1
|
Udroiu I. A Simplified Method for Calculating Surface Area of Mammalian Erythrocytes. Methods Protoc 2024; 7:11. [PMID: 38392685 PMCID: PMC10891711 DOI: 10.3390/mps7010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/05/2024] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
Knowledge of the geometric quantities of the erythrocyte is useful in several physiological studies, both for zoologists and veterinarians. While the diameter and volume (MCV) are easily obtained from observations of blood smears and complete blood count, respectively, the thickness and surface area are instead much more difficult to measure. The precise description of the erythrocyte geometry is given by the equation of the oval of Cassini, but the formulas deriving from it are very complex, comprising elliptic integrals. In this article, three solids are proposed as models approximating the erythrocyte: sphere, cylinder and a spheroid with concave caps. The volumes and surface areas obtained with these models are compared to those effectively measured. The spheroid with concave caps gives the best approximation and can be used as a simple model to determine the erythrocyte surface area. With this model, a simple method that allows one to estimate the surface area by knowing only the diameter and MCV is proposed.
Collapse
Affiliation(s)
- Ion Udroiu
- Dipartimento di Scienze, Università degli Studi "Roma Tre", 00146 Rome, Italy
| |
Collapse
|
2
|
Jeamah A, Senarat S, Kong-oh S, Sudtongkong C, Wirachwong P, Charoenphon N, Kawjaeng N, Kosiyachinda P, Kenthao A, Boonyoung P. Hematological Evaluation of Three Common Teleosts in Relation to The Environmental Changes from Trang Province, Thailand. Trop Life Sci Res 2023; 34:113-127. [PMID: 37860093 PMCID: PMC10583840 DOI: 10.21315/tlsr2023.34.3.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 02/08/2023] [Indexed: 10/21/2023] Open
Abstract
Hematological evaluation of fish is essential to the assessment of their physiological status. This study describes the morphometric analysis and comparison of blood cell characteristics in Zanarchopterus sp., Gerres filamentosus Cuvier, 1829 and Leiognathus decorus (De Vis, 1884). The species were collected at two locations off the coast of Trang Province, Thailand. A comparative hematological evaluation was made to assess the effects of environmental conditions on the blood of the fish. Ten individuals of each species were collected from a seagrass bed at Libong Island, where human activities are increasing, and from a secluded sandy beach. Their blood samples were analysed using the blood smear technique. Erythrocytes of all the studied fishes were either elliptical or oval. The morphometric data from both locations showed that erythrocytes were of similar size, except for those of Zanarchopterus sp. Fish from both stations showed several types of leukocytes, including neutrophils and lymphocytes.The highest proportion of leukocytes was made up of lymphocytes, followed by neutrophils. However, monocytes were only observed in fish from Libong Island and the erythrocytic nuclei of fish collected from Libong Island were both reniform and lobate. Our results show the potential of hematological evaluation as an early warning signal of environmental impacts on aquatic animals. The determination of baseline parameters could provide a tool for the monitoring of environmental quality.
