1
|
Pagiazitis JG, Delestrée N, Sowoidnich L, Sivakumar N, Simon CM, Chatzisotiriou A, Albani M, Mentis GZ. Catecholaminergic dysfunction drives postural and locomotor deficits in a mouse model of spinal muscular atrophy. Cell Rep 2025; 44:115147. [PMID: 39752251 PMCID: PMC11832083 DOI: 10.1016/j.celrep.2024.115147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 10/24/2024] [Accepted: 12/12/2024] [Indexed: 02/01/2025] Open
Abstract
Development and maintenance of posture is essential behavior for overground mammalian locomotion. Dopamine and noradrenaline strongly influence locomotion, and their dysregulation initiates the development of motor impairments linked to neurodegenerative disease. However, the precise cellular and circuit mechanisms are not well defined. Here, we investigated the role of catecholaminergic neuromodulation in a mouse model of spinal muscular atrophy (SMA). SMA is characterized by severe motor dysfunction and postural deficits. We identify progressive loss of catecholaminergic synapses from spinal neurons that occur via non-cell autonomous mechanisms. Importantly, the selective restoration of survival motor neuron (SMN) in either catecholaminergic or serotonergic neurons is sufficient to correct impairments in locomotion. However, only combined SMN restoration in both catecholaminergic and serotonergic neurons or pharmacological treatment with l-dopa improve the severe postural deficits. These findings uncover the synaptic and cellular mechanisms responsible for the postural and motor symptoms in SMA and identify catecholaminergic neuromodulation as a potential therapeutic target.
Collapse
Affiliation(s)
- John G Pagiazitis
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University, New York, NY 10032, USA; Department of Physiology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 541 24, Greece
| | - Nicolas Delestrée
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University, New York, NY 10032, USA
| | - Leonie Sowoidnich
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University, New York, NY 10032, USA; Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, Germany
| | - Nandhini Sivakumar
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University, New York, NY 10032, USA
| | - Christian M Simon
- Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, Germany
| | - Athanasios Chatzisotiriou
- Department of Physiology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 541 24, Greece
| | - Maria Albani
- Department of Physiology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 541 24, Greece
| | - George Z Mentis
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
2
|
Vijatovic D, Toma FA, Harrington ZPM, Sommer C, Hauschild R, Trevisan AJ, Chapman P, Julseth MJ, Brenner-Morton S, Gabitto MI, Dasen JS, Bikoff JB, Sweeney LB. Spinal neuron diversity scales exponentially with swim-to-limb transformation during frog metamorphosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.20.614050. [PMID: 39345366 PMCID: PMC11430061 DOI: 10.1101/2024.09.20.614050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Vertebrates exhibit a wide range of motor behaviors, ranging from swimming to complex limb-based movements. Here we take advantage of frog metamorphosis, which captures a swim-to-limb-based movement transformation during the development of a single organism, to explore changes in the underlying spinal circuits. We find that the tadpole spinal cord contains small and largely homogeneous populations of motor neurons (MNs) and V1 interneurons (V1s) at early escape swimming stages. These neuronal populations only modestly increase in number and subtype heterogeneity with the emergence of free swimming. In contrast, during frog metamorphosis and the emergence of limb movement, there is a dramatic expansion of MN and V1 interneuron number and transcriptional heterogeneity, culminating in cohorts of neurons that exhibit striking molecular similarity to mammalian motor circuits. CRISPR/Cas9-mediated gene disruption of the limb MN and V1 determinants FoxP1 and Engrailed-1, respectively, results in severe but selective deficits in tail and limb function. Our work thus demonstrates that neural diversity scales exponentially with increasing behavioral complexity and illustrates striking evolutionary conservation in the molecular organization and function of motor circuits across species.
