1
|
Han X, Zhang X, Kang L, Feng S, Li Y, Zhao G. Peptide-modified nanoparticles for doxorubicin delivery: Strategies to overcome chemoresistance and perspectives on carbohydrate polymers. Int J Biol Macromol 2025; 299:140143. [PMID: 39855525 DOI: 10.1016/j.ijbiomac.2025.140143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/07/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
Chemotherapy serves as the primary treatment for cancers, facing challenges due to the emergence of drug resistance. Combination therapy has been developed to combat cancer drug resistance, yet it still suffers from lack of specific targeting of cancer cells and poor accumulation at the tumor site. Consequently, targeted administration of chemotherapy medications has been employed in cancer treatment. Doxorubicin (DOX) is one of the most frequently used chemotherapeutics, functioning by inhibiting topoisomerase activity. Enhancing the anti-cancer effects of DOX and overcoming drug resistance can be accomplished via delivery by nanoparticles. This review will focus on the development of peptide-DOX conjugates, the functionalization of nanoparticles with peptides, the co-delivery of DOX and peptides, as well as the theranostic use of peptide-modified nanoparticles in cancer treatment. The peptide-DOX conjugates have been designed to enhance the targeted delivery to cancer cells by interacting with receptors that are overexpressed on tumor surfaces. Moreover, nanoparticles can be modified with peptides to improve their uptake in tumor cells via endocytosis. Nanoparticles have the ability to co-deliver DOX along with therapeutic peptides for enhanced cancer treatment. Finally, nanoparticles modified with peptides can offer theranostic capabilities by facilitating both imaging and the delivery of DOX (chemotherapy).
Collapse
Affiliation(s)
- Xu Han
- Department of Traditional Chinese medicine, The First Hospital of China Medical University, Shenyang, China
| | - Xue Zhang
- Department of Gynecology, The First Hospital of China Medical University, Shenyang, China
| | - Longdan Kang
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, China
| | - Shuai Feng
- Department of Otolaryngology, The First Hospital of China Medical University, Shenyang, China.
| | - Yinyan Li
- Department of Ultrasonic Diagnosis, The First Hospital of China Medical University, Shenyang, China.
| | - Ge Zhao
- Department of Obstetrics, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
2
|
Omidian H, Wilson RL, Castejon AM. Recent Advances in Peptide-Loaded PLGA Nanocarriers for Drug Delivery and Regenerative Medicine. Pharmaceuticals (Basel) 2025; 18:127. [PMID: 39861188 PMCID: PMC11768227 DOI: 10.3390/ph18010127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/13/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Peptide-loaded poly(lactide-co-glycolide) (PLGA) nanocarriers represent a transformative approach to addressing the challenges of peptide-based therapies. These systems offer solutions to peptide instability, enzymatic degradation, and limited bioavailability by providing controlled release, targeted delivery, and improved stability. The versatility of PLGA nanocarriers extends across therapeutic domains, including cancer therapy, neurodegenerative diseases, vaccine development, and regenerative medicine. Innovations in polymer chemistry, surface functionalization, and advanced manufacturing techniques, such as microfluidics and electrospraying, have further enhanced the efficacy and scalability of these systems. This review highlights the key physicochemical properties, preparation strategies, and proven benefits of peptide-loaded PLGA systems, emphasizing their role in sustained drug release, immune activation, and tissue regeneration. Despite remarkable progress, challenges such as production scalability, cost, and regulatory hurdles remain.
Collapse
Affiliation(s)
- Hossein Omidian
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (R.L.W.); (A.M.C.)
| | | | | |
Collapse
|
3
|
Milewska S, Sadowska A, Stefaniuk N, Misztalewska-Turkowicz I, Wilczewska AZ, Car H, Niemirowicz-Laskowska K. Tumor-Homing Peptides as Crucial Component of Magnetic-Based Delivery Systems: Recent Developments and Pharmacoeconomical Perspective. Int J Mol Sci 2024; 25:6219. [PMID: 38892406 PMCID: PMC11172452 DOI: 10.3390/ijms25116219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
According to data from the World Health Organization (WHO), cancer is considered to be one of the leading causes of death worldwide, and new therapeutic approaches, especially improved novel cancer treatment regimens, are in high demand. Considering that many chemotherapeutic drugs tend to have poor pharmacokinetic profiles, including rapid clearance and limited on-site accumulation, a combined approach with tumor-homing peptide (THP)-functionalized magnetic nanoparticles could lead to remarkable improvements. This is confirmed by an increasing number of papers in this field, showing that the on-target peptide functionalization of magnetic nanoparticles improves their penetration properties and ensures tumor-specific binding, which results in an increased clinical response. This review aims to highlight the potential applications of THPs in combination with magnetic carriers across various fields, including a pharmacoeconomic perspective.
Collapse
Affiliation(s)
- Sylwia Milewska
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (S.M.); (A.S.); (N.S.); (H.C.)
| | - Anna Sadowska
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (S.M.); (A.S.); (N.S.); (H.C.)
| | - Natalia Stefaniuk
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (S.M.); (A.S.); (N.S.); (H.C.)
| | | | - Agnieszka Z. Wilczewska
- Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok, Poland; (I.M.-T.); (A.Z.W.)
| | - Halina Car
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (S.M.); (A.S.); (N.S.); (H.C.)
| | - Katarzyna Niemirowicz-Laskowska
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (S.M.); (A.S.); (N.S.); (H.C.)
| |
Collapse
|
4
|
Kattel P, Sulthana S, Trousil J, Shrestha D, Pearson D, Aryal S. Effect of Nanoparticle Weight on the Cellular Uptake and Drug Delivery Potential of PLGA Nanoparticles. ACS OMEGA 2023; 8:27146-27155. [PMID: 37546678 PMCID: PMC10398700 DOI: 10.1021/acsomega.3c02273] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/19/2023] [Indexed: 08/08/2023]
Abstract
Biodegradable and biocompatible polymeric nanoparticles (NPs) stand out as a key tool for improving drug bioavailability, reducing the inherent toxicity, and targeting the intended site. Most importantly, the ease of polymer synthesis and its derivatization to add functional properties makes them potentially ideal to fulfill the requirements for intended therapeutic applications. Among many polymers, US FDA-approved poly(l-lactic-co-glycolic) acid (PLGA) is a widely used biocompatible and biodegradable co-polymer in drug delivery and in implantable biomaterials. While many studies have been conducted using PLGA NPs as a drug delivery system, less attention has been given to understanding the effect of NP weight on cellular behaviors such as uptake. Here we discuss the synthesis of PLGA NPs with varying NP weights and their colloidal and biological properties. Following nanoprecipitation, we have synthesized PLGA NP sizes ranging from 60 to 100 nm by varying the initial PLGA feed in the system. These NPs were found to be stable for a prolonged period in colloidal conditions. We further studied cellular uptake and found that these NPs are cytocompatible; however, they are differentially uptaken by cancer and immune cells, which are greatly influenced by NPs' weight. The drug delivery potential of these nanoparticles (NPs) was assessed using doxorubicin (DOX) as a model drug, loaded into the NP core at a concentration of 7.0 ± 0.5 wt % to study its therapeutic effects. The results showed that both concentration and treatment time are crucial factors for exhibiting therapeutic effects, as observed with DOX-NPs exhibiting a higher potency at lower concentrations. The observations revealed that DOX-NPs exhibited a higher cellular uptake of DOX compared to the free-DOX treatment group. This will allow us to reduce the recommended dose to achieve the desired effect, which otherwise required a large dose when treated with free DOX. Considering the significance of PLGA-based nanoparticle drug delivery systems, we anticipate that this study will contribute to the establishment of design considerations and guidelines for the therapeutic applications of nanoparticles.
