemistry and Medical Chemistry, University of Pecs Medical School, Pécs, Hungary
| | - Nóra Nusser
- Harkány Thermal Rehabilitation Centre, Harkány, Hungary
| | - Iván Péter
- Harkány Thermal Rehabilitation Centre, Harkány, Hungary
| | - Philip Hooper
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Paige Geiger
- Department of Molecular and Integrative Physiology, University of Kansas School of Medicine, Kansas City, Kansas, USA
| | - Bálint Erőss
- Institute for Translational Medicine, Szentágothai Research Centre, University of Pecs Medical School, Pécs, Hungary
- Division of Pancreatic Diseases, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - István Wittmann
- 2nd Department of Internal Medicine, University of Pecs Medical School, Pécs, Hungary
| | - Szilárd Váncsa
- Institute for Translational Medicine, Szentágothai Research Centre, University of Pecs Medical School, Pécs, Hungary
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
| | | | - Péter Hegyi
- Institute for Translational Medicine, Szentágothai Research Centre, University of Pecs Medical School, Pécs, Hungary
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
5
|
Manfredi LH. Overheating or overcooling: heat transfer in the spot to fight against the pandemic obesity. Rev Endocr Metab Disord 2021; 22:665-680. [PMID: 33000381 DOI: 10.1007/s11154-020-09596-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/17/2020] [Indexed: 12/25/2022]
Abstract
The prevalence of obesity has nearly doubled worldwide over the past three and a half decades, reaching pandemic status. Obesity is associated with decreased life expectancy and with an increased risk of metabolic, cardiovascular, nervous system diseases. Hence, understanding the mechanisms involved in the onset and development of obesity is mandatory to promote planned health actions to revert this scenario. In this review, common aspects of cold exposure, a process of heat generation, and exercise, a process of heat dissipation, will be discussed as two opposite mechanisms of obesity, which can be oversimplified as caloric conservation. A common road between heat generation and dissipation is the mobilization of Free Faty Acids (FFA) and Carbohydrates (CHO). An increase in energy expenditure (immediate effect) and molecular/metabolic adaptations (chronic effect) are responses that depend on SNS activity in both conditions of heat transfer. This cycle of using and removing FFA and CHO from blood either for heat or force generation disrupt the key concept of obesity: energy accumulation. Despite efforts in making the anti-obesity pill, maybe it is time to consider that the world's population is living at thermoneutrality since temperature-controlled places and the lack of exercise are favoring caloric accumulation.
Collapse
Affiliation(s)
- Leandro Henrique Manfredi
- Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, Santa Catarina, Brazil.
| |
Collapse
|
6
|
Wang X, Liang QF, Zeng X, Huang GX, Xin GZ, Xu YH, Wang SM, Tang D. Effects of soy isoflavone supplementation on patients with diabetic nephropathy: a systematic review and meta-analysis of randomized controlled trials. Food Funct 2021; 12:7607-7618. [PMID: 34236368 DOI: 10.1039/d1fo01175h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Diabetic nephropathy (DN) is a microvascular complication that is becoming a worldwide public health concern. The aim of this study was to assess the effects of dietary soy isoflavone intervention on renal function and metabolic syndrome markers in DN patients. Seven databases including Medline, the Cochrane Central Register of Controlled Trials, Science Direct, Web of Science, Embase, China National Knowledge Infrastructure, and WanFang were searched for controlled trials that assessed the effects of soy isoflavone treatment in DN patients. Finally, a total of 141 patients from 7 randomized controlled trials were included. The meta-analysis showed that dietary soy isoflavones significantly decreased 24-hour urine protein, C-reactive protein (CRP), blood urea nitrogen (BUN), total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), and fasting blood glucose (FBG) in DN patients. The standard mean difference was -2.58 (95% CI: -3.94, -1.22; P = 0.0002) for 24-hour urine protein, -0.67 (95% CI: -0.94, -0.41; P < 0.00001) for BUN, -6.16 (95% CI: -9.02, -3.31; P < 0.0001) for CRP, -0.58 (95% CI: -0.83, -0.33; P < 0.00001) for TC, -0.41 (95% CI: -0.66, -0.16; P < 0.00001) for TG, -0.68 (95% CI: -0.94, -0.42; P < 0.00001) for LDL-C, and -0.39 (95% CI: -0.68, -0.10; P = 0.008) for FBG. Therefore, soy isoflavones may ameliorate DN by significantly decreasing 24-hour urine protein, BUN, CRP, TC, TG, LDL-C, and FBG.
