1
|
Zhou J, Wang L, Peng C, Peng F. Co-Targeting Tumor Angiogenesis and Immunosuppressive Tumor Microenvironment: A Perspective in Ethnopharmacology. Front Pharmacol 2022; 13:886198. [PMID: 35784750 PMCID: PMC9242535 DOI: 10.3389/fphar.2022.886198] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Tumor angiogenesis is one of the most important processes of cancer deterioration via nurturing an immunosuppressive tumor environment (TME). Targeting tumor angiogenesis has been widely accepted as a cancer intervention approach, which is also synergistically associated with immune therapy. However, drug resistance is the biggest challenge of anti-angiogenesis therapy, which affects the outcomes of anti-angiogeneic agents, and even combined with immunotherapy. Here, emerging targets and representative candidate molecules from ethnopharmacology (including traditional Chinese medicine, TCM) have been focused, and they have been proved to regulate tumor angiogenesis. Further investigations on derivatives and delivery systems of these molecules will provide a comprehensive landscape in preclinical studies. More importantly, the molecule library of ethnopharmacology meets the viability for targeting angiogenesis and TME simultaneously, which is attributed to the pleiotropy of pro-angiogenic factors (such as VEGF) toward cancer cells, endothelial cells, and immune cells. We primarily shed light on the potentiality of ethnopharmacology against tumor angiogenesis, particularly TCM. More research studies concerning the crosstalk between angiogenesis and TME remodeling from the perspective of botanical medicine are awaited.
Collapse
Affiliation(s)
- Jianbo Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Li Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Fu Peng, ; Cheng Peng,
| | - Fu Peng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
- *Correspondence: Fu Peng, ; Cheng Peng,
| |
Collapse
|
2
|
Li M, Su F, Zhu M, Zhang H, Wei Y, Zhao Y, Li J, Lv S. Research Progress in the Field of Gambogic Acid and Its Derivatives as Antineoplastic Drugs. Molecules 2022; 27:2937. [PMID: 35566290 PMCID: PMC9102264 DOI: 10.3390/molecules27092937] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/13/2022] [Accepted: 04/29/2022] [Indexed: 12/18/2022] Open
Abstract
Gambogic acid (GA) is a natural product with a wide range of pharmacological properties. It plays an important role in inhibiting tumor growth. A large number of GA derivatives have been designed and prepared to improve its shortcomings, such as poor water solubility, low bioavailability, poor stability, and adverse drug effects. So far, GA has been utilized to develop a variety of active derivatives with improved water solubility and bioavailability through structural modification. This article summarized the progress in pharmaceutical chemistry of GA derivatives to provide a reference and basis for further study on structural modifications of GA and expansion of its clinical applications.
Collapse
Affiliation(s)
- Meng Li
- Heilongjiang University of Chinese Medicine, Harbin 150040, China;
| | - Fali Su
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin 150040, China; (F.S.); (M.Z.); (H.Z.); (Y.W.); (Y.Z.)
| | - Mingtao Zhu
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin 150040, China; (F.S.); (M.Z.); (H.Z.); (Y.W.); (Y.Z.)
| | - Huan Zhang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin 150040, China; (F.S.); (M.Z.); (H.Z.); (Y.W.); (Y.Z.)
| | - Yuxin Wei
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin 150040, China; (F.S.); (M.Z.); (H.Z.); (Y.W.); (Y.Z.)
| | - Yang Zhao
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin 150040, China; (F.S.); (M.Z.); (H.Z.); (Y.W.); (Y.Z.)
| | - Jianmin Li
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150040, China;
| | - Shaowa Lv
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin 150040, China; (F.S.); (M.Z.); (H.Z.); (Y.W.); (Y.Z.)