Collapse
Affiliation(s)
- Prabhat Kattel
- Department
of Pharmaceutical Sciences and Health Outcomes, The Ben and Maytee
Fisch College of Pharmacy, The University
of Texas at Tyler, Tyler, Texas 75799, United States
| | - Shoukath Sulthana
- Department
of Pharmaceutical Sciences and Health Outcomes, The Ben and Maytee
Fisch College of Pharmacy, The University
of Texas at Tyler, Tyler, Texas 75799, United States
| | - Jiří Trousil
- Department
of Pharmaceutical Sciences and Health Outcomes, The Ben and Maytee
Fisch College of Pharmacy, The University
of Texas at Tyler, Tyler, Texas 75799, United States
- Institute
of Macromolecular Chemistry, Czech Academy
of Sciences, Prague 16200, Czech Republic
| | - Dinesh Shrestha
- Department
of Pharmaceutical Sciences and Health Outcomes, The Ben and Maytee
Fisch College of Pharmacy, The University
of Texas at Tyler, Tyler, Texas 75799, United States
| | - David Pearson
- Department
of Pharmaceutical Sciences and Health Outcomes, The Ben and Maytee
Fisch College of Pharmacy, The University
of Texas at Tyler, Tyler, Texas 75799, United States
| | - Santosh Aryal
- Department
of Pharmaceutical Sciences and Health Outcomes, The Ben and Maytee
Fisch College of Pharmacy, The University
of Texas at Tyler, Tyler, Texas 75799, United States
| |
Collapse
|
5
|
Łopuszyńska N, Węglarz WP. Contrasting Properties of Polymeric Nanocarriers for MRI-Guided Drug Delivery. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2163. [PMID: 37570481 PMCID: PMC10420849 DOI: 10.3390/nano13152163] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023]
Abstract
Poor pharmacokinetics and low aqueous solubility combined with rapid clearance from the circulation of drugs result in their limited effectiveness and generally high therapeutic doses. The use of nanocarriers for drug delivery can prevent the rapid degradation of the drug, leading to its increased half-life. It can also improve the solubility and stability of drugs, advance their distribution and targeting, ensure a sustained release, and reduce drug resistance by delivering multiple therapeutic agents simultaneously. Furthermore, nanotechnology enables the combination of therapeutics with biomedical imaging agents and other treatment modalities to overcome the challenges of disease diagnosis and therapy. Such an approach is referred to as "theranostics" and aims to offer a more patient-specific approach through the observation of the distribution of contrast agents that are linked to therapeutics. The purpose of this paper is to present the recent scientific reports on polymeric nanocarriers for MRI-guided drug delivery. Polymeric nanocarriers are a very broad and versatile group of materials for drug delivery, providing high loading capacities, improved pharmacokinetics, and biocompatibility. The main focus was on the contrasting properties of proposed polymeric nanocarriers, which can be categorized into three main groups: polymeric nanocarriers (1) with relaxation-type contrast agents, (2) with chemical exchange saturation transfer (CEST) properties, and (3) with direct detection contrast agents based on fluorinated compounds. The importance of this aspect tends to be downplayed, despite its being essential for the successful design of applicable theranostic nanocarriers for image-guided drug delivery. If available, cytotoxicity and therapeutic effects were also summarized.
Collapse
Affiliation(s)
- Natalia Łopuszyńska
- Department of Magnetic Resonance Imaging, Institute of Nuclear Physics Polish Academy of Sciences, 31-342 Cracow, Poland
| | - Władysław P. Węglarz
- Department of Magnetic Resonance Imaging, Institute of Nuclear Physics Polish Academy of Sciences, 31-342 Cracow, Poland
| |
Collapse
|
6
|
Mishra AK, Pandey M, Dewangan HK, Sl N, Sahoo PK. A Comprehensive Review on Liver Targeting: Emphasis on Nanotechnology- based Molecular Targets and Receptors Mediated Approaches. Curr Drug Targets 2022; 23:1381-1405. [PMID: 36065923 DOI: 10.2174/1389450123666220906091432] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/10/2022] [Accepted: 02/25/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND The pathogenesis of hepatic diseases involves several cells, which complicates the delivery of pharmaceutical agents. Many severe liver diseases affecting the worldwide population cannot be effectively treated. Major hindrances or challenges are natural physiological barriers and non-specific targeting of drugs administered, leading to inefficient treatment. Hence, there is an earnest need to look for novel therapeutic strategies to overcome these hindrances. A kind of literature has reported that drug safety and efficacy are incredibly raised when a drug is incorporated inside or attached to a polymeric material of either hydrophilic or lipophilic nature. This has driven the dynamic investigation for developing novel biodegradable materials, drug delivery carriers, target-specific drug delivery systems, and many other novel approaches. OBJECTIVE Present review is devoted to summarizing receptor-based liver cell targeting using different modified novel synthetic drug delivery carriers. It also highlights recent progress in drug targeting to diseased liver mediated by various receptors, including asialoglycoprotein, mannose and galactose receptor, Fc receptor, low-density lipoprotein, glycyrrhetinic, and bile acid receptor. The essential consideration is given to treating liver cancer targeting using nanoparticulate systems, proteins, viral and non-viral vectors, homing peptides and gene delivery. CONCLUSION Receptors based targeting approach is one such approach that was explored by researchers to develop novel formulations which can ensure site-specific drug delivery. Several receptors are on the surfaces of liver cells, which are highly overexpressed in various disease conditions. They all are helpful for the treatment of liver cancer.
