1
|
Elieh-Ali-Komi D, Bot I, Rodríguez-González M, Maurer M. Cellular and Molecular Mechanisms of Mast Cells in Atherosclerotic Plaque Progression and Destabilization. Clin Rev Allergy Immunol 2024; 66:30-49. [PMID: 38289515 DOI: 10.1007/s12016-024-08981-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2024] [Indexed: 03/28/2024]
Abstract
Mast cells (MCs) are commonly recognized for their crucial involvement in the pathogenesis of allergic diseases, but over time, it has come to light that they also play a role in the pathophysiology of non-allergic disorders including atherosclerosis. The involvement of MCs in the pathology of atherosclerosis is supported by their accumulation in atherosclerotic plaques upon their progression and the association of intraplaque MC numbers with acute cardiovascular events. MCs that accumulate within the atherosclerotic plaque release a cocktail of mediators through which they contribute to neovascularization, plaque progression, instability, erosion, rupture, and thrombosis. At a molecular level, MC-released proteases, especially cathepsin G, degrade low-density lipoproteins (LDL) and mediate LDL fusion and binding of LDL to proteoglycans (PGs). Through a complicated network of chemokines including CXCL1, MCs promote the recruitment of among others CXCR2+ neutrophils, therefore, aggravating the inflammation of the plaque environment. Additionally, MCs produce extracellular traps which worsen inflammation and contribute to atherothrombosis. Altogether, evidence suggests that MCs actively, via several underlying mechanisms, contribute to atherosclerotic plaque destabilization and acute cardiovascular syndromes, thus, making the study of interventions to modulate MC activation an interesting target for cardiovascular medicine.
Collapse
Affiliation(s)
- Daniel Elieh-Ali-Komi
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Ilze Bot
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | | | - Marcus Maurer
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany.
| |
Collapse
|
2
|
Sharma S, Warsi MS, Abidi M, Tufail N, Ahmad R, Siddiqui SA, Moinuddin. Crotonaldehyde induced structural alterations in Low-Density Lipoprotein: Immunogenicity of the modified protein in experimental animals and auto-antibodies generation in various cancers. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123332. [PMID: 37725881 DOI: 10.1016/j.saa.2023.123332] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/16/2023] [Accepted: 08/31/2023] [Indexed: 09/21/2023]
Abstract
Crotonaldehyde (CA), a prominent component of cigarette smoke (CS) is a pervasive environmental pollutant that is a highly toxic, unsaturated aldehyde. Exposure to CA-rich pollutants has been linked to the emergence of many malignancies in humans. To better understand the role of CA in biomolecule modification, this study investigated the detailed structural alterations in low-density lipoprotein (LDL) modified by CA, as well as the immunogenicity of the modified protein in experimental animals and the search for autoantibodies in various cancers patients.In vitro, results indicated alterations in secondary and tertiary structures; examined using UV-visible, fluorescence, far-UV circular dichroism, and Fourier transform infrared spectroscopy techniques. Changes in the oxidation status of LDL were studied by carbonyl content assay and NBT assay. ThT binding assay, scanning, and transmission electron microscopy were used to study aggregate formation. The findings revealed significant structural damage in LDL modified by CA. The modification resulted in the unmasking of hydrophobic clusters, the loss of the protein α-helix, and the formation of β-pleated sheet structure. The amyloid aggregate formation was confirmed through ThT microscopy and electron spectroscopy. Rabbits immunized with crotonaldehyde; lead to structural changes in the LDL; that acted as extra antigenic determinants, eliciting strong antibody response. Immunoglobulin response is highly specific for modified LDL as demonstrated by the ELISA. The presence of antibodies against CA-modified LDL was confirmed by the immunoglobulin content of blood sera from human subjects with lung cancer, and competitive ELISA demonstrated the specificity of these antibodies. This study offers insights into the CA-mediated LDL modification and immunogenicity in lung cancer that will have diagnostic importance.