Collapse
Affiliation(s)
- Archig Jeamah
- Department of Marine Science and Environment, Faculty of Science and Fisheries Technology, Rajamangala University of Technology Srivijaya, Trang 92150, Thailand
| | - Sinlapachai Senarat
- Department of Marine Science and Environment, Faculty of Science and Fisheries Technology, Rajamangala University of Technology Srivijaya, Trang 92150, Thailand
- Division of Biological Science, Faculty of Science, Prince of Songkhla University, Songkhla 90110, Thailand
| | - Suparat Kong-oh
- Department of Marine Science and Environment, Faculty of Science and Fisheries Technology, Rajamangala University of Technology Srivijaya, Trang 92150, Thailand
| | - Chanyut Sudtongkong
- Department of Marine Science and Environment, Faculty of Science and Fisheries Technology, Rajamangala University of Technology Srivijaya, Trang 92150, Thailand
| | - Porntep Wirachwong
- Department of Marine Science and Environment, Faculty of Science and Fisheries Technology, Rajamangala University of Technology Srivijaya, Trang 92150, Thailand
| | - Natthawut Charoenphon
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok 65000 Thailand
| | - Nontawat Kawjaeng
- Department of Marine Science and Environment, Faculty of Science and Fisheries Technology, Rajamangala University of Technology Srivijaya, Trang 92150, Thailand
| | - Pahol Kosiyachinda
- Department of Biology, Faculty of Science, Mahidol University, Ratchathewi, Bangkok 10400 Thailand
| | - Anan Kenthao
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok 65000 Thailand
| | - Piyakorn Boonyoung
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Songkhla 90112 Thailand
| |
Collapse
|
3
|
Chen Y, Miyazono K, Otsuka Y, Kanamori M, Yamashita A, Arashiki N, Matsumoto T, Takada K, Sato K, Mohandas N, Inaba M. Membrane skeleton hyperstability due to a novel alternatively spliced 4.1R can account for ellipsoidal camelid red cells with decreased deformability. J Biol Chem 2023; 299:102877. [PMID: 36621628 PMCID: PMC9926112 DOI: 10.1016/j.jbc.2023.102877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/08/2023] Open
Abstract
The red blood cells (RBCs) of vertebrates have evolved into two basic shapes, with nucleated nonmammalian RBCs having a biconvex ellipsoidal shape and anuclear mammalian RBCs having a biconcave disk shape. In contrast, camelid RBCs are flat ellipsoids with reduced membrane deformability, suggesting altered membrane skeletal organization. However, the mechanisms responsible for their elliptocytic shape and reduced deformability have not been determined. We here showed that in alpaca RBCs, protein 4.1R, a major component of the membrane skeleton, contains an alternatively spliced exon 14-derived cassette (e14) not observed in the highly conserved 80 kDa 4.1R of other highly deformable biconcave mammalian RBCs. The inclusion of this exon, along with the preceding unordered proline- and glutamic acid-rich peptide (PE), results in a larger and unique 90 kDa camelid 4.1R. Human 4.1R containing e14 and PE, but not PE alone, showed markedly increased ability to form a spectrin-actin-4.1R ternary complex in viscosity assays. A similar facilitated ternary complex was formed by human 4.1R possessing a duplication of the spectrin-actin-binding domain, one of the mutations known to cause human hereditary elliptocytosis. The e14- and PE-containing mutant also exhibited an increased binding affinity to β-spectrin compared with WT 4.1R. Taken together, these findings indicate that 4.1R protein with the e14 cassette results in the formation and maintenance of a hyperstable membrane skeleton, resulting in rigid red ellipsoidal cells in camelid species, and suggest that membrane structure is evolutionarily regulated by alternative splicing of exons in the 4.1R gene.
Collapse
Affiliation(s)
- Yuqi Chen
- Laboratory of Molecular Medicine, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Kosuke Miyazono
- Laboratory of Molecular Medicine, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Yayoi Otsuka
- Laboratory of Molecular Medicine, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Mariko Kanamori
- Laboratory of Molecular Medicine, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Aozora Yamashita
- Laboratory of Molecular Medicine, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Nobuto Arashiki
- Laboratory of Molecular Medicine, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan; Department of Biochemistry, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Takehisa Matsumoto
- Drug Discovery Structural Biology Platform Unit, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Kensuke Takada
- Laboratory of Molecular Medicine, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Kota Sato
- Laboratory of Molecular Medicine, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Narla Mohandas
- Red Cell Physiology Laboratory, New York Blood Center, New York, New York, USA
| | - Mutsumi Inaba
- Laboratory of Molecular Medicine, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
4
|
Yastrebova ES, Nekrasov VM, Gilev KV, Gisich AV, Abubakirova OA, Strokotov DI, Chernyshev AV, Karpenko AA, Maltsev VP. Erythrocyte lysis and angle-resolved light scattering measured by scanning flow cytometry result to 48 indices quantifying a gas exchange function of the human organism. Cytometry A 2023; 103:39-53. [PMID: 35349217 DOI: 10.1002/cyto.a.24554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 01/20/2023]
Abstract
Molecular/cell level of gas exchange function assumes the accurate measurement of erythrocyte characteristics and rate constants concerning to molecules involved into the CO2 /O2 transport. Unfortunately, common hematology analyzers provide the measurement of eight indices of erythrocytes only and say little about erythrocyte morphology and nothing about rate constants of cellular function. The aim of this study is to demonstrate the ability of the Scanning Flow Cytometer (SFC) in the complete morphological analysis of mature erythrocytes and characterization of erythrocyte function via measurement of lysing kinetics. With this study we are introducing 48 erythrocyte indices. To provide the usability of application of the SFC in clinical diagnosis, we formed four categories of indices which are as follows: content/concentration (9 indices), morphology (26 indices), age (5 indices), and function (8 indices). The erythrocytes of 39 healthy volunteers were analyzed with the SFC to fix the first-ever reference intervals for the new indices introduced. The essential measurable reliability of the presented method is expressed in terms of errors of characteristics of single erythrocytes retrieved from the solution of the inverse light-scattering problem and errors of parameters retrieved from the fitting of the experimental kinetics by molecular-kinetics model of erythrocyte lysis.
