1
|
Lee LCC, Lo KKW. Shining New Light on Biological Systems: Luminescent Transition Metal Complexes for Bioimaging and Biosensing Applications. Chem Rev 2024; 124:8825-9014. [PMID: 39052606 PMCID: PMC11328004 DOI: 10.1021/acs.chemrev.3c00629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Luminescence imaging is a powerful and versatile technique for investigating cell physiology and pathology in living systems, making significant contributions to life science research and clinical diagnosis. In recent years, luminescent transition metal complexes have gained significant attention for diagnostic and therapeutic applications due to their unique photophysical and photochemical properties. In this Review, we provide a comprehensive overview of the recent development of luminescent transition metal complexes for bioimaging and biosensing applications, with a focus on transition metal centers with a d6, d8, and d10 electronic configuration. We elucidate the structure-property relationships of luminescent transition metal complexes, exploring how their structural characteristics can be manipulated to control their biological behavior such as cellular uptake, localization, biocompatibility, pharmacokinetics, and biodistribution. Furthermore, we introduce the various design strategies that leverage the interesting photophysical properties of luminescent transition metal complexes for a wide variety of biological applications, including autofluorescence-free imaging, multimodal imaging, organelle imaging, biological sensing, microenvironment monitoring, bioorthogonal labeling, bacterial imaging, and cell viability assessment. Finally, we provide insights into the challenges and perspectives of luminescent transition metal complexes for bioimaging and biosensing applications, as well as their use in disease diagnosis and treatment evaluation.
Collapse
Affiliation(s)
- Lawrence Cho-Cheung Lee
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F, Building 17W, Hong Kong Science Park, New Territories, Hong Kong, P. R. China
| | - Kenneth Kam-Wing Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
2
|
pH-Dependent Selective Colorimetric Detection of Proline and Hydroxyproline with Meldrum’s Acid-Furfural Conjugate. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9120343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Activated 2-furfural gives intense color formation when reacted with amines, due to a ring opening reaction cascade that furnishes a conjugated molecular system. Unique colorimetric characteristic of this reaction makes it an interesting candidate for developing chemosensors operating in visible range. Among many activated 2-furfural derivatives, Meldrum’s acid furfural conjugate (MAFC) recently gained significant interest as colorimetric chemosensor. MAFC has been explored as selective chemosensor for detecting amines in solution, secondary amines on polymer surfaces and even nitrogen rich amino acids (AA) in aqueous solution. In this work, the pH dependency of MAFC-AA reaction is explored. It was found that proline gives an exceptionally fast colored reaction at pH 11, whereas at other pHs, no naked eye color product formation was observed. The reaction sequence including ring opening reaction upon nucleophilic addition of cyclic amine of proline resulting in a conjugated triene was confirmed by NMR titrations. The highly pH dependent reaction can e.g., potentially be used to detect proline presence in biological samples. An even more intense color formation takes place in the reaction of natural proline derivative 4-hydroxyproline. The detection limit of proline and 4-hydroxyproline with MAFC solution was found to be 11 µM and 6 µM respectively.
Collapse
|
3
|
Haribabu J, Tamura Y, Yokoi K, Balachandran C, Umezawa M, Tsuchiya K, Yamada Y, Karvembu R, Aoki S. Synthesis and Anticancer Properties of Bis‐ and Mono(cationic peptide) Hybrids of Cyclometalated Iridium(III) Complexes: Effect of the Number of Peptide Units on Anticancer Activity. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100154] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jebiti Haribabu
- Faculty of Pharmaceutical Sciences Tokyo University of Science, 2641 Yamazaki Noda 278-8510 Japan
| | - Yuichi Tamura
- Faculty of Pharmaceutical Sciences Tokyo University of Science, 2641 Yamazaki Noda 278-8510 Japan
| | - Kenta Yokoi
- Faculty of Pharmaceutical Sciences Tokyo University of Science, 2641 Yamazaki Noda 278-8510 Japan
| | - Chandrasekar Balachandran
- Faculty of Pharmaceutical Sciences Tokyo University of Science, 2641 Yamazaki Noda 278-8510 Japan
- Research Institute of Biomedical Science Tokyo University of Science, 2641 Yamazaki Noda Chiba 278-8510 Japan
| | - Masakazu Umezawa
- Research Institute for Science and Technology Tokyo University of Science, 2641 Yamazaki Noda Chiba 278-8510 Japan
| | - Koji Tsuchiya
- Research Institute for Science and Technology Tokyo University of Science, 2641 Yamazaki Noda Chiba 278-8510 Japan
| | - Yasuyuki Yamada
- Department of Chemistry Graduate School of Science Nagoya University, Furo-cho, Chikusa-ku Nagoya 464-8602 Japan
- Research Center for Materials Science Nagoya University, Furo-cho, Chikusa-ku Nagoya 464-8602 Japan
- JST, PRESTO, 4-1-8 Honcho Kawaguchi Saitama 332-0012 Japan
| | - Ramasamy Karvembu
- Department of Chemistry National Institute of Technology Tiruchirappalli 620015 India
| | - Shin Aoki
- Faculty of Pharmaceutical Sciences Tokyo University of Science, 2641 Yamazaki Noda 278-8510 Japan
- Research Institute for Science and Technology Tokyo University of Science, 2641 Yamazaki Noda Chiba 278-8510 Japan
| |
Collapse
|
4
|
Liu JB, Wu C, Chen F, Leung CH, Ma DL. A simple iridium(III) dimer as a switch-on luminescent chemosensor for carbon disulfide detection in water samples. Anal Chim Acta 2019; 1083:166-171. [DOI: 10.1016/j.aca.2019.07.070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/26/2019] [Accepted: 07/30/2019] [Indexed: 12/22/2022]
|
5
|
Ma DL, Wong SY, Kang TS, Ng HP, Han QB, Leung CH. Iridium(III)-based chemosensors for the detection of metal ions. Methods 2019; 168:3-17. [DOI: 10.1016/j.ymeth.2019.02.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 02/15/2019] [Indexed: 01/10/2023] Open
|
6
|
Zhu G, Bao C, Liu W, Yan X, Liu L, Xiao J, Chen C. Rapid Detection of AGs using Microchip Capillary Electrophoresis Contactless Conductivity Detection. CURR PHARM ANAL 2018. [DOI: 10.2174/1573412913666170918160004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background:
In order to realize current aminoglycosides supervision in food and environment,
our team improved the sensitivity and separation efficiency of the portable ITO detector, based on
the technology of microchip capillary electrophoresis and contactless conductivity detection.