Collapse
Affiliation(s)
- Ashwini Kumar Mishra
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, Sector 3, MB Road Pushp Vihar, Delhi 110017, India
| | - Mukesh Pandey
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, Sector 3, MB Road Pushp Vihar, Delhi 110017, India
| | - Hitesh Kumar Dewangan
- University Institute of Pharma Sciences (UIPS), Chandigarh University NH-05, Chandigarh Ludhiana Highway, Mohali Punjab, Pin: 160101, India
| | - Neha Sl
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, Sector 3, MB Road Pushp Vihar, Delhi 110017, India
| | - Pravat Kumar Sahoo
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, Sector 3, MB Road Pushp Vihar, Delhi 110017, India
| |
Collapse
|
7
|
Yadav D, Wairagu PM, Kwak M, Jin JO, Jin JO. Nanoparticle-Based Inhalation Therapy for Pulmonary Diseases. Curr Drug Metab 2022; 23:882-896. [PMID: 35927812 DOI: 10.2174/1389200223666220803103039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/04/2022] [Accepted: 04/29/2022] [Indexed: 01/05/2023]
Abstract
The lung is exposed to various pollutants and is the primary site for the onset of various diseases, including infections, allergies, and cancers. One possible treatment approach for such pulmonary diseases involves direct administration of therapeutics to the lung so as to maintain the topical concentration of the drug. Particles with nanoscale diameters tend to reach the pulmonary region. Nanoparticles (NPs) have garnered significant interest for applications in biomedical and pharmaceutical industries because of their unique physicochemical properties and biological activities. In this article, we describe the biological and pharmacological activities of NPs as well as summarize their potential in the formulation of drugs employed to treat pulmonary diseases. Recent advances in the use of NPs in inhalation chemotherapy for the treatment of lung diseases have also been highlighted.
Collapse
Affiliation(s)
- Dhananjay Yadav
- Department of Life Science, Yeungnam University, Gyeongsan 38541, South Korea
| | - Peninah M Wairagu
- Department of Biochemistry and Biotechnology, The Technical University of Kenya, Nairobi, Kenya
| | - Minseok Kwak
- Department of Chemistry, Pukyong National University, Busan 48513, Korea
| | - Jun-O Jin
- Department of Microbiology, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Jun-O Jin
- Department of Biotechnology, ITM University, Gwalior, Madhya Pradesh, 474011, India.,Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| |
Collapse
|
8
|
Mazumder A, Dwivedi A, Assawapanumat W, Saeeng R, Sungkarat W, Nasongkla N. In vitro galactose-targeted study of RSPP050-loaded micelles against liver hepatocellular carcinoma. Pharm Dev Technol 2022; 27:379-388. [PMID: 35388736 DOI: 10.1080/10837450.2022.2063891] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Andrographolide is in a group of diterpenoid lactone isolated from Andrographis paniculata (Burm.f.) NEES. One of the analogs is 19-O-triphenylmethylandrographolide (RSPP050) which possesses anticancer activity. In seeking to capitalise on the last property, we have investigated the in vitro tumour targeting capabilities and MRI imaging for hepatocellular carcinoma. In this study, we have designed galactose-targeted and non-targeted micelles comprised of poly(ethylene glycol)-b-poly(lactide) that enveloped RSPP050 as an anticancer agent and superparamagnetic iron oxide (SPIO) as a contrast agent. The targeting abilities were endeavored by examining the cellular uptake with MTT assay, fluorescence microscopy, Prussian blue staining, and in vitro MRI. Targeted SPIO micelles as a T2* contrast agent decreased the relative T2* MRI intensity at 3 h. Results revealed that galactose micelles displayed 10.91 ± 0.19% drug loading content, -37.17 ± 0.63 mV zeta potential, and these micelles at the concentration of 0.5 µg/ml exhibited higher cytotoxicity than non-targeted micelles and free RSPP050 after incubation for 24 h. Fluorescence microscopy and Prussian blue staining at 3 h demonstrated significant cellular uptake by HepG2 cells. Thus, anticancer activity of RSPP050 could be improved using galactose as a targeting ligand and theranostic function was achieved using SPIO.
Collapse
Affiliation(s)
- Anisha Mazumder
- Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Nakorn Pathom, 73170, Thailand
| | - Anupma Dwivedi
- Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Nakorn Pathom, 73170, Thailand
| | - Wirat Assawapanumat
- Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Nakorn Pathom, 73170, Thailand
| | - Rungnapha Saeeng
- Department of Chemistry, Faculty of Science, Burapha University, Chonburi 20131, Thailand
| | - Witaya Sungkarat
- Department of Radiology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Norased Nasongkla
- Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Nakorn Pathom, 73170, Thailand.,Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
9
|
Chowdhury MMH, Salazar CJJ, Nurunnabi M. Recent advances in bionanomaterials for liver cancer diagnosis and treatment. Biomater Sci 2021; 9:4821-4842. [PMID: 34032223 DOI: 10.1039/d1bm00167a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
According to the World Health Organization, liver cancer is the fourth leading cause of cancer associated with death worldwide. It demands effective treatment and diagnostic strategies to hinder its recurrence, complexities, aggressive metastasis and late diagnosis. With recent progress in nanotechnology, several nanoparticle-based diagnostic and therapeutic modalities have entered into clinical trials. With further developments in nanoparticle mediated liver cancer diagnosis and treatment, the approach holds promise for improved clinical liver cancer management. In this review, we discuss the key advances in nanoparticles that have potential for liver cancer diagnosis and treatment. We also discuss the potential of nanoparticles to overcome the limitations of existing therapeutic modalities.
Collapse
Affiliation(s)
- Mohammed Mehadi Hassan Chowdhury
- School of Medicine, Faculty of Health, Deakin University, 75 Pigdons Road, Waurnponds, Vic-3216, Australia and Department of Microbiology, Noakhali Science and Technology University, Noakhali-3814, Bangladesh
| | | | - Md Nurunnabi
- Environmental Science & Engineering, University of Texas at El Paso, TX 79968, USA. and Biomedical Engineering, University of Texas at El Paso, TX 79968, USA and Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, TX 79902, USA and Border Biomedical Research Center, University of Texas at El Paso, TX 79968, USA
| |
Collapse
|
10
|
Monteserín M, Larumbe S, Martínez AV, Burgui S, Francisco Martín L. Recent Advances in the Development of Magnetic Nanoparticles for Biomedical Applications. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2021; 21:2705-2741. [PMID: 33653440 DOI: 10.1166/jnn.2021.19062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The unique properties of magnetic nanoparticles have led them to be considered materials with significant potential in the biomedical field. Nanometric size, high surface-area ratio, ability to function at molecular level, exceptional magnetic and physicochemical properties, and more importantly, the relatively easy tailoring of all these properties to the specific requirements of the different biomedical applications, are some of the key factors of their success. In this paper, we will provide an overview of the state of the art of different aspects of magnetic nanoparticles, specially focusing on their use in biomedicine. We will explore their magnetic properties, synthetic methods and surface modifications, as well as their most significative physicochemical properties and their impact on the in vivo behaviour of these particles. Furthermore, we will provide a background on different applications of magnetic nanoparticles in biomedicine, such as magnetic drug targeting, magnetic hyperthermia, imaging contrast agents or theranostics. Besides, current limitations and challenges of these materials, as well as their future prospects in the biomedical field will be discussed.