Collapse
Affiliation(s)
- Ekaterina S Yastrebova
- Cytometry and Biokinetics, Voevodsky Institute of Chemical Kinetics and Combustion, Novosibirsk, Russian Federation
| | - Vyacheslav M Nekrasov
- Cytometry and Biokinetics, Voevodsky Institute of Chemical Kinetics and Combustion, Novosibirsk, Russian Federation
| | - Konstantin V Gilev
- Cytometry and Biokinetics, Voevodsky Institute of Chemical Kinetics and Combustion, Novosibirsk, Russian Federation
| | - Alla V Gisich
- Cytometry and Biokinetics, Voevodsky Institute of Chemical Kinetics and Combustion, Novosibirsk, Russian Federation
| | - Olga A Abubakirova
- Department of Vascular and Hybrid Surgery, State Research Institute of Circulation Pathology, Novosibirsk, Russian Federation
| | - Dmitry I Strokotov
- Cytometry and Biokinetics, Voevodsky Institute of Chemical Kinetics and Combustion, Novosibirsk, Russian Federation
| | - Andrey V Chernyshev
- Cytometry and Biokinetics, Voevodsky Institute of Chemical Kinetics and Combustion, Novosibirsk, Russian Federation
| | - Andrey A Karpenko
- Department of Vascular and Hybrid Surgery, State Research Institute of Circulation Pathology, Novosibirsk, Russian Federation
| | - Valeri P Maltsev
- Cytometry and Biokinetics, Voevodsky Institute of Chemical Kinetics and Combustion, Novosibirsk, Russian Federation.,Physical department, Novosibirsk State University, Novosibirsk, Russian Federation
| |
Collapse
|
5
|
Pulmonary Oxygen Exchange in a Rhythmically Expanding–Contracting Alveolus–Capillary Model. JOURNAL OF RESPIRATION 2022. [DOI: 10.3390/jor2040015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Pulmonary gas exchanges are vital to human health, and disruptions to this process have been associated with many respiratory diseases. Previous gas exchange studies have predominately relied on whole-body testing and theoretical analysis with 1D or static models. However, pulmonary gas exchanges are inherently a dynamic process in 3D spaces with instantaneous interactions between air, blood, and tissue. This study aimed to develop a computational model for oxygen exchange that considered all factors mentioned above. Therefore, an integrated alveolus–membrane–capillary geometry was developed with prescribed rhythmic expansion/contraction. Airflow ventilation, blood perfusion, and oxygen diffusion were simulated using COMSOL. The temporal and spatial distribution of blood flow and oxygen within the capillaries were simulated under varying breathing depths and cardiac outputs. The results showed highly nonuniform blood flow distributions in the capillary network, while the rhythmic oscillation further increased this nonuniformity, leading to stagnant blood flow in the distal vessels. A static alveolus–capillary geometry underestimated perfusion by 11% for normal respirations, and the deviation grew with breathing depth. The rhythmic motion caused a phase lag in the blood flow. The blood PO2 reached equilibrium with the alveolar air after traveling 1/5–1/3 of the capillary network. The time to reach this equilibrium was significantly influenced by the air–blood barrier diffusivity, while it was only slightly affected by the perfusion rate. The computational platform in this study could be instrumental in obtaining refined knowledge of pulmonary O2 exchanges.