Collapse
Affiliation(s)
- Xue Wang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Kondo T, Miyakawa N, Kitano S, Watanabe T, Goto R, Suico MA, Sato M, Takaki Y, Sakaguchi M, Igata M, Kawashima J, Motoshima H, Matsumura T, Kai H, Araki E. Activation of heat shock response improves biomarkers of NAFLD in patients with metabolic diseases. Endocr Connect 2021; 10:521-533. [PMID: 33883285 PMCID: PMC8183630 DOI: 10.1530/ec-21-0084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 04/21/2021] [Indexed: 11/11/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is often accompanied by metabolic disorders such as metabolic syndrome and type 2 diabetes (T2DM). Heat shock response (HSR) is one of the most important homeostatic abilities but is deteriorated by chronic metabolic insults. Heat shock (HS) with an appropriate mild electrical stimulation (MES) activates HSR and improves metabolic abnormalities including insulin resistance, hyperglycemia and inflammation in metabolic disorders. To analyze the effects of HS + MES treatment on NAFLD biomarkers, three cohorts including healthy men (two times/week, n = 10), patients with metabolic syndrome (four times/week, n = 40), and patients with T2DM (n = 100; four times/week (n = 40) and two, four, seven times/week (n = 20 each)) treated with HS + MES were retrospectively analyzed. The healthy subjects showed no significant alterations in NAFLD biomarkers after the treatment. In patients with metabolic syndrome, many of the NAFLD steatosis markers, including fatty liver index, NAFLD-liver fat score, liver/spleen ratio and hepatic steatosis index and NAFLD fibrosis marker, aspartate aminotransferase/alanine aminotransferase (AST/ALT) ratio, were improved upon the treatment. In patients with T2DM, all investigated NAFLD steatosis markers were improved and NAFLD fibrosis markers such as the AST/ALT ratio, fibrosis-4 index and NAFLD-fibrosis score were improved upon the treatment. Thus, HS + MES, a physical intervention, may become a novel treatment strategy for NAFLD as well as metabolic disorders.
Collapse
Affiliation(s)
- Tatsuya Kondo
- Department of Diabetes, Metabolism and Endocrinology, Kumamoto University Hospital, Chuo-Ward, Kumamoto, Japan
- Correspondence should be addressed to T Kondo:
| | - Nobukazu Miyakawa
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Chuo-Ward, Kumamoto, Japan
| | - Sayaka Kitano
- Department of Diabetes, Metabolism and Endocrinology, Kumamoto University Hospital, Chuo-Ward, Kumamoto, Japan
| | - Takuro Watanabe
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Chuo-Ward, Kumamoto, Japan
| | - Rieko Goto
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Chuo-Ward, Kumamoto, Japan
| | - Mary Ann Suico
- Department of Molecular Medicine, Faculty of Life Sciences, Kumamoto University, Chuo-Ward, Kumamoto, Japan
| | - Miki Sato
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Chuo-Ward, Kumamoto, Japan
| | - Yuki Takaki
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Chuo-Ward, Kumamoto, Japan
| | - Masaji Sakaguchi
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Chuo-Ward, Kumamoto, Japan
| | - Motoyuki Igata
- Department of Diabetes, Metabolism and Endocrinology, Kumamoto University Hospital, Chuo-Ward, Kumamoto, Japan
| | - Junji Kawashima
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Chuo-Ward, Kumamoto, Japan
| | - Hiroyuki Motoshima
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Chuo-Ward, Kumamoto, Japan
| | - Takeshi Matsumura
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Chuo-Ward, Kumamoto, Japan
| | - Hirofumi Kai
- Department of Molecular Medicine, Faculty of Life Sciences, Kumamoto University, Chuo-Ward, Kumamoto, Japan
| | - Eiichi Araki
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Chuo-Ward, Kumamoto, Japan
| |
Collapse
|
8
|