Collapse
Affiliation(s)
- Maria Monteserín
- Centre of Advanced Surface Engineering and Advanced Materials, Asociación de la Industria Navarra, Ctra. Pamplona, s/n, Edificio AIN, C.P. 31191, Cordovilla, Navarra (Spain)
| | - Silvia Larumbe
- Centre of Advanced Surface Engineering and Advanced Materials, Asociación de la Industria Navarra, Ctra. Pamplona, s/n, Edificio AIN, C.P. 31191, Cordovilla, Navarra (Spain)
| | - Alejandro V Martínez
- Centre of Advanced Surface Engineering and Advanced Materials, Asociación de la Industria Navarra, Ctra. Pamplona, s/n, Edificio AIN, C.P. 31191, Cordovilla, Navarra (Spain)
| | - Saioa Burgui
- Centre of Advanced Surface Engineering and Advanced Materials, Asociación de la Industria Navarra, Ctra. Pamplona, s/n, Edificio AIN, C.P. 31191, Cordovilla, Navarra (Spain)
| | - L Francisco Martín
- Centre of Advanced Surface Engineering and Advanced Materials, Asociación de la Industria Navarra, Ctra. Pamplona, s/n, Edificio AIN, C.P. 31191, Cordovilla, Navarra (Spain)
| |
Collapse
|
11
|
Atanase LI. Micellar Drug Delivery Systems Based on Natural Biopolymers. Polymers (Basel) 2021; 13:477. [PMID: 33540922 PMCID: PMC7867356 DOI: 10.3390/polym13030477] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/30/2022] Open
Abstract
The broad diversity of structures and the presence of numerous functional groups available for chemical modifications represent an enormous advantage for the development of safe, non-toxic, and cost-effective micellar drug delivery systems (DDS) based on natural biopolymers, such as polysaccharides, proteins, and peptides. Different drug-loading methods are used for the preparation of these micellar systems, but it appeared that dialysis is generally recommended, as it avoids the formation of large micellar aggregates. Moreover, the preparation method has an important influence on micellar size, morphology, and drug loading efficiency. The small size allows the passive accumulation of these micellar systems via the permeability and retention effect. Natural biopolymer-based micellar DDS are high-value biomaterials characterized by good compatibility, biodegradability, long blood circulation time, non-toxicity, non-immunogenicity, and high drug loading, and they are biodegraded to non-toxic products that are easily assimilated by the human body. Even if some recent studies reported better antitumoral effects for the micellar DDS based on polysaccharides than for commercial formulations, their clinical use is not yet generalized. This review is focused on the studies from the last decade concerning the preparation as well as the colloidal and biological characterization of micellar DDS based on natural biopolymers.
Collapse
Affiliation(s)
- Leonard Ionut Atanase
- Department of Biomaterials, Faculty of Medical Dentistry, "Apollonia" University of Iasi, Pacurari Street, No. 11, 700511 Iasi, Romania
| |
Collapse
|
12
|
Zhang S, Li M, Zhang Y, Wang R, Song Y, Zhao W, Lin S. A supramolecular complex based on a Gd-containing polyoxometalate and food-borne peptide for MRI/CT imaging and NIR-triggered photothermal therapy. Dalton Trans 2021; 50:8076-8083. [PMID: 34018508 DOI: 10.1039/d1dt00759a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A multifunctional supramolecular complex is reported for the integrated multiple magnetic resonance imaging/computed X-ray tomography (MRI/CT) imaging and photothermal therapy, wherein a gadolinium-substituted paramagnetic polyoxometalate cluster and food-borne antioxidant peptides identified from the trepang protein hydrolysates are introduced. The as-prepared complex maintained an uniform particle size and much better biocompatibility, and is an ideal candidate for the in vivo applications. The complex allows for T1-weighted MR imaging and a high Hounsfield unit value for enhanced CT imaging. Interestingly, we demonstrate that the complex possesses outstanding photothermal cancer-killing effects due to its high photothermal conversion efficiency under the exposure of an NIR laser and enhanced antibacterial activity to avoid bacterial infection from the thermal therapeutic process. These results indicate that the supramolecular complex platform exhibit potential for accurate medical diagnosis at an early stage and effective eradication of the tumor cells.
Collapse
Affiliation(s)
- Simin Zhang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, P. R. China. and Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Meng Li
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, P. R. China.
| | - Yuan Zhang
- State Key Laboratory of Inorganic Synthesis & Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Ruichun Wang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, P. R. China.
| | - Yukun Song
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, P. R. China.
| | - Weiping Zhao
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, P. R. China.
| | - Songyi Lin
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, P. R. China. and Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
13
|
Liu ZY, Yan GH, Li XY, Zhang Z, Guo YZ, Xu KX, Quan JS, Jin GY. GE11 peptide modified CSO-SPION micelles for MRI diagnosis of targeted hepatic carcinoma. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1997154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Zhuo-Yan Liu
- Department of Radiology, Affiliated Hospital of Yanbian University, Yanji, Jilin, PR China
| | - Guang-Hai Yan
- Department of Anatomy, Basic Medical College, Yanbian University, Yanji, Jilin, PR China
| | - Xiao-Yu Li
- Department of Radiology, Affiliated Hospital of Yanbian University, Yanji, Jilin, PR China
| | - Zhuo Zhang
- Department of Radiology, Affiliated Hospital of Yanbian University, Yanji, Jilin, PR China
| | - Yu-Zhu Guo
- Department of Radiology, Affiliated Hospital of Yanbian University, Yanji, Jilin, PR China
| | - Kai-Xuan Xu
- Department of Radiology, Affiliated Hospital of Yanbian University, Yanji, Jilin, PR China
| | - Ji-Shan Quan
- Department of Pharmacy, College of Pharmacy, Yanbian University, Yanji, Jilin, PR China
| | - Guang-Yu Jin
- Department of Radiology, Affiliated Hospital of Yanbian University, Yanji, Jilin, PR China
| |
Collapse
|
14
|
Shu G, Chen M, Song J, Xu X, Lu C, Du Y, Xu M, Zhao Z, Zhu M, Fan K, Fan X, Fang S, Tang B, Dai Y, Du Y, Ji J. Sialic acid-engineered mesoporous polydopamine nanoparticles loaded with SPIO and Fe 3+ as a novel theranostic agent for T1/T2 dual-mode MRI-guided combined chemo-photothermal treatment of hepatic cancer. Bioact Mater 2020; 6:1423-1435. [PMID: 33210034 PMCID: PMC7658445 DOI: 10.1016/j.bioactmat.2020.10.020] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/26/2020] [Accepted: 10/26/2020] [Indexed: 12/20/2022] Open
Abstract
Hepatic cancer is a serious disease with high morbidity and mortality. Theranostic agents with effective diagnostic and therapeutic capability are highly needed for the treatment of hepatic cancer. Herein, we aimed to develop a novel mesoporous polydopamine (MPDA)-based theranostic agent for T1/T2 dual magnetic resonance imaging (MRI)-guided cancer chemo-photothermal therapy. Superparamagnetic iron oxide (SPIO)-loaded MPDA NPs (MPDA@SPIO) was firstly prepared, followed by modifying with a targeted molecule of sialic acid (SA) and chelating with Fe3+ (SA-MPDA@SPIO/Fe3+ NPs). After that, doxorubicin (DOX)-loaded SA-MPDA@SPIO/Fe3+ NPs (SA-MPDA@SPIO/DOX/Fe3+) was prepared for tumor theranostics. The prepared SAPEG-MPDA@SPIO/Fe3+ NPs were water-dispersible and biocompatible as evidenced by MTT assay. In vitro photothermal and relaxivity property suggested that the novel theranostic agent possessed excellent photothermal conversion capability and photostability, with relaxivity of being r1 = 4.29 mM−1s−1 and r2 = 105.53 mM−1s−1, respectively. SAPEG-MPDA@SPIO/Fe3+ NPs could effectively encapsulate the DOX, showing dual pH- and thermal-triggered drug release behavior. In vitro and in vivo studies revealed that SA-MPDA@SPIO/DOX/Fe3+ NPs could effectively target to the hepatic tumor tissue, which was possibly due to the specific interaction between SA and the overexpressed E-selectin. This behavior also endowed SA-MPDA@SPIO/DOX/Fe3+ NPs with a more precise T1-T2 dual mode contrast imaging effect than the one without SA modification. In addition, SAPEG-MPDA@SPIO/DOX/Fe3+ NPs displayed a superior therapeutic effect, which was due to its active targeting ability and combined effects of chemotherapy and photothermal therapy. These results demonstrated that SAPEG-MPDA@SPIO/DOX/Fe3+ NPs is an effective targeted nanoplatform for tumor theranostics, having potential value in the effective treatment of hepatic cancer. Sialic acid (SA)-modified SPIO-loaded mesoporous polydopamine (MPDA) was prepared. SAPEG-MPDA@SPIO NPs was effective at dual loading Fe3+ ion and DOX. SAPEG-MPDA@SPIO/DOX/Fe3+ NPs showed pH- and NIR-responsible drug release behaviors. SAPEG-MPDA@SPIO/DOX/Fe3+ NPs could actively target to the hepatic tumor sites. The novel theranostic achieved dual-mode MRI guided chemo-photothermal therapy.