| |
Collapse
|
3
|
Novel versatile synthesis method for amides, carbamates and ureas employing a Grignard base, an amine and an ester. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2021.100253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
4
|
Cytotoxic and Anti-Inflammatory Activities of Dihydroisocoumarin and Xanthone Derivatives from Garcinia picrorhiza. Molecules 2021; 26:molecules26216626. [PMID: 34771035 PMCID: PMC8587515 DOI: 10.3390/molecules26216626] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/03/2021] [Accepted: 10/08/2021] [Indexed: 11/17/2022] Open
Abstract
Garcinia picrorhiza, a woody plant native to Sulawesi and Maluku Islands, Indonesia, has been traditionally used as a wound healing ointment. In our continuous search for bioactive compounds from this plant, 15 phenolic compounds were isolated from its stem bark, including a previously undescribed dihydroisocoumarin, 2'-hydroxyannulatomarin, and two undescribed furanoxanthones, gerontoxanthone C hydrate and 3'-hydroxycalothorexanthone. The structures of the new metabolites were elucidated on the basis of spectroscopic analysis, including 1D and 2D NMR and HRESIMS. Gerontoxanthone C hydrate possessed cytotoxicity against four cancer cells (KB, HeLa S3, MCF-7, and Hep G2) with IC50 values ranging from 5.6 to 7.5 µM. Investigation on the anti-inflammatory activities showed that 3'-hydroxycalothorexanthone inhibited NO production in RAW 264.7 and BV-2 cell lines with IC50 values of 16.4 and 13.8 µM, respectively, whereas only (-)-annulatomarin possessed inhibition activity on COX-2 enzyme over 10% at 20 µM. This work describes the presence of 3,4-dihydroisocoumarin structures with a phenyl ring substituent at C-3, which are reported the first time in genus Garcinia. These findings also suggest the potential of furanxanthone derivatives as cytotoxic and anti-inflammatory agents for further pharmacological studies.
Collapse
|
5
|
Rech J, Sypniewski D, Żelaszczyk D, Szkaradek N, Rogóż W, Waszkielewicz A, Marona H, Bednarek I. Novel Xanthone Derivatives Impair Growth and Invasiveness of Colon Cancer Cells In Vitro. Biomolecules 2021; 11:biom11101480. [PMID: 34680113 PMCID: PMC8533335 DOI: 10.3390/biom11101480] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/02/2021] [Accepted: 10/04/2021] [Indexed: 12/24/2022] Open
Abstract
Natural xanthones are a large group of compounds from which promising anticancer properties could be further developed by chemical modifications. This study aimed to investigate the influence of four novel xanthone derivatives based on a naturally occurring xanthone skeleton on the invasiveness of colon cancer cells in vitro. First, the concentrations required to inhibit growth of three colorectal cancer cell lines to 50% (GI50) of all the studied compounds, as well as the natural xanthones used as a reference (gambogic acid and α-mangostin), have been established (MTS reduction test). Next, the assays determining several aspects of the GI25 xanthones influence on colorectal cancer cells, including cytotoxicity, migration and invasion potential, interaction with extracellular matrix and endothelial cells, as well as expression of selected invasiveness related genes have been performed. Our results demonstrate that these novel xanthone derivatives impair colorectal cancer proliferation, motility, adhesion to extracellular matrix and to endothelial cells, and also induce apoptosis and cell death. Moreover, their activity is comparable to cisplatin and 5-fluorouracil, used as reference compounds. Conducted research indicates our compounds for further research and development as novel drugs in colorectal cancer treatment.
Collapse
Affiliation(s)
- Jakub Rech
- Department of Biotechnology and Genetic Engineering, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland; (D.S.); (I.B.)
- Correspondence:
| | - Daniel Sypniewski
- Department of Biotechnology and Genetic Engineering, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland; (D.S.); (I.B.)
| | - Dorota Żelaszczyk
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Krakow, Poland; (D.Ż.); (N.S.); (A.W.); (H.M.)
| | - Natalia Szkaradek
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Krakow, Poland; (D.Ż.); (N.S.); (A.W.); (H.M.)
| | - Wojciech Rogóż
- Department of Physical Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Anna Waszkielewicz
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Krakow, Poland; (D.Ż.); (N.S.); (A.W.); (H.M.)
| | - Henryk Marona
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Krakow, Poland; (D.Ż.); (N.S.); (A.W.); (H.M.)
| | - Ilona Bednarek
- Department of Biotechnology and Genetic Engineering, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland; (D.S.); (I.B.)