Collapse
Affiliation(s)
- Surabhi Sharma
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Mohd Sharib Warsi
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Minhal Abidi
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Neda Tufail
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Rizwan Ahmad
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Shahid Ali Siddiqui
- Department of Radiotherapy, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Moinuddin
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| |
Collapse
|
3
|
Wang A, Yue K, Zhong W, Zhang G, Wang L, Wang H, Zhang H, Zhang X. Ligand-receptor interaction in the specific targeting of biomimetic peptide nanoparticles to lysophosphatidylcholine. Int J Biol Macromol 2023; 227:193-202. [PMID: 36549027 DOI: 10.1016/j.ijbiomac.2022.12.162] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
As nanotechnology is applied clinical medicine, nanoparticle-based therapy is emerging as a novel approach for the treatment of atherosclerosis. Ligand-receptor interaction affects the effectiveness of nanoparticle targeting therapy. In this study, the biomimetic peptide (BP-KFFVLK-WYKDGD) ligand specifically targeting the lysophosphatidylcholine (LPC) receptor in atherosclerotic plaques was constructed. The corresponding ligand-receptor interaction under different pH values was investigated by molecular dynamics simulation and experimental measurements. Results show that the interaction force between the peptide and LPC is greater than that of the peptide and human umbilical vein endothelial cell, clearly demonstrating the specific targeting of the peptide ligand to the LPC receptor. The ligand-receptor binding of peptide and LPC dominantly depends on Coulomb and van der Waals interactions. The YKDG amino acids of the peptide are the main fragment that binds to LPC. Compared with neutral environment at pH 7.4, the interaction forces between the peptide and oxidized low-density lipoprotein (oxLDL) decreased by 18.22 % and 45.87 % under acidic environments at pH 6.5 and 5.5, respectively, because of the change in oxLDL secondary structure and the release of LPC from oxLDL. Nevertheless, the peptide still has a strong binding capacity with oxLDL for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Anqi Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Kai Yue
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Shunde Graduate School of University of Science and Technology Beijing, Shunde, Guangdong Province 528399, China.
| | - Weishen Zhong
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Genpei Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Shunde Graduate School of University of Science and Technology Beijing, Shunde, Guangdong Province 528399, China
| | - Lei Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
| | - Hao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
| | - Hua Zhang
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xinxin Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Shunde Graduate School of University of Science and Technology Beijing, Shunde, Guangdong Province 528399, China
| |
Collapse
|
4
|
Mladenović D, Khamari D, Kittel Á, Koort K, Buzás EI, Zarovni N. Acidification of blood plasma facilitates the separation and analysis of extracellular vesicles. JOURNAL OF THROMBOSIS AND HAEMOSTASIS : JTH 2023; 21:1032-1042. [PMID: 36774282 DOI: 10.1016/j.jtha.2023.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/10/2022] [Accepted: 01/05/2023] [Indexed: 01/15/2023]
Abstract
BACKGROUND Blood plasma is available with minimal invasive sampling, it has significant diagnostic utility, and it is a valuable source of extracellular vesicles (EVs). Nevertheless, rich protein content, the presence of lipoproteins (LPs) that share similar biophysical properties, and relatively low abundance of EVs, especially those of rare subpopulations, make any downstream application a very challenging task. The growing evidence of the intricate surface interactome of EVs, and the association of EVs with LPs, impose further challenges during EV purification, detection, and biomarker analyses. OBJECTIVES In this study, we tackled the fundamental issues of plasma EV yield and LP co-isolation and their implications in the subsequent marker analyses. METHODS Moderate acidification of plasma was combined with size exclusion chromatography (SEC) and/or differential centrifugation (DC) to disrupt LPs and improve recovery of EVs and their subsequent detection by immunoassays and single-particle analysis methods. RESULTS Our results demonstrate a surprisingly efficient enrichment of EVs (up to 3.3-fold higher than at pH 7) and partial depletion of LPs (up to 61.2%). Acidification of blood plasma samples enabled a quick single-step isoelectric precipitation of up to 20.4% of EVs directly from plasma, upon short low-speed centrifugation. CONCLUSION Thus, acidification holds potential as a simple and inexpensive methodological step, which improves the efficacy of plasma EV enrichment and may have implications in future biomarker discoveries.
Collapse
Affiliation(s)
- Danilo Mladenović
- HansaBioMed Life Sciences Ltd., Tallinn, Estonia; School of Natural Sciences and Health, Tallinn University, Tallinn, Estonia. https://twitter.com/DanMladenovic
| | - Delaram Khamari
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary; Eötvös Loránd Research Network, Translational Extracellular Vesicle Research Group, Semmelweis University, Budapest, Hungary
| | - Ágnes Kittel
- Eötvös Loránd Research Network, Institute of Experimental Medicine, Budapest, Hungary
| | - Kairi Koort
- School of Natural Sciences and Health, Tallinn University, Tallinn, Estonia
| | - Edit I Buzás
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary; Eötvös Loránd Research Network, Translational Extracellular Vesicle Research Group, Semmelweis University, Budapest, Hungary; Hungarian Center of Excellence Molecular Medicine, Extracellular Vesicle Research Group, Semmelweis University, Budapest, Hungary
| | - Nataša Zarovni
- HansaBioMed Life Sciences Ltd., Tallinn, Estonia; Exosomics SpA, Siena, Italy.