Collapse
Affiliation(s)
- Gaofeng Shu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, School of Medicine, Lishui, Zhejiang, 323000, China.,Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Minjiang Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, School of Medicine, Lishui, Zhejiang, 323000, China
| | - Jingjing Song
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, School of Medicine, Lishui, Zhejiang, 323000, China
| | - Xiaoling Xu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Chenying Lu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, School of Medicine, Lishui, Zhejiang, 323000, China
| | - Yuyin Du
- Department of Chemistry, Faculty of Science, Tohoku University, Sendai, 980-8577, Japan
| | - Min Xu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, School of Medicine, Lishui, Zhejiang, 323000, China
| | - Zhongwei Zhao
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, School of Medicine, Lishui, Zhejiang, 323000, China
| | - Minxia Zhu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Kai Fan
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, School of Medicine, Lishui, Zhejiang, 323000, China
| | - Xiaoxi Fan
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, School of Medicine, Lishui, Zhejiang, 323000, China
| | - Shiji Fang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, School of Medicine, Lishui, Zhejiang, 323000, China
| | - Bufu Tang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, School of Medicine, Lishui, Zhejiang, 323000, China
| | - Yiyang Dai
- Department of Gastroenterology, The Fourth Affiliated Hospital of Zhejiang University, School of Medicine, 32200, YiWu, China
| | - Yongzhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Jiansong Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, School of Medicine, Lishui, Zhejiang, 323000, China
| |
Collapse
|
15
|
Zhang L, Yang X, Wen M. Optimal scanning concentration of MR imaging for tumor-bearing nude mice with SPIO-shRNA molecular probe. Sci Rep 2020; 10:18655. [PMID: 33122685 PMCID: PMC7596719 DOI: 10.1038/s41598-020-73923-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 09/23/2020] [Indexed: 11/20/2022] Open
Abstract
The objective of this study is to investigate the signal changes and optimal scanning concentration of MRI in tumor tissues of tumor-bearing nude mice by SPIO-shRNA molecular probes. 30 BALB/c tumor-bearing nude mice were randomly divided into 5 groups with 6 mice in each group. At the given scanning time (before and 27 h after injection), the caudal vein was respectively injected with iron content of 6 mg·kg-1, 12 mg·kg-1, 18 mg·kg-1, 24 mg·kg-1, and 30 mg·kg-1, and MR examination was simultaneously performed to measure signal intensity changes of tumor tissue and contralateral muscle tissue in each concentration group. After each examination above, the nude mice were sacrificed immediately, and the tumor and muscle tissues were removed for HE and Prussian blue staining,and observed under light microscope. Nude mice in 6 mg, 12 mg and 18 mg groups all survived after probe injection, but some nude mice died in 24 mg and 30 mg groups after probe injection or during scanning. The signal changes of T2WI and T2*WI sequences were the most obvious in MR scanning sequences. Compared with other groups, the signal intensity of the tumor tissue in 18 mg, 24 mg and 30 mg groups were most obvious (P < 0.05), while the 18 mg, 24 mg and 30 mg groups reached no statistical difference (P > 0.05 ); HE staining indicated that structural disorder of tumor tissue as well as increase of nuclear atypia. Prussian Blue staining showed that blue-stained iron particles were present in each experimental group,and the most densely distributed were in 18 mg,24 mg and 30 mg groups. Tumor tissue could be well labeled with SPIO-shRNA molecular probes, and the optimal MR scanning concentration (iron content) is 18 mg·kg-1.
Collapse
Affiliation(s)
- Liqiang Zhang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xinyi Yang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Ming Wen
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
16
|
Yang F, Xu J, Fu M, Ji J, Chi L, Zhai G. Development of stimuli-responsive intelligent polymer micelles for the delivery of doxorubicin. J Drug Target 2020; 28:993-1011. [PMID: 32378974 DOI: 10.1080/1061186x.2020.1766474] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Doxorubicin is still used as a first-line drug in current therapeutics for numerous types of malignant tumours (including lymphoma, transplantable leukaemia and solid tumour). Nevertheless, to overcome the serious side effects like cardiotoxicity and myelosuppression caused by effective doses of doxorubicin remains as a world-class puzzle. In recent years, the usage of biocompatible polymeric nanomaterials to form an intelligently sensitive carrier for the targeted release in tumour microenvironment has attracted wide attention. These different intelligent polymeric micelles (PMs) could change the pharmacokinetics process of drugs or respond in the special microenvironment of tumour site to maximise the efficacy and reduce the toxicity of doxorubicin in other tissues and organs. Several intelligent PMs have already been in the clinical research stage and planned for market. Therefore, related research remains active, and the latest nanotechnology approaches for doxorubicin delivery are always in the spotlight. Centring on the model drugs doxorubicin, this review summarised the mechanisms of PMs, classified the polymers used in the application of doxorubicin delivery and discussed some interesting and imaginative smart PMs in recent years.