Sebők J, Édel Z, Váncsa S, Farkas N, Kiss S, Erőss B, Török Z, Balogh G, Balogi Z, Nagy R, Hooper PL, Geiger PC, Wittmann I, Vigh L, Dembrovszky F, Hegyi P. Heat therapy shows benefit in patients with type 2 diabetes mellitus: a systematic review and meta-analysis. Int J Hyperthermia 2021; 38:1650-1659. [PMID: 34808071 DOI: 10.1080/02656736.2021.2003445] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 10/14/2021] [Accepted: 11/02/2021] [Indexed: 12/25/2022] Open
Abstract
AIMS Type-2 diabetes mellitus (T2DM) is a common health condition which prevalence increases with age. Besides lifestyle modifications, passive heating could be a promising intervention to improve glycemic control. This study aimed to assess the efficacy of passive heat therapy on glycemic and cardiovascular parameters, and body weight among patients with T2DM. METHODS A systematic review and meta-analysis were reported according to PRISMA Statement. We conducted a systematic search in three databases (MEDLINE, Embase, CENTRAL) from inception to 19 August 2021. We included interventional studies reporting on T2DM patients treated with heat therapy. The main outcomes were the changes in pre-and post-treatment cardiometabolic parameters (fasting plasma glucose, glycated plasma hemoglobin, and triglyceride). For these continuous variables, weighted mean differences (WMD) with 95% confidence intervals (CIs) were calculated. Study protocol number: CRD42020221500. RESULTS Five studies were included in the qualitative and quantitative synthesis, respectively. The results showed a not significant difference in the hemoglobin A1c [WMD -0.549%, 95% CI (-1.262, 0.164), p = 0.131], fasting glucose [WMD -0.290 mmol/l, 95% CI (-0.903, 0.324), p = 0.355]. Triglyceride [WMD 0.035 mmol/l, 95% CI (-0.130, 0.200), p = 0.677] levels were comparable regarding the pre-, and post intervention values. CONCLUSION Passive heating can be beneficial for patients with T2DM since the slight improvement in certain cardiometabolic parameters support that. However, further randomized controlled trials with longer intervention and follow-up periods are needed to confirm the beneficial effect of passive heat therapy.
Collapse
Affiliation(s)
- Judit Sebők
- 2nd Department of Medicine and Nephrology-Diabetes Center, Medical School, University of Pécs, Pécs, Hungary
| | - Zsófia Édel
- 2nd Department of Medicine and Nephrology-Diabetes Center, Medical School, University of Pécs, Pécs, Hungary
| | - Szilárd Váncsa
- Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, Pécs, Hungary
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Nelli Farkas
- Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, Pécs, Hungary
- Institute of Bioanalysis, Medical School, University of Pécs, Pécs, Hungary
| | - Szabolcs Kiss
- Doctoral School of Clinical Medicine, University of Szeged, Szeged, Hungary
| | - Bálint Erőss
- Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, Pécs, Hungary
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Zsolt Török
- LipidArt Ltd., Szeged, Hungary
- Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Gábor Balogh
- LipidArt Ltd., Szeged, Hungary
- Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Zsolt Balogi
- Heim Pál National Pediatric Institute, Budapest, Hungary
| | - Rita Nagy
- Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, Pécs, Hungary
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Denver, Aurora, CO, USA
| | - Philip L Hooper
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Paige C Geiger
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, Hungary
| | - István Wittmann
- 2nd Department of Medicine and Nephrology-Diabetes Center, Medical School, University of Pécs, Pécs, Hungary
| | - László Vigh
- LipidArt Ltd., Szeged, Hungary
- Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Fanni Dembrovszky
- Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, Pécs, Hungary