Collapse
|
6
|
Jennings ML. Cell Physiology and Molecular Mechanism of Anion Transport by Erythrocyte Band 3/AE1. Am J Physiol Cell Physiol 2021; 321:C1028-C1059. [PMID: 34669510 PMCID: PMC8714990 DOI: 10.1152/ajpcell.00275.2021] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The major transmembrane protein of the red blood cell, known as band 3, AE1, and SLC4A1, has two main functions: 1) catalysis of Cl-/HCO3- exchange, one of the steps in CO2 excretion; 2) anchoring the membrane skeleton. This review summarizes the 150 year history of research on red cell anion transport and band 3 as an experimental system for studying membrane protein structure and ion transport mechanisms. Important early findings were that red cell Cl- transport is a tightly coupled 1:1 exchange and band 3 is labeled by stilbenesulfonate derivatives that inhibit anion transport. Biochemical studies showed that the protein is dimeric or tetrameric (paired dimers) and that there is one stilbenedisulfonate binding site per subunit of the dimer. Transport kinetics and inhibitor characteristics supported the idea that the transporter acts by an alternating access mechanism with intrinsic asymmetry. The sequence of band 3 cDNA provided a framework for detailed study of protein topology and amino acid residues important for transport. The identification of genetic variants produced insights into the roles of band 3 in red cell abnormalities and distal renal tubular acidosis. The publication of the membrane domain crystal structure made it possible to propose concrete molecular models of transport. Future research directions include improving our understanding of the transport mechanism at the molecular level and of the integrative relationships among band 3, hemoglobin, carbonic anhydrase, and gradients (both transmembrane and subcellular) of HCO3-, Cl-, O2, CO2, pH, and NO metabolites during pulmonary and systemic capillary gas exchange.
Collapse
Affiliation(s)
- Michael L Jennings
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States
| |
Collapse
|
7
|
Chng KZ, Ng YC, Namgung B, Tan JKS, Park S, Tien SL, Leo HL, Kim S. Assessment of transient changes in oxygen diffusion of single red blood cells using a microfluidic analytical platform. Commun Biol 2021; 4:271. [PMID: 33654170 PMCID: PMC7925684 DOI: 10.1038/s42003-021-01793-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 01/26/2021] [Indexed: 02/07/2023] Open
Abstract
Red blood cells (RBCs) capability to deliver oxygen (O2) has been routinely measured by P50. Although this defines the ability of RBCs to carry O2 under equilibrium states, it cannot determine the efficacy of O2 delivery in dynamic blood flow. Here, we developed a microfluidic analytical platform (MAP) that isolates single RBCs for assessing transient changes in their O2 release rate. We found that in vivo (biological) and in vitro (blood storage) aging of RBC could lead to an increase in the O2 release rate, despite a decrease in P50. Rejuvenation of stored RBCs (Day 42), though increased the P50, failed to restore the O2 release rate to basal level (Day 0). The temporal dimension provided at the single-cell level by MAP could shed new insights into the dynamics of O2 delivery in both physiological and pathological conditions.