| |
Collapse
|
5
|
Ghaleb Y, Elbitar S, Philippi A, El Khoury P, Azar Y, Andrianirina M, Loste A, Abou-Khalil Y, Nicolas G, Le Borgne M, Moulin P, Di-Filippo M, Charrière S, Farnier M, Yelnick C, Carreau V, Ferrières J, Lecerf JM, Derksen A, Bernard G, Gauthier MS, Coulombe B, Lütjohann D, Fin B, Boland A, Olaso R, Deleuze JF, Rabès JP, Boileau C, Abifadel M, Varret M. Whole Exome/Genome Sequencing Joint Analysis of a Family with Oligogenic Familial Hypercholesterolemia. Metabolites 2022; 12:metabo12030262. [PMID: 35323704 PMCID: PMC8955453 DOI: 10.3390/metabo12030262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/10/2022] [Accepted: 03/16/2022] [Indexed: 11/16/2022] Open
Abstract
Autosomal Dominant Hypercholesterolemia (ADH) is a genetic disorder caused by pathogenic variants in LDLR, APOB, PCSK9 and APOE genes. We sought to identify new candidate genes responsible for the ADH phenotype in patients without pathogenic variants in the known ADH-causing genes by focusing on a French family with affected and non-affected members who presented a high ADH polygenic risk score (wPRS). Linkage analysis, whole exome and whole genome sequencing resulted in the identification of variants p.(Pro398Ala) in CYP7A1, p.(Val1382Phe) in LRP6 and p.(Ser202His) in LDLRAP1. A total of 6 other variants were identified in 6 of 160 unrelated ADH probands: p.(Ala13Val) and p.(Aps347Asn) in CYP7A1; p.(Tyr972Cys), p.(Thr1479Ile) and p.(Ser1612Phe) in LRP6; and p.(Ser202LeufsTer19) in LDLRAP1. All six probands presented a moderate wPRS. Serum analyses of carriers of the p.(Pro398Ala) variant in CYP7A1 showed no differences in the synthesis of bile acids compared to the serums of non-carriers. Functional studies of the four LRP6 mutants in HEK293T cells resulted in contradictory results excluding a major effect of each variant alone. Within the family, none of the heterozygous for only the LDLRAP1 p.(Ser202His) variant presented ADH. Altogether, each variant individually does not result in elevated LDL-C; however, the oligogenic combination of two or three variants reveals the ADH phenotype.
Collapse
Affiliation(s)
- Youmna Ghaleb
- INSERM, Laboratory for Vascular Translational Science (LVTS), F-75018 Paris, France; (Y.G.); (S.E.); (P.E.K.); (Y.A.); (M.A.); (A.L.); (Y.A.-K.); (M.L.B.); (J.-P.R.); (C.B.); (M.A.)
- Laboratory of Biochemistry and Molecular Therapeutics (LBTM), Faculty of Pharmacy, Pôle Technologie-Santé (PTS), Saint-Joseph University, Beirut 1004 2020, Lebanon
| | - Sandy Elbitar
- INSERM, Laboratory for Vascular Translational Science (LVTS), F-75018 Paris, France; (Y.G.); (S.E.); (P.E.K.); (Y.A.); (M.A.); (A.L.); (Y.A.-K.); (M.L.B.); (J.-P.R.); (C.B.); (M.A.)
- Laboratory of Biochemistry and Molecular Therapeutics (LBTM), Faculty of Pharmacy, Pôle Technologie-Santé (PTS), Saint-Joseph University, Beirut 1004 2020, Lebanon
| | - Anne Philippi
- Institut Cochin, Bâtiment Faculté Inserm U1016, Cnrs UMR8104, Université de Paris Faculté de Médecine, F-75014 Paris, France;
| | - Petra El Khoury
- INSERM, Laboratory for Vascular Translational Science (LVTS), F-75018 Paris, France; (Y.G.); (S.E.); (P.E.K.); (Y.A.); (M.A.); (A.L.); (Y.A.-K.); (M.L.B.); (J.-P.R.); (C.B.); (M.A.)