Collapse
Affiliation(s)
- David Vijatovic
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | | | | | | | - Robert Hauschild
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Alexandra J. Trevisan
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Phillip Chapman
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Mara J. Julseth
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | | | - Mariano I. Gabitto
- Allen Institute for Brain Science, Seattle, WA, USA
- Department of Statistics, University of Washington, Seattle, WA, 98109, USA
| | - Jeremy S. Dasen
- NYU Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY, USA
| | - Jay B. Bikoff
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Lora B. Sweeney
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| |
Collapse
|
3
|
Sillar KT, Simmers J, Combes D. From tadpole to adult frog locomotion. Curr Opin Neurobiol 2023; 82:102753. [PMID: 37549591 DOI: 10.1016/j.conb.2023.102753] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/05/2023] [Accepted: 07/05/2023] [Indexed: 08/09/2023]
Abstract
The transition from larval to adult locomotion in the anuran, Xenopus laevis, involves a dramatic switch from axial to appendicular swimming including intermediate stages when the tail and hindlimbs co-exist and contribute to propulsion. Hatchling tadpole swimming is generated by an axial central pattern generator (CPG) which matures rapidly during early larval life. During metamorphosis, the developing limbs are controlled by a de novo appendicular CPG driven initially by the axial system before segregating to allow both systems to operate together or independently. Neuromodulation plays important roles throughout, but key modulators switch their effects from early inhibitory influences to facilitating locomotion. Temperature affects the construction and operation of locomotor networks and global changes in environmental temperature place aquatic poikilotherms, like amphibians, at risk. The locomotor control strategy of anurans differs from other amphibian groups such as salamanders, where evolution has acted upon the thyroid hormone pathway to sculpt different developmental outcomes.
Collapse
Affiliation(s)
- Keith T Sillar
- School of Psychology and Neuroscience, University of St Andrews, St Marys Quad., St Andrews, Fife KY16 9AP, Scotland.
| | - John Simmers
- Institut des Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS UMR 5287, Université de Bordeaux, 33706 Bordeaux, France
| | - Denis Combes
- Institut des Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS UMR 5287, Université de Bordeaux, 33706 Bordeaux, France
| |
Collapse
|
4
|
Kavanagh JJ, Taylor JL. Voluntary activation of muscle in humans: does serotonergic neuromodulation matter? J Physiol 2022; 600:3657-3670. [PMID: 35864781 PMCID: PMC9541597 DOI: 10.1113/jp282565] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/12/2022] [Indexed: 11/08/2022] Open
Abstract
Ionotropic inputs to motoneurones have the capacity to depolarise and hyperpolarise the motoneurone, whereas neuromodulatory inputs control the state of excitability of the motoneurone. Intracellular recordings of motoneurones from in vitro and in situ animal preparations have provided extraordinary insight into the mechanisms that underpin how neuromodulators regulate neuronal excitability. However, far fewer studies have attempted to translate the findings from cellular and molecular studies into a human model. In this review, we focus on the role that serotonin (5-HT) plays in muscle activation in humans. 5-HT is a potent regulator of neuronal firing rates, which can influence the force that can be generated by muscles during voluntary contractions. We firstly outline structural and functional characteristics of the serotonergic system, and then describe how motoneurone discharge can be facilitated and suppressed depending on the 5-HT receptor subtype that is activated. We then provide a narrative on how 5-HT effects can influence voluntary activation during muscle contractions in humans, and detail how 5-HT may be a mediator of exercise-induced fatigue that arises from the central nervous system.
Collapse
Affiliation(s)
- Justin J. Kavanagh
- Neural Control of Movement laboratoryMenzies Health Institute QueenslandGriffith UniversityGold CoastAustralia
| | - Janet L. Taylor
- Centre for Human Performance, School of Medical and Health SciencesEdith Cowan UniversityPerthAustralia
- Neuroscience Research AustraliaSydneyAustralia
| |
Collapse
|
5
|
Yin B, Shi Z, Wang Y, Meck WH. Oscillation/Coincidence-Detection Models of Reward-Related Timing in Corticostriatal Circuits. TIMING & TIME PERCEPTION 2022. [DOI: 10.1163/22134468-bja10057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
The major tenets of beat-frequency/coincidence-detection models of reward-related timing are reviewed in light of recent behavioral and neurobiological findings. This includes the emphasis on a core timing network embedded in the motor system that is comprised of a corticothalamic-basal ganglia circuit. Therein, a central hub provides timing pulses (i.e., predictive signals) to the entire brain, including a set of distributed satellite regions in the cerebellum, cortex, amygdala, and hippocampus that are selectively engaged in timing in a manner that is more dependent upon the specific sensory, behavioral, and contextual requirements of the task. Oscillation/coincidence-detection models also emphasize the importance of a tuned ‘perception’ learning and memory system whereby target durations are detected by striatal networks of medium spiny neurons (MSNs) through the coincidental activation of different neural populations, typically utilizing patterns of oscillatory input from the cortex and thalamus or derivations thereof (e.g., population coding) as a time base. The measure of success of beat-frequency/coincidence-detection accounts, such as the Striatal Beat-Frequency model of reward-related timing (SBF), is their ability to accommodate new experimental findings while maintaining their original framework, thereby making testable experimental predictions concerning diagnosis and treatment of issues related to a variety of dopamine-dependent basal ganglia disorders, including Huntington’s and Parkinson’s disease.