| |
Collapse
|
6
|
Hu XL, He QW, Long H, Zhang LX, Wang R, Wang BL, Feng JH, Wang Q, Hou JQ, Zhang XQ, Ye WC, Wang H. Synthesis and Biological Evaluation of Celastrol Derivatives with Improved Cytotoxic Selectivity and Antitumor Activities. JOURNAL OF NATURAL PRODUCTS 2021; 84:1954-1966. [PMID: 34170694 DOI: 10.1021/acs.jnatprod.1c00262] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cdc37 associates kinase clients to Hsp90 and promotes the development of cancers. Celastrol, a natural friedelane triterpenoid, can disrupt the Hsp90-Cdc37 interaction to provide antitumor effects. In this study, 31 new celastrol derivatives, 2a-2d, 3a-3g, and 4a-4t, were designed and synthesized, and their Hsp90-Cdc37 disruption activities and antiproliferative activities against cancer cells were evaluated. Among these compounds, 4f, with the highest tumor cell selectivity (15.4-fold), potent Hsp90-Cdc37 disruption activity (IC50 = 1.9 μM), and antiproliferative activity against MDA-MB-231 cells (IC50 = 0.2 μM), was selected as the lead compound. Further studies demonstrated 4f has strong antitumor activities both in vitro and in vivo through disrupting the Hsp90-Cdc37 interaction and inhibiting angiogenesis. In addition, 4f exhibited less toxicity than celastrol and showed a good pharmacokinetics profile in vivo. These findings suggest that 4f may be a promising candidate for development of new cancer therapies.
Collapse
Affiliation(s)
- Xiao-Long Hu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Qi-Wei He
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Huan Long
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Li-Xin Zhang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Rong Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Bao-Lin Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Jia-Hao Feng
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Quan Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Ji-Qin Hou
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Xiao-Qi Zhang
- Institute of Traditional Chinese Medicine and Natural Products, Jinan University, Guangzhou 510632, People's Republic of China
| | - Wen-Cai Ye
- Institute of Traditional Chinese Medicine and Natural Products, Jinan University, Guangzhou 510632, People's Republic of China
| | - Hao Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| |
Collapse
|
7
|
Nale SD, Maiti D, Lee YR. Construction of Highly Functionalized Xanthones via Rh-Catalyzed Cascade C-H Activation/ O-Annulation. Org Lett 2021; 23:2465-2470. [PMID: 33719464 DOI: 10.1021/acs.orglett.1c00391] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A facile and efficient strategy for obtaining functionalized and multihydroxylated xanthones via Rh catalysis under redox-neutral conditions is developed. Diverse salicylaldehydes bearing heterocycles, aromatics, and fused aromatics can be rapidly coupled with 1,4-benzoquinones or 1,4-hydroquinones to afford valuable xanthones via cascade C-H/O-H functionalization and annulation. This protocol provides a rapid synthetic approach to obtain biologically active materials through late-stage functionalization and prepares natural products such as subelliptenone, pruniflorone N, and ravenelin.
Collapse
Affiliation(s)
- Sagar D Nale
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Debabrata Maiti
- Department of Chemistry, IIT Bombay, Powai, Mumbai 400076, India
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
8
|
Recent advances in the catalytic fixation of carbon dioxide to value-added chemicals over alkali metal salts. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.101252] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
9
|
Combined Omics Approach Identifies Gambogic Acid and Related Xanthones as Covalent Inhibitors of the Serine Palmitoyltransferase Complex. Cell Chem Biol 2020; 27:586-597.e12. [DOI: 10.1016/j.chembiol.2020.03.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 02/19/2020] [Accepted: 03/09/2020] [Indexed: 02/08/2023]
|
10
|
Omrani R, Zouaghi MO, Arfaoui Y. Mechanistic density functional theory study of the Claisen Rearrangement Diels-Alder Cycloaddition domino sequence for the synthesis of the caged garcinia xanthone. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
11
|
Photolysis of dimethoxynitrobenzyl-"caged" acids yields fluorescent products. Sci Rep 2019; 9:13421. [PMID: 31530869 PMCID: PMC6748988 DOI: 10.1038/s41598-019-49845-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 08/28/2019] [Indexed: 01/22/2023] Open
Abstract
Carboxylic acids conjugated with 4,5-dimethoxy-2-nitrobenzyl photoremovable protecting group are well known and widely used for biological studies. In this paper, we study the photolysis of likewise “caged” acetic, caprylic and arachidonic acids. Unexpectedly, we observed huge growth of fluorescence emission at ~430 nm during photolysis. Following further UV irradiation, a product with fluorescence at longer wavelength was formed (470 nm excitation / ~500–600 nm emission). While it may be used to monitor the “uncaging”, these fluorescent products may interfere with widespread dyes such as fluorescein in biomedical experiments. This effect might be negligible if the photolysis products dissolve in the medium. On the other hand, we observed that arachidonic and caprylic acids derivatives self-organize in emulsion droplets in water environment due to long lipophilic chains. Illumination of droplets by UV rapidly induces orange fluorescence excited by 488 nm light. This fluorescence turn-on was fast (~0.1 s) and apparently caused by the accumulation of water-insoluble fluorescent residuals inside droplets. These self-organized lipophilic structures with fluorescence turn-on capability may be of interest for biomedical and other application. We have identified and hypothesized some compounds which may be responsible for the observed fluorescense.