- Laboratory of Biochemistry and Molecular Therapeutics (LBTM), Faculty of Pharmacy, Pôle Technologie-Santé (PTS), Saint-Joseph University, Beirut 1004 2020, Lebanon
| | - Yara Azar
- INSERM, Laboratory for Vascular Translational Science (LVTS), F-75018 Paris, France; (Y.G.); (S.E.); (P.E.K.); (Y.A.); (M.A.); (A.L.); (Y.A.-K.); (M.L.B.); (J.-P.R.); (C.B.); (M.A.)
- Laboratory of Biochemistry and Molecular Therapeutics (LBTM), Faculty of Pharmacy, Pôle Technologie-Santé (PTS), Saint-Joseph University, Beirut 1004 2020, Lebanon
- Laboratory for Vascular Translational Science, Paris Cité University, Sorbonne Paris Nord University, F-75013 Paris, France;
| | - Miangaly Andrianirina
- INSERM, Laboratory for Vascular Translational Science (LVTS), F-75018 Paris, France; (Y.G.); (S.E.); (P.E.K.); (Y.A.); (M.A.); (A.L.); (Y.A.-K.); (M.L.B.); (J.-P.R.); (C.B.); (M.A.)
| | - Alexia Loste
- INSERM, Laboratory for Vascular Translational Science (LVTS), F-75018 Paris, France; (Y.G.); (S.E.); (P.E.K.); (Y.A.); (M.A.); (A.L.); (Y.A.-K.); (M.L.B.); (J.-P.R.); (C.B.); (M.A.)
- Laboratory for Vascular Translational Science, Paris Cité University, Sorbonne Paris Nord University, F-75013 Paris, France;
| | - Yara Abou-Khalil
- INSERM, Laboratory for Vascular Translational Science (LVTS), F-75018 Paris, France; (Y.G.); (S.E.); (P.E.K.); (Y.A.); (M.A.); (A.L.); (Y.A.-K.); (M.L.B.); (J.-P.R.); (C.B.); (M.A.)
- Laboratory of Biochemistry and Molecular Therapeutics (LBTM), Faculty of Pharmacy, Pôle Technologie-Santé (PTS), Saint-Joseph University, Beirut 1004 2020, Lebanon
- Laboratory for Vascular Translational Science, Paris Cité University, Sorbonne Paris Nord University, F-75013 Paris, France;
| | - Gaël Nicolas
- Laboratory for Vascular Translational Science, Paris Cité University, Sorbonne Paris Nord University, F-75013 Paris, France;
- INSERM U1149, CNRS ERL 8252, Centre de Recherche sur l’Inflammation, F-75018 Paris, France
| | - Marie Le Borgne
- INSERM, Laboratory for Vascular Translational Science (LVTS), F-75018 Paris, France; (Y.G.); (S.E.); (P.E.K.); (Y.A.); (M.A.); (A.L.); (Y.A.-K.); (M.L.B.); (J.-P.R.); (C.B.); (M.A.)
- Laboratory for Vascular Translational Science, Paris Cité University, Sorbonne Paris Nord University, F-75013 Paris, France;
| | - Philippe Moulin
- Department of Endocrinology, Nutrition and Metabolic Diseases, Hospices Civils de Lyon, Louis Pradel Cardiovascular Hospital, F-69500 Bron, France; (P.M.); (S.C.)
- CarMen Laboratory, INSERM U1060, INRAE U1397, Université Lyon 1, F-69921 Oullins, France;
| | - Mathilde Di-Filippo
- CarMen Laboratory, INSERM U1060, INRAE U1397, Université Lyon 1, F-69921 Oullins, France;
- Hospices Civils de Lyon, Department of Biochemistry and Molecular Biology, F-69500 Bron, France
| | - Sybil Charrière
- Department of Endocrinology, Nutrition and Metabolic Diseases, Hospices Civils de Lyon, Louis Pradel Cardiovascular Hospital, F-69500 Bron, France; (P.M.); (S.C.)