Collapse
Affiliation(s)
- Bin Yin
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
- School of Psychology, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Zhuanghua Shi
- Department of Psychology, Ludwig Maximilian University of Munich, 80802 Munich, Germany
| | - Yaxin Wang
- School of Psychology, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Warren H. Meck
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
| |
Collapse
|
6
|
Sharples SA, Parker J, Vargas A, Milla-Cruz JJ, Lognon AP, Cheng N, Young L, Shonak A, Cymbalyuk GS, Whelan PJ. Contributions of h- and Na+/K+ Pump Currents to the Generation of Episodic and Continuous Rhythmic Activities. Front Cell Neurosci 2022; 15:715427. [PMID: 35185470 PMCID: PMC8855656 DOI: 10.3389/fncel.2021.715427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 12/29/2021] [Indexed: 12/31/2022] Open
Abstract
Developing spinal motor networks produce a diverse array of outputs, including episodic and continuous patterns of rhythmic activity. Variation in excitability state and neuromodulatory tone can facilitate transitions between episodic and continuous rhythms; however, the intrinsic mechanisms that govern these rhythms and their transitions are poorly understood. Here, we tested the capacity of a single central pattern generator (CPG) circuit with tunable properties to generate multiple outputs. To address this, we deployed a computational model composed of an inhibitory half-center oscillator (HCO). Following predictions of our computational model, we tested the contributions of key properties to the generation of an episodic rhythm produced by isolated spinal cords of the newborn mouse. The model recapitulates the diverse state-dependent rhythms evoked by dopamine. In the model, episodic bursting depended predominantly on the endogenous oscillatory properties of neurons, with Na+/K+ ATPase pump (IPump) and hyperpolarization-activated currents (Ih) playing key roles. Modulation of either IPump or Ih produced transitions between episodic and continuous rhythms and silence. As maximal activity of IPump decreased, the interepisode interval and period increased along with a reduction in episode duration. Decreasing maximal conductance of Ih decreased episode duration and increased interepisode interval. Pharmacological manipulations of Ih with ivabradine, and IPump with ouabain or monensin in isolated spinal cords produced findings consistent with the model. Our modeling and experimental results highlight key roles of Ih and IPump in producing episodic rhythms and provide insight into mechanisms that permit a single CPG to produce multiple patterns of rhythmicity.
Collapse
Affiliation(s)
- Simon A. Sharples
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, United Kingdom
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Neuroscience, University of Calgary, Calgary, AB, Canada
| | - Jessica Parker
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| | - Alex Vargas
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| | - Jonathan J. Milla-Cruz
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada
| | - Adam P. Lognon
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Neuroscience, University of Calgary, Calgary, AB, Canada
| | - Ning Cheng
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada
| | - Leanne Young
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada
| | - Anchita Shonak
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Neuroscience, University of Calgary, Calgary, AB, Canada
| | - Gennady S. Cymbalyuk
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
- Department of Physics and Astronomy, Georgia State University, Atlanta, GA, United States
- Gennady S. Cymbalyuk,
| | - Patrick J. Whelan
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Neuroscience, University of Calgary, Calgary, AB, Canada
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada
- *Correspondence: Patrick J. Whelan,
| |
Collapse
|
7
|
Iyer AA, Briggman KL. Amphibian behavioral diversity offers insights into evolutionary neurobiology. Curr Opin Neurobiol 2021; 71:19-28. [PMID: 34481981 DOI: 10.1016/j.conb.2021.07.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/16/2021] [Accepted: 07/27/2021] [Indexed: 11/18/2022]
Abstract
Recent studies have served to emphasize the unique placement of amphibians, composed of more than 8000 species, in the evolution of the brain. We provide an overview of the three amphibian orders and their respective ecologies, behaviors, and brain anatomy. Studies have probed the origins of independently evolved parental care strategies in frogs and the biophysical principles driving species-specific differences in courtship vocalization patterns. Amphibians are also important models for studying the central control of movement, especially in the context of the vertebrate origin of limb-based locomotion. By highlighting the versatility of amphibians, we hope to see a further adoption of anurans, urodeles, and gymnophionans as model systems for the evolution and neural basis of behavior across vertebrates.