Collapse
|
12
|
Chantarasriwong O, Milcarek AT, Morales TH, Settle AL, Rezende CO, Althufairi BD, Theodoraki MA, Alpaugh ML, Theodorakis EA. Synthesis, structure-activity relationship and in vitro pharmacodynamics of A-ring modified caged xanthones in a preclinical model of inflammatory breast cancer. Eur J Med Chem 2019; 168:405-413. [DOI: 10.1016/j.ejmech.2019.02.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/14/2019] [Accepted: 02/14/2019] [Indexed: 12/14/2022]
|
13
|
Fernandes C, Carraro ML, Ribeiro J, Araújo J, Tiritan ME, Pinto MMM. Synthetic Chiral Derivatives of Xanthones: Biological Activities and Enantioselectivity Studies. Molecules 2019; 24:E791. [PMID: 30813236 PMCID: PMC6412826 DOI: 10.3390/molecules24040791] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/17/2019] [Accepted: 02/19/2019] [Indexed: 12/12/2022] Open
Abstract
Many naturally occurring xanthones are chiral and present a wide range of biological and pharmacological activities. Some of them have been exhaustively studied and subsequently, obtained by synthesis. In order to obtain libraries of compounds for structure activity relationship (SAR) studies as well as to improve the biological activity, new bioactive analogues and derivatives inspired in natural prototypes were synthetized. Bioactive natural xanthones compromise a large structural multiplicity of compounds, including a diversity of chiral derivatives. Thus, recently an exponential interest in synthetic chiral derivatives of xanthones (CDXs) has been witnessed. The synthetic methodologies can afford structures that otherwise could not be reached within the natural products for biological activity and SAR studies. Another reason that justifies this trend is that both enantiomers can be obtained by using appropriate synthetic pathways, allowing the possibility to perform enantioselectivity studies. In this work, a literature review of synthetic CDXs is presented. The structures, the approaches used for their synthesis and the biological activities are described, emphasizing the enantioselectivity studies.
Collapse
Affiliation(s)
- Carla Fernandes
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal.
| | - Maria Letícia Carraro
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - João Ribeiro
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Joana Araújo
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Maria Elizabeth Tiritan
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal.
- Cooperativa de Ensino Superior, Politécnico e Universitário (CESPU), Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde (IINFACTS), Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal.
| | - Madalena M M Pinto
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal.
| |
Collapse
|
14
|
|
15
|
Biswas IH, Biswas S, Islam MS, Riyajuddin S, Sarkar P, Ghosh K, Islam SM. Catalytic synthesis of benzimidazoles and organic carbamates using a polymer supported zinc catalyst through CO2 fixation. NEW J CHEM 2019. [DOI: 10.1039/c9nj03015h] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Zinc metal is attached to the organically modified polystyrene and the obtained catalyst is well characterized. The catalyst is very efficient for the formation of benzimidazoles and organic carbamates through carbon dioxide fixation.
Collapse
Affiliation(s)
| | - Surajit Biswas
- Department of Chemistry
- University of Kalyani
- Kalyani, Nadia 741235
- India
| | - Md Sarikul Islam
- Department of Chemistry
- University of Kalyani
- Kalyani, Nadia 741235
- India
| | | | - Priyanka Sarkar
- Department of Chemistry
- University of Kalyani
- Kalyani, Nadia 741235
- India
| | | | - Sk Manirul Islam
- Department of Chemistry
- University of Kalyani
- Kalyani, Nadia 741235
- India
| |
Collapse
|
16
|
Sardarian AR, Dindarloo Inaloo I, Zangiabadi M. An Fe3O4@SiO2/Schiff base/Cu(ii) complex as an efficient recyclable magnetic nanocatalyst for selective mono N-arylation of primary O-alkyl thiocarbamates and primary O-alkyl carbamates with aryl halides and arylboronic acids. NEW J CHEM 2019. [DOI: 10.1039/c9nj00028c] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A convenient and efficient selective mono N-arylation of primary O-alkyl thiocarbamates and carbamates is reported by a recyclable magnetic Cu(ii) nanocatalyst.