Collapse
Affiliation(s)
- Fan Yang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Jiangkang Xu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Manfei Fu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Jianbo Ji
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Liqun Chi
- Department of Pharmacy, Haidian Maternal and Child Health Hospital of Beijing, Beijing, PR China
| | - Guangxi Zhai
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| |
Collapse
|
17
|
Yin J, Yao D, Yin G, Huang Z, Pu X. Peptide-Decorated Ultrasmall Superparamagnetic Nanoparticles as Active Targeting MRI Contrast Agents for Ovarian Tumors. ACS APPLIED MATERIALS & INTERFACES 2019; 11:41038-41050. [PMID: 31618000 DOI: 10.1021/acsami.9b14394] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Magnetic resonance imaging (MRI) is widely applied in medical research and diagnosis, and a MRI contrast medium plays a crucial role in improving the sensitivity of detection. Ultrasmall superparamagnetic iron oxides (USPIOs) exhibit the potential as a T2 enhancement contrast medium for MRI due to their excellent magnetic response performance; however, to endow them with specific tumor targetability, long-term circulation performance has always been a hot topic in this field. In this study, a well-designed procedure of chemical coprecipitation, surface modification, and peptide grafting was applied to prepare the active tumor-targeting USPIOs@F127-WSG, in which Pluronic F127 (F127) and the peptide WSGPGVWGASVK (peptide-WSG) were selected as the template agent and the ovarian tumor-targeting ligand, respectively. The results showed that single USPIOs@F127-WSG particles were Fe3O4 nanoparticles regulated by the confinement effect of F127 micelles with a uniform globular morphology and size (∼9 nm), and peptide-WSG was grafted for their tumor targetability. USPIOs@F127-WSG particles presented superparamagnetic behavior with high T2 relaxivity (r2 = 278.15 mM-1 s-1) and in vitro targetability for SKOV-3 cells due to the special binding between peptide-WSG and specific receptors of SKOV-3. The test results in vivo verified the targetability of USPIOs@F127-WSG by their specific aggregation in the tumor regions, leading to the T2-weighted MRI contrast enhancement. These outstanding properties indicate that USPIOs@F127-WSG have great potential to be applied as the active tumor-targeting contrast agent for MRI.
Collapse
Affiliation(s)
- Jie Yin
- College of Materials Science and Engineering , Sichuan University , Chengdu 610065 , P. R. China
- School of Automation & Information Engineering , Sichuan University of Science & Engineering , Zigong 643000 , P. R. China
| | - Dajing Yao
- College of Materials Science and Engineering , Sichuan University , Chengdu 610065 , P. R. China
| | - Guangfu Yin
- College of Materials Science and Engineering , Sichuan University , Chengdu 610065 , P. R. China
| | - Zhongbing Huang
- College of Materials Science and Engineering , Sichuan University , Chengdu 610065 , P. R. China
| | - Ximing Pu
- College of Materials Science and Engineering , Sichuan University , Chengdu 610065 , P. R. China
| |
Collapse
|
18
|
Xiao Z, Chan L, Zhang D, Huang C, Mei C, Gao P, Huang Y, Liang J, He L, Shi C, Chen T, Luo L. Precise delivery of a multifunctional nanosystem for MRI-guided cancer therapy and monitoring of tumor response by functional diffusion-weighted MRI. J Mater Chem B 2019. [DOI: 10.1039/c8tb03153c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Herein we synthesize a cRGD peptide-conjugated PLGA nanosystem which is a high-efficiency drug-delivery platform for MR imaging-guided cancer theranostics.
Collapse
|
19
|
Lin G, Li L, Panwar N, Wang J, Tjin SC, Wang X, Yong KT. Non-viral gene therapy using multifunctional nanoparticles: Status, challenges, and opportunities. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.07.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Zhu X, Deng X, Lu C, Chen Y, Jie L, Zhang Q, Li W, Wang Z, Du Y, Yu R. SPIO-loaded nanostructured lipid carriers as liver-targeted molecular T2-weighted MRI contrast agent. Quant Imaging Med Surg 2018; 8:770-780. [PMID: 30306057 DOI: 10.21037/qims.2018.09.03] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Background Superparamagnetic iron oxide (SPIO) acts as a negative contrast agent in magnetic resonance imaging (MRI), and is widely used in clinical applications, including the diagnosis of hepatic diseases. Hepatocyte-targeted magnetic resonance contrast agents (MRCAs) can provide useful information for evaluating hepatic diseases. We prepared targeted magnetic nanostructured lipid carriers (MNLCs) to enhance the hepatocytes targeting efficiency. Methods In vitro characterizations of MNLCs were determined by transmission electron microscopy (TEM). The cytotoxicity assay of the MNLCs was measured by methyl tetrazolium (MTT) method. The uptaken study was measured by confocal microscopy, flow cytometry and MRI in vitro. The enhanced liver-targeting efficiency of MNLCs was measured by fluorescence imaging and MRI in vivo. Results Gal-NLC-SPIO was prepared successfully. The cytotoxicity assay of the MNLCs demonstrated that the MNLC had relatively low cytotoxicity and high biocompatibility for LO2 cells. More importantly, we confirmed that Gal-NLC-SPIO had greater uptake by LO2 cells than Gal-NLC-SPIO/PEG and free Gal in vitro. A liver distribution study of MNLCs in normal mice demonstrated that the fluorescent signal values to livers of the Gal-NLC-SPIO were significantly stronger than those of NLC-SPIO and Gal-NLC-SPIO/PEG. The liver targeting efficiency of Gal-NLC-SPIO was confirmed both in vitro and in vivo. Conclusions We successfully developed liver-targeting MNLCs, which showed accurate hepatocytes targeting, and thus have the potential to be a new MRI contrast agent to help the diagnosis of liver diseases.
Collapse
Affiliation(s)
- Xiuliang Zhu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Xueying Deng
- Department of Radiology, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Chenying Lu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Ying Chen
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Liyong Jie
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Qian Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Wei Li
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zuhua Wang
- College of Pharmaceutical Sciences, Guiyang College of Traditional Chinese Medicine, Guiyang 550002, China
| | - Yongzhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Risheng Yu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| |
Collapse
|
21
|
Gan S, Lin Y, Feng Y, Shui L, Li H, Zhou G. Magnetic polymeric nanoassemblies for magnetic resonance imaging-combined cancer theranostics. Int J Nanomedicine 2018; 13:4263-4281. [PMID: 30087559 PMCID: PMC6061201 DOI: 10.2147/ijn.s164817] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Cancer has become one of the primary causes of death worldwide. Current cancer-therapy schemes are progressing relatively slowly in terms of reducing mortality, prolonging survival, time and enhancing cure rate, owing to the enormous obstacles of cancer pathophysiology. Therefore, specific diagnosis and therapy for malignant tumors are becoming more and more crucial and urgent, especially for early cancer diagnosis and cancer-targeted therapy. Derived theranostics that combine several functions into one "package" could further overcome undesirable differences in biodistribution and selectivity between distinct imaging and therapeutic agents. In this article, we discuss a chief clinical diagnosis tool - MRI - focusing on recent progress in magnetic agents or systems in multifunctional polymer nanoassemblies for combing cancer theranostics. We describe abundant polymeric MRI-contrast agents integrated with chemotherapy, gene therapy, thermotherapy, and radiotherapy, as well as other developing directions.