Collapse
Affiliation(s)
- Kevin Ziyang Chng
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Yan Cheng Ng
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore.,NUS Graduate School for Integrative Sciences and Efngineering, National University of Singapore, Singapore, Singapore
| | - Bumseok Namgung
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Justin Kok Soon Tan
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Soyeon Park
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore.,Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
| | - Sim Leng Tien
- Department of Hematology, Singapore General Hospital, Singapore, Singapore
| | - Hwa Liang Leo
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore.,NUS Graduate School for Integrative Sciences and Efngineering, National University of Singapore, Singapore, Singapore
| | - Sangho Kim
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore. .,NUS Graduate School for Integrative Sciences and Efngineering, National University of Singapore, Singapore, Singapore. .,Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
8
|
Single-cell O 2 exchange imaging shows that cytoplasmic diffusion is a dominant barrier to efficient gas transport in red blood cells. Proc Natl Acad Sci U S A 2020; 117:10067-10078. [PMID: 32321831 PMCID: PMC7211990 DOI: 10.1073/pnas.1916641117] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Blood is routinely tested for gas-carrying capacity (total hemoglobin), but this cannot determine the speed at which red blood cells (RBCs) exchange gases. Such information is critical for evaluating the physiological fitness of RBCs, which have very limited capillary transit times (<1 s) for turning over substantial volumes of gas. We developed a method to quantify gas exchange in individual RBCs and used it to show that restricted diffusion, imposed by hemoglobin crowding, is a major barrier to gas flows. Consequently, hematological disorders manifesting a change in cell shape or hemoglobin concentration have uncharted implications on gas exchange, which we illustrate using inherited anemias. With its single-cell resolution, the method can identify physiologically inferior subpopulations, providing a clinically useful appraisal of blood quality. Disorders of oxygen transport are commonly attributed to inadequate carrying capacity (anemia) but may also relate to inefficient gas exchange by red blood cells (RBCs), a process that is poorly characterized yet assumed to be rapid. Without direct measurements of gas exchange at the single-cell level, the barriers to O2 transport and their relationship with hematological disorders remain ill defined. We developed a method to track the flow of O2 in individual RBCs by combining ultrarapid solution switching (to manipulate gas tension) with single-cell O2 saturation fluorescence microscopy. O2 unloading from RBCs was considerably slower than previously estimated in acellular hemoglobin solutions, indicating the presence of diffusional barriers in intact cells. Rate-limiting diffusion across cytoplasm was demonstrated by osmotically induced changes to hemoglobin concentration (i.e., diffusive tortuosity) and cell size (i.e., diffusion pathlength) and by comparing wild-type cells with hemoglobin H (HbH) thalassemia (shorter pathlength and reduced tortuosity) and hereditary spherocytosis (HS; expanded pathlength). Analysis of the distribution of O2 unloading rates in HS RBCs identified a subpopulation of spherocytes with greatly impaired gas exchange. Tortuosity imposed by hemoglobin was verified by demonstrating restricted diffusivity of CO2, an acidic gas, from the dissipative spread of photolytically uncaged H+ ions across cytoplasm. Our findings indicate that cytoplasmic diffusion, determined by pathlength and tortuosity, is a major barrier to efficient gas handling by RBCs. Consequently, changes in RBC shape and hemoglobin concentration, which are common manifestations of hematological disorders, can have hitherto unrecognized and clinically significant implications on gas exchange.
Collapse
|
9
|
Abstract
Spontaneous solute and solvent permeation through membranes is of vital importance to human life, be it gas exchange in red blood cells, metabolite excretion, drug/toxin uptake, or water homeostasis. Knowledge of the underlying molecular mechanisms is the sine qua non of every functional assignment to membrane transporters. The basis of our current solubility diffusion model was laid by Meyer and Overton. It correlates the solubility of a substance in an organic phase with its membrane permeability. Since then, a wide range of studies challenging this rule have appeared. Commonly, the discrepancies have their origin in ill-used measurement approaches, as we demonstrate on the example of membrane CO2 transport. On the basis of the insight that scanning electrochemical microscopy offered into solute concentration distributions in immediate membrane vicinity of planar membranes, we analyzed the interplay between chemical reactions and diffusion for solvent transport, weak acid permeation, and enzymatic reactions adjacent to membranes. We conclude that buffer reactions must also be considered in spectroscopic investigations of weak acid transport in vesicular suspensions. The evaluation of energetic contributions to membrane translocation of charged species demonstrates the compatibility of the resulting membrane current with the solubility diffusion model. A local partition coefficient that depends on membrane penetration depth governs spontaneous membrane translocation of both charged and uncharged molecules. It is determined not only by the solubility in an organic phase but also by other factors like cholesterol concentration and intrinsic electric membrane potentials.