- CarMen Laboratory, INSERM U1060, INRAE U1397, Université Lyon 1, F-69921 Oullins, France;
| | - Michel Farnier
- EA 7460 Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Université de Bourgogne-Franche Comté, F-21078 Dijon, France;
| | - Cécile Yelnick
- Département de Médecine Interne et Immunologie Clinique Centre de Référence des Maladies Auto-Immunes Systémiques Rares du Nord et Nord-Ouest de France (CeRAINO) CHU de Lille, F-59037 Lille, France;
- U1167 Risk Factors and Molecular Determinants of Aging-Related Diseases, Inserm CHU de Lille, Lille University, F-59000 Lille, France
| | - Valérie Carreau
- Department of Endocrinology and Prevention of Cardiovascular Disease, Institute of Cardio Metabolism and Nutrition (ICAN), La Pitié-Salpêtrière Hospital, AP-HP, F-75005 Paris, France;
| | - Jean Ferrières
- Department of Cardiology, Toulouse Rangueil University Hospital, UMR 1295 INSERM, F-31400 Toulouse, France;
| | - Jean-Michel Lecerf
- Nutrition Department, Institut Pasteur de Lille, CEDEX, F-59019 Lille, France;
| | - Alexa Derksen
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montréal, QC H3A 0G4, Canada; (A.D.); (G.B.)
- Translational Proteomics Laboratory, Institut de Recherches Cliniques de Montréal, Montréal, QC H2W 1R7, Canada; (M.-S.G.); (B.C.)
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC H3A 0G4, Canada
| | - Geneviève Bernard
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montréal, QC H3A 0G4, Canada; (A.D.); (G.B.)
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC H3A 0G4, Canada
- Department of Pediatrics, McGill University, Montréal, QC H3A 0G4, Canada
- Department of Human Genetics, McGill University, Montréal, QC H3A 0G4, Canada
- Division of Medical Genetics, Department of Specialized Medicine, McGill University Health Centre, Montréal, QC H4A 3J1, Canada
| | - Marie-Soleil Gauthier
- Translational Proteomics Laboratory, Institut de Recherches Cliniques de Montréal, Montréal, QC H2W 1R7, Canada; (M.-S.G.); (B.C.)
| | - Benoit Coulombe
- Translational Proteomics Laboratory, Institut de Recherches Cliniques de Montréal, Montréal, QC H2W 1R7, Canada; (M.-S.G.); (B.C.)
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Dieter Lütjohann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, F-53127 Bonn, Germany;
| | - Bertrand Fin
- CEA, Centre National de Recherche en Génomique Humaine, Laboratory of Excellence GENMED (Medical Genomics), Paris-Saclay University, F-91057 Evry, France; (B.F.); (A.B.); (R.O.); (J.-F.D.)
| | - Anne Boland
- CEA, Centre National de Recherche en Génomique Humaine, Laboratory of Excellence GENMED (Medical Genomics), Paris-Saclay University, F-91057 Evry, France; (B.F.); (A.B.); (R.O.); (J.-F.D.)
| | - Robert Olaso
- CEA, Centre National de Recherche en Génomique Humaine, Laboratory of Excellence GENMED (Medical Genomics), Paris-Saclay University, F-91057 Evry, France; (B.F.); (A.B.); (R.O.); (J.-F.D.)
| | - Jean-François Deleuze
- CEA, Centre National de Recherche en Génomique Humaine, Laboratory of Excellence GENMED (Medical Genomics), Paris-Saclay University, F-91057 Evry, France; (B.F.); (A.B.); (R.O.); (J.-F.D.)
- Centre d’Etude du Polymorphisme Humain, Fondation Jean Dausset, F-75019 Paris, France
| | - Jean-Pierre Rabès
- INSERM, Laboratory for Vascular Translational Science (LVTS), F-75018 Paris, France; (Y.G.); (S.E.); (P.E.K.); (Y.A.); (M.A.); (A.L.); (Y.A.-K.); (M.L.B.); (J.-P.R.); (C.B.); (M.A.)
- Department of Biochemistry and Molecular Genetics, Ambroise Paré University Hospital (APHP), Université Paris-Saclay, F-92104 Boulogne-Billancourt, France
- UFR (Unite de Formation et de Recherche) Simone Veil-Santé, Versailles-Saint-Quentin-en-Yvelines University, F-78180 Montigny-le-Bretonneux, France
| | - Catherine Boileau
- INSERM, Laboratory for Vascular Translational Science (LVTS), F-75018 Paris, France; (Y.G.); (S.E.); (P.E.K.); (Y.A.); (M.A.); (A.L.); (Y.A.-K.); (M.L.B.); (J.-P.R.); (C.B.); (M.A.)
- Laboratory for Vascular Translational Science, Paris Cité University, Sorbonne Paris Nord University, F-75013 Paris, France;
- Genetic Department, AP-HP, Hôpital Bichat, F-75018 Paris, France
| | - Marianne Abifadel
- INSERM, Laboratory for Vascular Translational Science (LVTS), F-75018 Paris, France; (Y.G.); (S.E.); (P.E.K.); (Y.A.); (M.A.); (A.L.); (Y.A.-K.); (M.L.B.); (J.-P.R.); (C.B.); (M.A.)