Collapse
Affiliation(s)
- Shenglong Gan
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology and Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, Guangdong 510006, ;
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, Guangdong 510006, ;
| | - Yisheng Lin
- Department of Radiology, The First Affiliated Hospital, Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong 510405, China
| | - Yancong Feng
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology and Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, Guangdong 510006, ;
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, Guangdong 510006, ;
| | - Lingling Shui
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology and Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, Guangdong 510006, ;
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, Guangdong 510006, ;
| | - Hao Li
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology and Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, Guangdong 510006, ;
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, Guangdong 510006, ;
| | - Guofu Zhou
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology and Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, Guangdong 510006, ;
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, Guangdong 510006, ;
| |
Collapse
|
22
|
Zhang NN, Yu RS, Xu M, Cheng XY, Chen CM, Xu XL, Lu CY, Lu KJ, Chen MJ, Zhu ML, Weng QY, Hui JG, Zhang Q, Du YZ, Ji JS. Visual targeted therapy of hepatic cancer using homing peptide modified calcium phosphate nanoparticles loading doxorubicin guided by T1 weighted MRI. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:2167-2178. [PMID: 30017962 DOI: 10.1016/j.nano.2018.06.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/18/2018] [Accepted: 06/28/2018] [Indexed: 12/18/2022]
Abstract
Effective treatment and real-time monitoring of hepatic cancer are essential. A multifunctional calcium phosphate nanoparticles loading chemotherapeutic agent doxorubicin and magnetic resonance imaging contrast agent diethylenetriaminepentaacetic acid gadolinium (A54-CaP/Gd-DTPA/DOX) was developed for visual targeted therapy of hepatic cancer via T1-weighted MRI in real-time. A54-CaP/Gd-DTPA/DOX exhibited a higher longitudinal relaxivity (6.02 mM-1 s-1) than commercial MR contrast agent Gd-DTPA (3.3765 mM-1 s-1). The DOX release from the nanoparticles exhibited a pH dependent behavior. The cellular uptake results showed that the internalization of A54-CaP/Gd-DTPA/DOX into BEL-7402 cells was1.9-fold faster than that of HepG2 cells via A54 binding. In vivo experiments presented that A54-CaP/Gd-DTPA/DOX had higher distribution and longer retention time in tumor tissue than CaP/Gd-DTPA/DOX and free DOX, and also displayed great antitumor efficacy (95.38% tumor inhibition rate) and lower toxicity. Furthermore, the Gd-DTPA entrapped in the nanoparticles could provide T1-weighted MRI for real-time monitoring the progress of tumor treatment.
Collapse
Affiliation(s)
- Nan-Nan Zhang
- Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, China; Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ri-Sheng Yu
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Min Xu
- Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, China
| | - Xing-Yao Cheng
- Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, China
| | - Chun-Miao Chen
- Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, China
| | - Xiao-Ling Xu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Chen-Ying Lu
- Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, China
| | - Kong-Jun Lu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Min-Jiang Chen
- Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, China
| | - Meng-Lu Zhu
- Department of Pharmacy, Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, PR China
| | - Qiao-You Weng
- Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, China
| | - Jun-Guo Hui
- Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, China
| | - Qian Zhang
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yong-Zhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
| | - Jian-Song Ji
- Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, China.
| |
Collapse
|
23
|
Leng F, Liu F, Yang Y, Wu Y, Tian W. Strategies on Nanodiagnostics and Nanotherapies of the Three Common Cancers. NANOMATERIALS 2018; 8:nano8040202. [PMID: 29597315 PMCID: PMC5923532 DOI: 10.3390/nano8040202] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 03/18/2018] [Accepted: 03/23/2018] [Indexed: 02/07/2023]
Abstract
The emergence of nanomedicine has enriched the knowledge and strategies of treating diseases, and especially some incurable diseases, such as cancers, acquired immune deficiency syndrome (AIDS), and neurodegenerative diseases. The application of nanoparticles in medicine is in the core of nanomedicine. Nanoparticles can be used in drug delivery for improving the uptake of poorly soluble drugs, targeted delivery to a specific site, and drug bioavailability. Early diagnosis of and targeted therapies for cancers can significantly improve patients' quality of life and extend patients' lives. The advantages of nanoparticles have given them a progressively important role in the nanodiagnosis and nanotherapy of common cancers. To provide a reference for the further application of nanoparticles, this review focuses on the recent development and application of nanoparticles in the early diagnosis and treatment of the three common cancers (lung cancer, liver cancer, and breast cancer) by using quantum dots, magnetic nanoparticles, and gold nanoparticles.
Collapse
Affiliation(s)
- Fan Leng
- Department of Biomedical Engineering, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China.
| | - Fang Liu
- Department of Biomedical Engineering, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China.
| | - Yongtao Yang
- Department of Biomedical Engineering, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China.
| | - Yu Wu
- Department of Biomedical Engineering, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China.
| | - Weiqun Tian
- Department of Biomedical Engineering, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
24
|
Martins C, Sousa F, Araújo F, Sarmento B. Functionalizing PLGA and PLGA Derivatives for Drug Delivery and Tissue Regeneration Applications. Adv Healthc Mater 2018; 7. [PMID: 29171928 DOI: 10.1002/adhm.201701035] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/27/2017] [Indexed: 12/16/2022]
Abstract
Poly(lactic-co-glycolic) acid (PLGA) is one of the most versatile biomedical polymers, already approved by regulatory authorities to be used in human research and clinics. Due to its valuable characteristics, PLGA can be tailored to acquire desirable features for control bioactive payload or scaffold matrix. Moreover, its chemical modification with other polymers or bioconjugation with molecules may render PLGA with functional properties that make it the Holy Grail among the synthetic polymers to be applied in the biomedical field. In this review, the physical-chemical properties of PLGA, its synthesis, degradation, and conjugation with other polymers or molecules are revised in detail, as well as its applications in drug delivery and regeneration fields. A particular focus is given to successful examples of products already on the market or at the late stages of trials, reinforcing the potential of this polymer in the biomedical field.