Collapse
Affiliation(s)
- Christof Hannesschlaeger
- From the Institute of Biophysics , Johannes Kepler University Linz , Gruberstrasse 40 , 4020 Linz , Austria
| | - Andreas Horner
- From the Institute of Biophysics , Johannes Kepler University Linz , Gruberstrasse 40 , 4020 Linz , Austria
| | - Peter Pohl
- From the Institute of Biophysics , Johannes Kepler University Linz , Gruberstrasse 40 , 4020 Linz , Austria
| |
Collapse
|
10
|
Benfey TJ, Devlin RH. Ploidy Has Minimal Effect on Hypoxia Tolerance at High Temperature in Rainbow Trout (Oncorhynchus mykiss). Physiol Biochem Zool 2019; 91:1091-1101. [PMID: 30285539 DOI: 10.1086/700218] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Polyploidy is an important driver of evolutionary change (generally via tetraploidy) and also serves a practical role in aquaculture and fisheries management (via triploidy). Fundamental changes in cell size and number that accompany polyploidy are predicted to affect cellular and whole-animal physiology due to constraints placed on surface-mediated processes at the cellular level, potentially altering environmental tolerances and optima. The aim of this study was to determine whether the documented reduction in thermal tolerance of aquatic polyploids is a result of their being less hypoxia tolerant. This was assessed by holding diploid and triploid rainbow trout for 1 h above their thermal optima in separate trials at eight temperatures between 20° and 27°C and then rapidly reducing the oxygen tension (Po2) of the water and determining the nonlethal Po2 at which fish lost equilibrium. As expected, there was a highly significant ([Formula: see text]) effect of temperature on Po2 at loss of equilibrium. Although there was also a significant ([Formula: see text]) effect of ploidy on Po2 at loss of equilibrium, with triploid values higher than diploid, post hoc analyses showed no significant effect of ploidy at any specific temperature. Oxygen availability alone therefore does not appear to play a major role in determining the thermal tolerance of polyploids.
Collapse
|
11
|
CO₂ Permeability of Biological Membranes and Role of CO₂ Channels. MEMBRANES 2017; 7:membranes7040061. [PMID: 29064458 PMCID: PMC5746820 DOI: 10.3390/membranes7040061] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 10/13/2017] [Accepted: 10/18/2017] [Indexed: 01/09/2023]
Abstract
We summarize here, mainly for mammalian systems, the present knowledge of (a) the membrane CO₂ permeabilities in various tissues; (b) the physiological significance of the value of the CO₂ permeability;
Collapse
|
12
|
Brauner CJ, Harter TS. Beyond just hemoglobin: Red blood cell potentiation of hemoglobin-oxygen unloading in fish. J Appl Physiol (1985) 2017; 123:935-941. [PMID: 28705992 PMCID: PMC5668442 DOI: 10.1152/japplphysiol.00114.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 06/26/2017] [Accepted: 07/09/2017] [Indexed: 11/22/2022] Open
Abstract
Teleosts comprise 95% of fish species, almost one-half of all vertebrate species, and represent one of the most successful adaptive radiation events among vertebrates. This is thought to be in part because of their unique oxygen (O2) transport system. In salmonids, recent in vitro and in vivo studies indicate that hemoglobin-oxygen (Hb-O2) unloading to tissues may be doubled or even tripled under some conditions without changes in perfusion. This is accomplished through the short circuiting of red blood cell (RBC) pH regulation, resulting in a large arterial-venous pH difference within the RBC and induced reduction in Hb-O2 affinity. This system has three prerequisites: 1) highly pH-sensitive hemoglobin, 2) rapid RBC pH regulation, and 3) a heterogeneous distribution of plasma-accessible CA in the cardiovascular system (presence in the tissues and absence at the gills). Although data are limited, these attributes may be general characteristics of teleosts. Although this system is not likely operational to the same degree in other vertebrates, some of these prerequisites do exist, and the generation and elimination of pH disequilibrium states at the RBC will likely enhance Hb-O2 unloading to some degree. In human disease states, there are conditions that may partly satisfy those for enhanced Hb-O2 unloading, tentatively an avenue for future work that may improve treatment efficacy.
Collapse
Affiliation(s)
- Colin J Brauner
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Till S Harter
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
13
|
Harter TS, Brauner CJ. The O 2 and CO 2 Transport System in Teleosts and the Specialized Mechanisms That Enhance Hb–O 2 Unloading to Tissues. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/bs.fp.2017.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|