- Laboratory of Biochemistry and Molecular Therapeutics (LBTM), Faculty of Pharmacy, Pôle Technologie-Santé (PTS), Saint-Joseph University, Beirut 1004 2020, Lebanon
| | - Mathilde Varret
- INSERM, Laboratory for Vascular Translational Science (LVTS), F-75018 Paris, France; (Y.G.); (S.E.); (P.E.K.); (Y.A.); (M.A.); (A.L.); (Y.A.-K.); (M.L.B.); (J.-P.R.); (C.B.); (M.A.)
- Laboratory for Vascular Translational Science, Paris Cité University, Sorbonne Paris Nord University, F-75013 Paris, France;
- Correspondence: ; Tel.: +33-1402-57521
| |
Collapse
|
6
|
Ben-Naim L, Khalaila I, Papo N. Modifying pH-sensitive PCSK9/LDLR interactions as a strategy to enhance hepatic cell uptake of low-density lipoprotein cholesterol (LDL-C). Protein Eng Des Sel 2022; 35:6529797. [DOI: 10.1093/protein/gzab032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 11/29/2021] [Accepted: 12/08/2021] [Indexed: 11/14/2022] Open
Abstract
Abstract
LDL-receptor (LDLR)-mediated uptake of LDL-C into hepatocytes is impaired by lysosomal degradation of LDLR, which is promoted by proprotein convertase subtilisin/kexin type 9 (PCSK9). Cell surface binding of PCSK9 to LDLR produces a complex that translocates to an endosome, where the acidic pH strengthens the binding affinity of PCSK9 to LDLR, preventing LDLR recycling to the cell membrane. We present a new approach to inhibit PCSK9-mediated LDLR degradation, namely, targeting the PCSK9/LDLR interface with a PCSK9-antagonist, designated Flag-PCSK9PH, which prevents access of WT PCSK9 to LDLR. In HepG2 cells, Flag-PCSK9PH, a truncated version (residues 53–451) of human WT PCSK9, strongly bound LDLR at the neutral pH of the cell surface but dissociated from it in the endosome (acidic pH), allowing LDLR to exit the lysosomes intact and recycle to the cell membrane. Flag-PCSK9PH thus significantly enhanced cell-surface LDLR levels and the ability of LDLR to take up extracellular LDL-C.
Collapse
Affiliation(s)
- Lital Ben-Naim
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Faculty of Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Isam Khalaila
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Faculty of Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Niv Papo
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Faculty of Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
7
|
Wang K, Gan C, Wang H, Ao M, Fan Y, Chen Y. AFM detects the effects of acidic condition on the size and biomechanical properties of native/oxidized low-density lipoprotein. Colloids Surf B Biointerfaces 2021; 208:112053. [PMID: 34438294 DOI: 10.1016/j.colsurfb.2021.112053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 07/06/2021] [Accepted: 08/16/2021] [Indexed: 12/18/2022]
Abstract
Solution acidification exists under some physiological conditions (e.g. lysosomes in cells) and diseases (e.g. atherosclerosis, tumors, etc.). It is poorly understood whether and how acidification influences the size and biomechanical (stiffness and stickiness) properties of native Low-density lipoprotein (LDL) and its oxidized form (oxLDL) which plays a vital role in atherogenesis and tumorigenesis. Atomic force microscopy (AFM) evaluated that gradient acidification from pH 7.4 to pH 4.4 caused an expanding-first-and-then-shrinking decrease in size and a dramatic decrease in stiffness (but no statistically significant changes in stickiness) of LDL/oxLDL particles by influencing secondary/tertiary structures and lipid release detected by infrared spectral analysis and cholesterol detection, respectively. The smaller and softer characteristics of LDL/oxLDL at acidic conditions versus at the neutral pH partially explains the atherogenic role of acidification. The data may provide important information for a better understanding of LDL/oxLDL and some diseases (e.g. atherosclerosis and tumors).