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Péter Hegyi
- Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, Pécs, Hungary
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Division of Pancreatic Diseases, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| |
Collapse
|
9
|
Mild electrical stimulation with heat shock attenuates renal pathology in adriamycin-induced nephrotic syndrome mouse model. Sci Rep 2020; 10:18719. [PMID: 33128027 PMCID: PMC7603347 DOI: 10.1038/s41598-020-75761-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 10/20/2020] [Indexed: 11/08/2022] Open
Abstract
Nephrotic syndrome (NS) is a renal disorder that is characterized by massive proteinuria, hypoalbuminemia and edema. One of the main causes of NS is focal segmental glomerulosclerosis (FSGS), which has extremely poor prognosis. Although steroids and immunosuppressants are the first line of treatment, some FSGS cases are refractory, prompting the need to find new therapeutic strategies. We have previously demonstrated that an optimized combination treatment of mild electrical stimulation (MES) and heat shock (HS) has several biological benefits including the amelioration of the pathologies of the genetic renal disorder Alport syndrome. Here, we investigated the effect of MES + HS on adriamycin (ADR)-induced NS mouse model. MES + HS suppressed proteinuria and glomerulosclerosis induced by ADR. The expressions of pro-inflammatory cytokines and pro-fibrotic genes were also significantly downregulated by MES + HS. MES + HS decreased the expression level of cleaved caspase-3 and the number of TUNEL-positive cells, indicating that MES + HS exerted anti-apoptotic effect. Moreover, MES + HS activated the Akt signaling and induced the phosphorylation and inhibition of the apoptotic molecule BAD. In in vitro experiment, the Akt inhibitor abolished the MES + HS-induced Akt-BAD signaling and anti-apoptotic effect in ADR-treated cells. Collectively, our study suggested that MES + HS modulates ADR-induced pathologies and has renoprotective effect against ADR-induced NS via regulation of Akt-BAD axis.
Collapse
|
10
|
Kitano S, Kondo T, Matsuyama R, Ono K, Goto R, Takaki Y, Hanatani S, Sakaguchi M, Igata M, Kawashima J, Motoshima H, Matsumura T, Kai H, Araki E. Impact of hepatic HSP72 on insulin signaling. Am J Physiol Endocrinol Metab 2019; 316:E305-E318. [PMID: 30532989 DOI: 10.1152/ajpendo.00215.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Heat shock protein 72 (HSP72) is a major inducible molecule in the heat shock response that enhances intracellular stress tolerance. Decreased expression of HSP72 is observed in type 2 diabetes, which may contribute to the development of insulin resistance and chronic inflammation. We used HSP72 knockout (HSP72-KO) mice to investigate the impact of HSP72 on glucose metabolism and endoplasmic reticulum (ER) stress, particularly in the liver. Under a high-fat diet (HFD) condition, HSP72-KO mice showed glucose intolerance, insulin resistance, impaired insulin secretion, and enhanced hepatic gluconeogenic activity. Furthermore, activity of the c-Jun NH2-terminal kinase (JNK) was increased and insulin signaling suppressed in the liver. Liver-specific expression of HSP72 by lentivirus (lenti) in HFD-fed HSP72-KO mice ameliorated insulin resistance and hepatic gluconeogenic activity. Furthermore, increased adipocyte size and hepatic steatosis induced by the HFD were suppressed in HSP72-KO lenti-HSP72 mice. Increased JNK activity and ER stress upon HFD were suppressed in the liver as well as the white adipose tissue of HSP72-KO lenti-HSP72 mice. Thus, HSP72 KO caused a deterioration in glucose metabolism, hepatic gluconeogenic activity, and β-cell function. Moreover, liver-specific recovery of HSP72 restored glucose homeostasis. Therefore, hepatic HSP72 may play a critical role in the pathogenesis of type 2 diabetes.