Collapse
Affiliation(s)
- Cláudia Martins
- I3S - Instituto de Investigação e Inovação em Saúde; Universidade do Porto; Rua Alfredo Allen 208 4200-393 Porto Portugal
- INEB - Instituto de Engenharia Biomédica; Universidade do Porto; Rua Alfredo Allen 208 4200-393 Porto Portugal
| | - Flávia Sousa
- I3S - Instituto de Investigação e Inovação em Saúde; Universidade do Porto; Rua Alfredo Allen 208 4200-393 Porto Portugal
- INEB - Instituto de Engenharia Biomédica; Universidade do Porto; Rua Alfredo Allen 208 4200-393 Porto Portugal
- ICBAS - Instituto Ciências Biomédicas Abel Salazar; Universidade do Porto; Rua de Jorge Viterbo Ferreira 228 4050-313 Porto Portugal
| | - Francisca Araújo
- I3S - Instituto de Investigação e Inovação em Saúde; Universidade do Porto; Rua Alfredo Allen 208 4200-393 Porto Portugal
- INEB - Instituto de Engenharia Biomédica; Universidade do Porto; Rua Alfredo Allen 208 4200-393 Porto Portugal
| | - Bruno Sarmento
- I3S - Instituto de Investigação e Inovação em Saúde; Universidade do Porto; Rua Alfredo Allen 208 4200-393 Porto Portugal
- INEB - Instituto de Engenharia Biomédica; Universidade do Porto; Rua Alfredo Allen 208 4200-393 Porto Portugal
- CESPU - Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde; Rua Central de Gandra 1317 4585-116 Gandra Portugal
| |
Collapse
|
25
|
Mousavizadeh A, Jabbari A, Akrami M, Bardania H. Cell targeting peptides as smart ligands for targeting of therapeutic or diagnostic agents: a systematic review. Colloids Surf B Biointerfaces 2017; 158:507-517. [PMID: 28738290 DOI: 10.1016/j.colsurfb.2017.07.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/30/2017] [Accepted: 07/05/2017] [Indexed: 12/13/2022]
Abstract
Cell targeting peptides (CTP) are small peptides which have high affinity and specificity to a cell or tissue targets. They are typically identified by using phage display and chemical synthetic peptide library methods. CTPs have attracted considerable attention as a new class of ligands to delivery specifically therapeutic and diagnostic agents, because of the fact they have several advantages including easy synthesis, smaller physical sizes, lower immunogenicity and cytotoxicity and their simple and better conjugation to nano-carriers and therapeutic or diagnostic agents compared to conventional antibodies. In this systematic review, we will focus on the basic concepts concerning the use of cell-targeting peptides (CTPs), following the approaches of selecting them from peptide libraries. We discuss several developed strategies for cell-specific delivery of different cargos by CTPs, which are designed for drug delivery and diagnostic applications.
Collapse
Affiliation(s)
- Ali Mousavizadeh
- Social Determinants of Health Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Ali Jabbari
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mohammad Akrami
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Bardania
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
| |
Collapse
|
26
|
Cheng DB, Qi GB, Wang JQ, Cong Y, Liu FH, Yu H, Qiao ZY, Wang H. In Situ Monitoring Intracellular Structural Change of Nanovehicles through Photoacoustic Signals Based on Phenylboronate-Linked RGD-Dextran/Purpurin 18 Conjugates. Biomacromolecules 2017; 18:1249-1258. [PMID: 28269979 DOI: 10.1021/acs.biomac.6b01922] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The stimuli-responsive polymeric nanocarriers have been studied extensively, and their structural changes in cells are important for the controlled intracellular drug release. The present work reported RGD-dextran/purpurin 18 conjugates with pH-responsive phenylboronate as spacer for monitoring the structural change of nanovehicles through ratiometric photoacoustic (PA) signal. Phenylboronic acid modified purpurin 18 (NPBA-P18) could attach onto the RGD-decorated dextran (RGD-Dex), and the resulting RGD-Dex/NPBA-P18 (RDNP) conjugates with different molar ratios of RGD-Dex and NPBA-P18 were prepared. When the moles of NPBA-P18 were equivalent to more than triple of RGD-Dex, the single-stranded RDNP conjugates could self-assemble into nanoparticles in aqueous solution due to the fairly strong hydrophobicity of NPBA-P18. The pH-responsive aggregations of NPBA-P18 were investigated by UV-vis, fluorescence, and circular dichroism spectra, as well as transmission electron microscope. Based on distinct PA signals between monomeric and aggregated state, ratiometric PA signal of I750/I710 could be presented to trace the structural change progress. Compared with RDNP single chains, the nanoparticles exhibited effective cellular internalization through endocytosis pathway. Furthermore, the nanoparticles could form well-ordered aggregates responding to intracellular acidic environment, and the resulting structural change was also monitored by ratiometric PA signal. Therefore, the noninvasive PA approach could provide a deep insight into monitoring the intracellular structural change process of stimuli-responsive nanocarriers.
Collapse
Affiliation(s)
- Dong-Bing Cheng
- CAS Center for Excellence in Nanoscience, Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , Beijing, 100190, China
| | - Guo-Bin Qi
- CAS Center for Excellence in Nanoscience, Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , Beijing, 100190, China
| | - Jing-Qi Wang
- CAS Center for Excellence in Nanoscience, Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , Beijing, 100190, China
| | - Yong Cong
- CAS Center for Excellence in Nanoscience, Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , Beijing, 100190, China
| | - Fu-Hua Liu
- CAS Center for Excellence in Nanoscience, Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , Beijing, 100190, China
| | - Haijun Yu
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 501 Haike Road, Shanghai 201203, China
| | - Zeng-Ying Qiao
- CAS Center for Excellence in Nanoscience, Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , Beijing, 100190, China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , Beijing, 100190, China
| |
Collapse
|
27
|
Liang J, Zhang X, Miao Y, Li J, Gan Y. Lipid-coated iron oxide nanoparticles for dual-modal imaging of hepatocellular carcinoma. Int J Nanomedicine 2017; 12:2033-2044. [PMID: 28352173 PMCID: PMC5358985 DOI: 10.2147/ijn.s128525] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The development of noninvasive imaging techniques for the accurate diagnosis of progressive hepatocellular carcinoma (HCC) is of great clinical significance and has always been desired. Herein, a hepatocellular carcinoma cell-targeting fluorescent magnetic nanoparticle (NP) was obtained by conjugating near-infrared fluorescence to the surface of Fe3O4 (NIRF-Fe3O4) NPs, followed by coating the lipids consisting of tumoral hepatocytes-targeting polymer (Gal-P123). This magnetic NP (GPC@NIRF-Fe3O4) with superparamagnetic behavior showed high stability and safety in physiological conditions. In addition, GPC@NIRF-Fe3O4 achieved more specific uptake of human liver cancer cells than free Fe3O4 NPs. Importantly, with superpara-magnetic iron oxide and strong NIR absorbance, GPC@NIRF-Fe3O4 NPs demonstrate prominent tumor-contrasted imaging performance both on fluorescent and T2-weighted magnetic resonance (MR) imaging modalities in a living body. The relative MR signal enhancement of GPC@NIRF-Fe3O4 NPs achieved 5.4-fold improvement compared with NIR-Fe3O4 NPs. Therefore, GPC@ NIRF-Fe3O4 NPs may be potentially used as a candidate for dual-modal imaging of tumors with information covalidated and directly compared by combining fluorescence and MR imaging.
Collapse
Affiliation(s)
- Jinying Liang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, People's Republic of China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China; School of Pharmacy, Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Xinxin Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Yunqiu Miao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Juan Li
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yong Gan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
| |
Collapse
|