Collapse
Affiliation(s)
- Aditya A Iyer
- Center of Advanced European Studies and Research (Caesar), Ludwig-Erhard-Allee 2, Bonn, Germany
| | - Kevin L Briggman
- Center of Advanced European Studies and Research (Caesar), Ludwig-Erhard-Allee 2, Bonn, Germany.
| |
Collapse
|
8
|
Booth JRH, Sane V, Gather MC, Pulver SR. Inexpensive Methods for Live Imaging of Central Pattern Generator Activity in the Drosophila Larval Locomotor System. JOURNAL OF UNDERGRADUATE NEUROSCIENCE EDUCATION : JUNE : A PUBLICATION OF FUN, FACULTY FOR UNDERGRADUATE NEUROSCIENCE 2020; 19:A124-A133. [PMID: 33880100 PMCID: PMC8040839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 10/26/2020] [Indexed: 06/12/2023]
Abstract
Central pattern generators (CPGs) are neural networks that produce rhythmic motor activity in the absence of sensory input. CPGs produce 'fictive' behaviours in vitro which parallel activity seen in intact animals. CPG networks have been identified in a wide variety of model organisms and have been shown to be critical for generating rhythmic behaviours such as swimming, walking, chewing and breathing. Work with CPG preparations has led to fundamental advances in neuroscience; however, most CPG preparations involve intensive dissections and require sophisticated electrophysiology equipment, making export to teaching laboratories problematic. Here we present an integrated approach for bringing the study of locomotor CPGs in Drosophila larvae into teaching laboratories. First, we present freely available genetic constructs that enable educators to express genetically encoded calcium indicators in cells of interest in the larval central nervous system. Next, we describe how to isolate the larval central nervous system and prepare it for live imaging. We then show how to modify standard compound microscopes to enable fluorescent imaging using 3D printed materials and inexpensive optical components. Finally, we show how to use the free image analysis programme ImageJ and freely available features in the signal analysis programme DataView to analyse rhythmic CPG activity in the larval CNS. Comparison of results to those obtained on research equipment shows that signal-to-noise levels are comparable and core features of larval CPG activity can be observed. Overall, this work shows the viability of exporting live imaging experiments to low cost environments and paves the way for new teaching laboratory exercises revolving around optical imaging of CPG activity.
Collapse
Affiliation(s)
- Jonathan R H Booth
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, United Kingdom
| | - Varun Sane
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, United Kingdom
| | - Malte C Gather
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, United Kingdom
- Centre for Nanobiophotonics, Department of Chemistry, University of Cologne, Cologne, Germany
| | - Stefan R Pulver
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, United Kingdom
| |
Collapse
|
9
|
A dynamic role for dopamine receptors in the control of mammalian spinal networks. Sci Rep 2020; 10:16429. [PMID: 33009442 PMCID: PMC7532218 DOI: 10.1038/s41598-020-73230-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 09/11/2020] [Indexed: 12/21/2022] Open
Abstract
Dopamine is well known to regulate movement through the differential control of direct and indirect pathways in the striatum that express D1 and D2 receptors respectively. The spinal cord also expresses all dopamine receptors; however, how the specific receptors regulate spinal network output in mammals is poorly understood. We explore the receptor-specific mechanisms that underlie dopaminergic control of spinal network output of neonatal mice during changes in spinal network excitability. During spontaneous activity, which is a characteristic of developing spinal networks operating in a low excitability state, we found that dopamine is primarily inhibitory. We uncover an excitatory D1-mediated effect of dopamine on motoneurons and network output that also involves co-activation with D2 receptors. Critically, these excitatory actions require higher concentrations of dopamine; however, analysis of dopamine concentrations of neonates indicates that endogenous levels of spinal dopamine are low. Because endogenous levels of spinal dopamine are low, this excitatory dopaminergic pathway is likely physiologically-silent at this stage in development. In contrast, the inhibitory effect of dopamine, at low physiological concentrations is mediated by parallel activation of D2, D3, D4 and α2 receptors which is reproduced when endogenous dopamine levels are increased by blocking dopamine reuptake and metabolism. We provide evidence in support of dedicated spinal network components that are controlled by excitatory D1 and inhibitory D2 receptors that is reminiscent of the classic dopaminergic indirect and direct pathway within the striatum. These results indicate that network state is an important factor that dictates receptor-specific and therefore dose-dependent control of neuromodulators on spinal network output and advances our understanding of how neuromodulators regulate neural networks under dynamically changing excitability.