Collapse
Affiliation(s)
- Sayaka Kitano
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University , Kumamoto , Japan
| | - Tatsuya Kondo
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University , Kumamoto , Japan
| | - Rina Matsuyama
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University , Kumamoto , Japan
| | - Kaoru Ono
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University , Kumamoto , Japan
| | - Rieko Goto
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University , Kumamoto , Japan
| | - Yuki Takaki
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University , Kumamoto , Japan
| | - Satoko Hanatani
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University , Kumamoto , Japan
| | - Masaji Sakaguchi
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University , Kumamoto , Japan
| | - Motoyuki Igata
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University , Kumamoto , Japan
| | - Junji Kawashima
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University , Kumamoto , Japan
| | - Hiroyuki Motoshima
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University , Kumamoto , Japan
| | - Takeshi Matsumura
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University , Kumamoto , Japan
| | - Hirofumi Kai
- Department of Molecular Medicine, Faculty of Life Sciences, Global COE "Cell Fate Regulation Research and Education Unit, " Kumamoto University , Kumamoto , Japan
| | - Eiichi Araki
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University , Kumamoto , Japan
| |
Collapse
|
11
|
Tsurekawa Y, Morita M, Suico MA, Moriuchi M, Nakano Y, Piruzyan M, Takada M, Fukami S, Shuto T, Kai H. Mild electrical stimulation with heat shock reduces inflammatory symptoms in the imiquimod-induced psoriasis mouse model. Exp Dermatol 2018; 27:1092-1097. [PMID: 29928760 DOI: 10.1111/exd.13720] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2018] [Indexed: 12/24/2022]
Abstract
Psoriasis is a chronic skin disease caused by immune disorder. The chronic skin inflammation involves inflammatory molecules that are released from T lymphocytes and keratinocytes. Therefore, developing an anti-inflammatory therapy that is suitable for long-term treatment is needed. Electrical stimulation induces biological responses by modulating intracellular signaling pathways. Our previous studies showed that the optimized combination treatment of mild electrical stimulation (MES, 0.1-millisecond; ms, 55-pulses per second; pps) and heat shock (HS, 42°C) modulates inflammatory symptoms of metabolic disorders and chronic kidney disease in mice models and clinical trials. Here, we investigated the effect of MES+HS treatment on imiquimod-induced psoriasis mouse model. Topical application of imiquimod cream (15 mg) to mice ear induced keratinocyte hyperproliferation and psoriasis-like inflammation. In MES+HS-treated mice, imiquimod-induced skin hyperplasia was significantly decreased. MES+HS treatment reduced the protein expression of IL-17A and the infiltration of CD3-positive cells in lesioned skin. In addition, MES+HS-treated mice had decreased mRNA expression level of antimicrobial molecules (S100A8 and Reg3γ) which aggravate psoriasis. In IL-17A-stimulated HaCaT cells, MES+HS treatment significantly lowered the mRNA expression of aggravation markers (S100A8, S100A9 and β-defensin2). Taken together, our study suggested that MES+HS treatment improves the pathology of psoriasis via decreasing the expression of inflammatory molecules.
Collapse
Affiliation(s)
- Yu Tsurekawa
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.,Program for Leading Graduate Schools "HIGO (Health life science: Interdisciplinary and Glocal Oriented) Program", Kumamoto University, Kumamoto, Japan
| | - Misaki Morita
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.,Program for Leading Graduate Schools "HIGO (Health life science: Interdisciplinary and Glocal Oriented) Program", Kumamoto University, Kumamoto, Japan
| | - Mary Ann Suico
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Masataka Moriuchi
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.,Program for Leading Graduate Schools "HIGO (Health life science: Interdisciplinary and Glocal Oriented) Program", Kumamoto University, Kumamoto, Japan
| | - Yoshio Nakano
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.,Program for Leading Graduate Schools "HIGO (Health life science: Interdisciplinary and Glocal Oriented) Program", Kumamoto University, Kumamoto, Japan
| | - Mariam Piruzyan
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.,Program for Leading Graduate Schools "HIGO (Health life science: Interdisciplinary and Glocal Oriented) Program", Kumamoto University, Kumamoto, Japan
| | - Masafumi Takada
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Sanako Fukami
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tsuyoshi Shuto
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hirofumi Kai
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.,Program for Leading Graduate Schools "HIGO (Health life science: Interdisciplinary and Glocal Oriented) Program", Kumamoto University, Kumamoto, Japan
| |
Collapse
|