Collapse
Affiliation(s)
- Kun Wang
- Jiangxi Key Laboratory for Microscale interdisciplinary Study, Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi, 330031, PR China; School of Materials Science and Engineering, Nanchang University, Nanchang, Jiangxi, PR China
| | - Chaoye Gan
- Jiangxi Key Laboratory for Microscale interdisciplinary Study, Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi, 330031, PR China
| | - Huaying Wang
- Jiangxi Key Laboratory for Microscale interdisciplinary Study, Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi, 330031, PR China
| | - Meiying Ao
- School of Basic Medical Sciences, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330025, PR China
| | - Youlong Fan
- School of Basic Medical Sciences, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330025, PR China
| | - Yong Chen
- Jiangxi Key Laboratory for Microscale interdisciplinary Study, Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi, 330031, PR China.
| |
Collapse
|
8
|
Acidic extracellular pH promotes accumulation of free cholesterol in human monocyte-derived macrophages via inhibition of ACAT1 activity. Atherosclerosis 2020; 312:1-7. [PMID: 32942042 DOI: 10.1016/j.atherosclerosis.2020.08.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 08/14/2020] [Accepted: 08/27/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS In focal areas of advanced human atherosclerotic lesions, the intimal fluid is acidic. An acidic medium impairs the ABCA1-mediated cholesterol efflux from macrophages, so tending to increase their content of free cholesterol, which is then available for esterification by the macrophage enzyme ACAT1. Here we investigated whether low extracellular pH would affect the activity of ACAT1. METHODS - Human monocyte-derived macrophages were first incubated with acetyl-LDL at neutral and acidic conditions (pH 7.5, 6.5, and 5.5) to generate foam cells, and then the foam cells were incubated with [3H]oleate-BSA complexes, and the formation of [3H]oleate-labeled cholesteryl esters was measured. ACAT1 activity was also measured in cell-free macrophage extracts. RESULTS - In acidic media, ACAT1-dependent cholesteryl [3H]oleate generation became compromised in the developing foam cells and their content of free cholesterol increased. In line with this finding, ACAT1 activity in the soluble cell-free fraction derived from macrophage foam cells peaked at pH 7, and gradually decreased under acidic pH with a rapid drop below pH 6.5. Incubation of macrophages under progressively more acidic conditions (until pH 5.5) lowered the cytosolic pH of macrophages (down to pH 6.0). Such intracellular acidification did not affect macrophage gene expression of ACAT1 or the neutral CEH. CONCLUSIONS Exposure of human macrophage foam cells to acidic conditions lowers their intracellular pH with simultaneous decrease in ACAT1 activity. This reduces cholesterol esterification and thus leads to accumulation of potentially toxic levels of free cholesterol, a contributing factor to macrophage foam cell death.
Collapse
|
9
|
Klee EW, Zimmermann MT. Molecular modeling of LDLR aids interpretation of genomic variants. J Mol Med (Berl) 2019; 97:533-540. [PMID: 30778614 PMCID: PMC6440939 DOI: 10.1007/s00109-019-01755-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 01/14/2019] [Accepted: 02/05/2019] [Indexed: 11/24/2022]
Abstract
Abstract Genetic variants in low-density lipoprotein receptor (LDLR) are known to cause familial hypercholesterolemia (FH), occurring in up to 1 in 200 people (Youngblom E. et al. 1993 and Nordestgaard BG et al. 34:3478–3490a, 2013) and leading to significant risk for heart disease. Clinical genomics testing using high-throughput sequencing is identifying novel genomic variants of uncertain significance (VUS) in individuals suspected of having FH, but for whom the causal link to the disease remains to be established (Nordestgaard BG et al. 34:3478–3490a, 2013). Unfortunately, experimental data about the atomic structure of the LDL binding domains of LDLR at extracellular pH does not exist. This leads to an inability to apply protein structure-based methods for assessing novel variants identified through genetic testing. Thus, the ambiguities in interpretation of LDLR variants are a barrier to achieving the expected clinical value for personalized genomics assays for management of FH. In this study, we integrated data from the literature and related cellular receptors to develop high-resolution models of full-length LDLR at extracellular conditions and use them to predict which VUS alter LDL binding. We believe that the functional effects of LDLR variants can be resolved using a combination of structural bioinformatics and functional assays, leading to a better correlation with clinical presentation. We have completed modeling of LDLR in two major physiologic conditions, generating detailed hypotheses for how each of the 1007 reported protein variants may affect function. Key messages • Hundreds of variants are observed in the LDLR, but most lack interpretation. • Molecular modeling is aided by biochemical knowledge. • We generated context-specific 3D protein models of LDLR. • Our models allowed mechanistic interpretation of many variants. • We interpreted both rare and common genomic variants in their physiologic context. • Effects of genomic variants are often context-specific. Electronic supplementary material The online version of this article (10.1007/s00109-019-01755-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eric W Klee
- Department of Health Science Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA.,Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Michael T Zimmermann
- Bioinformatics Research and Development Laboratory, Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, 53226-0509, USA.