Collapse
Affiliation(s)
- Ali Reza Sardarian
- Chemistry Department
- College of Sciences
- Shiraz University
- Shiraz 71946-84795
- Iran
| | | | - Milad Zangiabadi
- Chemistry Department
- College of Sciences
- Shiraz University
- Shiraz 71946-84795
- Iran
| |
Collapse
|
17
|
Shrestha R, Lee YR. Base-Promoted Denitrogenative/Deoxygenative/Deformylative Benzannulation of N-Tosylhydrazones with 3-Formylchromones for Diverse and Polyfunctionalized Xanthones. Org Lett 2018; 20:7167-7171. [PMID: 30370769 DOI: 10.1021/acs.orglett.8b03106] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A simple and efficient base-promoted denitrogenative/deoxygenative/deformylative benzannulation is developed for the construction of biologically interesting polyfunctionalized xanthones starting from N-tosylhydrazones and two molecules of 3-formylchromones. This unprecedented protocol proceeds via a cascade diazo formation/Michael addition/denitrogenation/[4 + 2] cycloaddition/elimination/ring opening. The synthesized xanthones possess potent UV-filter, fluorescent sensor, and antioxidant properties.
Collapse
Affiliation(s)
- Rajeev Shrestha
- School of Chemical Engineering , Yeungnam University , Gyeongsan 38541 , Republic of Korea
| | - Yong Rok Lee
- School of Chemical Engineering , Yeungnam University , Gyeongsan 38541 , Republic of Korea
| |
Collapse
|
18
|
Hosseinian A, Ahmadi S, Mohammadi R, Monfared A, Rahmani Z. Three-component reaction of amines, epoxides, and carbon dioxide: A straightforward route to organic carbamates. J CO2 UTIL 2018. [DOI: 10.1016/j.jcou.2018.08.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
19
|
Li X, Wu Y, Wang Y, You Q, Zhang X. 'Click Chemistry' Synthesis of Novel Natural Product-Like Caged Xanthones Bearing a 1,2,3-Triazole Moiety with Improved Druglike Properties as Orally Active Antitumor Agents. Molecules 2017; 22:molecules22111834. [PMID: 29077076 PMCID: PMC6150271 DOI: 10.3390/molecules22111834] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 10/26/2017] [Accepted: 10/26/2017] [Indexed: 11/16/2022] Open
Abstract
DDO-6101, a natural-product-like caged xanthone discovered previously in our laboratory based on the pharmacophoric scaffold of the Garcinia natural product gambogic acid (GA), shows potent cytotoxicity in vitro, but poor efficacy in vivo due to its poor druglike properties. In order to improve the druglike properties and in vivo antitumor potency, a novel series of ten triazole-bearing caged xanthone derivatives of DDO-6101 has been efficiently synthesized by 'click chemistry' and evaluated for their in vitro antitumor activity and druglike properties. Most of the target compounds have sustained cytotoxicity against A549, HepG2, HCT116, and U2OS cancer cells and possess improved aqueous solubility, as well as permeability. Notably, these caged xanthones are also active towards taxol-resistant or cisplatin-resistant A549 cancer cells. Taking both the in vitro activities and druglike properties into consideration, compound 8g has been advanced into in vivo efficacy experiments. The results reveal that 8g (named as DDO-6318), both by intravenous or per os administration, are much more potent than the lead DDO-6101 in A549-transplanted mice models and it could be a promising antitumor candidate for further evaluation.
Collapse
Affiliation(s)
- Xiang Li
- Jiangsu Key Laboratory of Drug Design and Optimization, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China.
| | - Yue Wu
- Jiangsu Key Laboratory of Drug Design and Optimization, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 21009, China.
| | - Yanyan Wang
- Jiangsu Key Laboratory of Drug Design and Optimization, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 21009, China.
| | - Qidong You
- Jiangsu Key Laboratory of Drug Design and Optimization, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 21009, China.
| | - Xiaojin Zhang
- Jiangsu Key Laboratory of Drug Design and Optimization, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
- Department of Organic Chemistry, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|