Collapse
|
10
|
An in vivo brain-bacteria interface: the developing brain as a key regulator of innate immunity. NPJ Regen Med 2020; 5:2. [PMID: 32047653 PMCID: PMC7000827 DOI: 10.1038/s41536-020-0087-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 12/20/2019] [Indexed: 01/11/2023] Open
Abstract
Infections have numerous effects on the brain. However, possible roles of the brain in protecting against infection, and the developmental origin and role of brain signaling in immune response, are largely unknown. We exploited a unique Xenopus embryonic model to reveal control of innate immune response to pathogenic E. coli by the developing brain. Using survival assays, morphological analysis of innate immune cells and apoptosis, and RNA-seq, we analyzed combinations of infection, brain removal, and tail-regenerative response. Without a brain, survival of embryos injected with bacteria decreased significantly. The protective effect of the developing brain was mediated by decrease of the infection-induced damage and of apoptosis, and increase of macrophage migration, as well as suppression of the transcriptional consequences of the infection, all of which decrease susceptibility to pathogen. Functional and pharmacological assays implicated dopamine signaling in the bacteria–brain–immune crosstalk. Our data establish a model that reveals the very early brain to be a central player in innate immunity, identify the developmental origins of brain–immune interactions, and suggest several targets for immune therapies.
Collapse
|
11
|
Hachoumi L, Sillar KT. Developmental stage-dependent switching in the neuromodulation of vertebrate locomotor central pattern generator networks. Dev Neurobiol 2019; 80:42-57. [PMID: 31705739 DOI: 10.1002/dneu.22725] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/24/2019] [Accepted: 11/05/2019] [Indexed: 12/27/2022]
Abstract
Neuromodulation plays important and stage-dependent roles in regulating locomotor central pattern (CPG) outputs during vertebrate motor system development. Dopamine, serotonin and nitric oxide are three neuromodulators that potently influence CPG outputs in the development of Xenopus frog tadpole locomotion. However, their roles switch from predominantly inhibitory early in development to mainly excitatory at later stages. In this review, we compare the stage-dependent switching in neuromodulation in Xenopus with other vertebrate systems, notably the mouse and the zebrafish, and highlight features that appear to be phylogenetically conserved.
Collapse
Affiliation(s)
- Lamia Hachoumi
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
| | - Keith T Sillar
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
| |
Collapse
|
12
|
Modulation of Rhythmic Activity in Mammalian Spinal Networks Is Dependent on Excitability State. eNeuro 2017; 4:eN-NWR-0368-16. [PMID: 28144626 PMCID: PMC5272924 DOI: 10.1523/eneuro.0368-16.2017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 01/11/2017] [Accepted: 01/12/2017] [Indexed: 11/21/2022] Open
Abstract
Neuromodulators play an important role in activating rhythmically active motor networks; however, what remains unclear are the network interactions whereby neuromodulators recruit spinal motor networks to produce rhythmic activity. Evidence from invertebrate systems has demonstrated that the effect of neuromodulators depends on the pre-existing state of the network. We explored how network excitation state affects the ability of dopamine to evoke rhythmic locomotor activity in the neonatal mouse isolated spinal cord. We found that dopamine can evoke unique patterns of motor activity that are dependent on the excitability state of motor networks. Different patterns of motor activity ranging from tonic, nonrhythmic activity to multirhythmic, nonlocomotor activity to locomotor activity were produced by altering global motor network excitability through manipulations of the extracellular potassium and bath NMDA concentration. A similar effect was observed when network excitation was manipulated during an unstable multirhythm evoked by a low concentration (15 µm) of 5-HT, suggesting that our results are not neuromodulator specific. Our data show in vertebrate systems that modulation is a two-way street and that modulatory actions are largely influenced by the network state. The level of network excitation can account for variability between preparations and is an additional factor to be considered when circuit elements are removed from the network.
Collapse
|