| |
Collapse
|
10
|
Benito-Vicente A, Uribe KB, Jebari S, Galicia-Garcia U, Ostolaza H, Martin C. Familial Hypercholesterolemia: The Most Frequent Cholesterol Metabolism Disorder Caused Disease. Int J Mol Sci 2018; 19:ijms19113426. [PMID: 30388787 PMCID: PMC6275065 DOI: 10.3390/ijms19113426] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 10/21/2018] [Accepted: 10/29/2018] [Indexed: 12/18/2022] Open
Abstract
Cholesterol is an essential component of cell barrier formation and signaling transduction involved in many essential physiologic processes. For this reason, cholesterol metabolism must be tightly controlled. Cell cholesterol is mainly acquired from two sources: Dietary cholesterol, which is absorbed in the intestine and, intracellularly synthesized cholesterol that is mainly synthesized in the liver. Once acquired, both are delivered to peripheral tissues in a lipoprotein dependent mechanism. Malfunctioning of cholesterol metabolism is caused by multiple hereditary diseases, including Familial Hypercholesterolemia, Sitosterolemia Type C and Niemann-Pick Type C1. Of these, familial hypercholesterolemia (FH) is a common inherited autosomal co-dominant disorder characterized by high plasma cholesterol levels. Its frequency is estimated to be 1:200 and, if untreated, increases the risk of premature cardiovascular disease. This review aims to summarize the current knowledge on cholesterol metabolism and the relation of FH to cholesterol homeostasis with special focus on the genetics, diagnosis and treatment.
Collapse
Affiliation(s)
- Asier Benito-Vicente
- Departamento de Bioquímica, Instituto Biofisika (UPV/EHU, CSIC), Universidad del País Vasco, Apdo.644, 48080 Bilbao, Spain.
| | - Kepa B Uribe
- Departamento de Bioquímica, Instituto Biofisika (UPV/EHU, CSIC), Universidad del País Vasco, Apdo.644, 48080 Bilbao, Spain.
| | - Shifa Jebari
- Departamento de Bioquímica, Instituto Biofisika (UPV/EHU, CSIC), Universidad del País Vasco, Apdo.644, 48080 Bilbao, Spain.
| | - Unai Galicia-Garcia
- Departamento de Bioquímica, Instituto Biofisika (UPV/EHU, CSIC), Universidad del País Vasco, Apdo.644, 48080 Bilbao, Spain.
| | - Helena Ostolaza
- Departamento de Bioquímica, Instituto Biofisika (UPV/EHU, CSIC), Universidad del País Vasco, Apdo.644, 48080 Bilbao, Spain.
| | - Cesar Martin
- Departamento de Bioquímica, Instituto Biofisika (UPV/EHU, CSIC), Universidad del País Vasco, Apdo.644, 48080 Bilbao, Spain.
| |
Collapse
|
11
|
Validation of LDLr Activity as a Tool to Improve Genetic Diagnosis of Familial Hypercholesterolemia: A Retrospective on Functional Characterization of LDLr Variants. Int J Mol Sci 2018; 19:ijms19061676. [PMID: 29874871 PMCID: PMC6032215 DOI: 10.3390/ijms19061676] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 05/28/2018] [Accepted: 06/04/2018] [Indexed: 12/11/2022] Open
Abstract
Familial hypercholesterolemia (FH) is an autosomal dominant disorder characterized by high blood-cholesterol levels mostly caused by mutations in the low-density lipoprotein receptor (LDLr). With a prevalence as high as 1/200 in some populations, genetic screening for pathogenic LDLr mutations is a cost-effective approach in families classified as ‘definite’ or ‘probable’ FH and can help to early diagnosis. However, with over 2000 LDLr variants identified, distinguishing pathogenic mutations from benign mutations is a long-standing challenge in the field. In 1998, the World Health Organization (WHO) highlighted the importance of improving the diagnosis and prognosis of FH patients thus, identifying LDLr pathogenic variants is a longstanding challenge to provide an accurate genetic diagnosis and personalized treatments. In recent years, accessible methodologies have been developed to assess LDLr activity in vitro, providing experimental reproducibility between laboratories all over the world that ensures rigorous analysis of all functional studies. In this review we present a broad spectrum of functionally characterized missense LDLr variants identified in patients with FH, which is mandatory for a definite diagnosis of FH.
Collapse
|