Experiment:
Parameters (the separation voltage, buffer concentration, electrodes gap, elicitation frequency,
elicitation voltage) were optimized for the detection of three aminoglycosides, gentamicin,
kanamycin and streptomycin and the separation of their mixture in background electrolyte consists of
2-(N-Morpholino) ethanesulfonic acid (MES) and L-Histidine (His). The enhanced method was also
applied to other types of aminoglycosides.
Results:
Under optimal conditions, the monitoring of three types of aminoglycosides obtained such a
sensitive response that the limits of detection of gentamicin sulfate, kanamycin sulfate and streptomycin
sulfate were calculated as 3.1 µg/ml, 0.89 µg/ml and 0.96 µg/ml, at signal-to-noise ratio 3, respectively.
In addition they got separated completely from each other only in 40 s. The results of other varieties of
aminoglycosides including tobramycin sulfate and amikacin sulfate also met the standard.
Conclusion:
We successfully proposed here an unprecedentedly portable, miniaturized and rapid
microchip capillary electrophoresis contactless conductivity detection system to realize current
aminoglycosides supervision in food and environment.
Collapse
Affiliation(s)
- Gangzhi Zhu
- Haikou People's Hospital and Affiliated Haikou Hospital of Xiangya Medical School, Central South University, Haikou, Hainan 570208, China
| | - Chunjie Bao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Wenfang Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Xingxing Yan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Lili Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Jian Xiao
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Chuanpin Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| |
Collapse
|
7
|
Sheng H, Hu Y, Zhou Y, Fan S, Cao Y, Zhao X, Yang W. A hydroxyphenylquinazolinone-based fluorescent probe for turn-on detection of cysteine with a large Stokes shift and its application in living cells. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2018.07.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
8
|
Iridium-based probe for luminescent nitric oxide monitoring in live cells. Sci Rep 2018; 8:12467. [PMID: 30127525 PMCID: PMC6102254 DOI: 10.1038/s41598-018-30991-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/09/2018] [Indexed: 12/19/2022] Open
Abstract
Nitric oxide (NO) is an intra- and extracellular messenger with important functions during human physiology process. A long-lived luminescent iridium(III) complex probe 1 has been designed and synthesized for the monitoring of NO controllably released from sodium nitroprusside (SNP). Probe 1 displayed a 15-fold switch-on luminescence in the presence of SNP at 580 nm. The probe exhibited a linear response towards SNP between 5 to 25 μM with detection limit at 0.18 μM. Importantly, the luminescent switch-on detection of NO in HeLa cells was demonstrated. Overall, complex 1 has the potential to be applied for NO tracing in complicated cellular environment.
Collapse
|
9
|
Tafida UI, Uzairu A, Abechi SE. Mechanism and rate constant of proline-catalysed asymmetric aldol reaction of acetone and p-nitrobenzaldehyde in solution medium: Density-functional theory computation. J Adv Res 2018; 12:11-19. [PMID: 30013799 PMCID: PMC6045567 DOI: 10.1016/j.jare.2018.03.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/01/2018] [Accepted: 03/03/2018] [Indexed: 12/26/2022] Open
Abstract
In search of new ways to improve catalyst design, the current research focused on using quantum mechanical descriptors to investigate the effect of proline as a catalyst for mechanism and rate of asymmetric aldol reaction. A plausible mechanism of reaction between acetone and 4-nitrobenzaldehyde in acetone medium was developed using highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies calculated via density functional theory (DFT) at the 6-31G∗/B3LYP level of theory. New mechanistic steps were proposed and found to follow, with expansion, the previously reported iminium-enamine route of typical class 1 aldolase enzymes. From the elementary steps, the first step which involves a bimolecular collision of acetone and proline was considered as the rate-determining step, having the highest activation energy of 59.07 kJ mol-1. The mechanism was used to develop the rate law from which the overall rate constant was calculated and found to be 4.04×10-8dm3mol-1s-1 . The new mechanistic insights and the explicit computation of the rate constant further improve the kinetic knowledge of the reaction.
Collapse
Affiliation(s)
- Usman I Tafida
- Department of Chemistry, Faculty of Science, Abubakar Tafawa Balewa University, Bauchi, PMB: 0248 Bauchi, Bauchi State, Nigeria.,Department of Chemistry, Faculty of Science, Ahmadu Bello University, Zaria, PMB: 1044 Zaria, Kaduna State, Nigeria
| | - Adamu Uzairu
- Department of Chemistry, Faculty of Science, Ahmadu Bello University, Zaria, PMB: 1044 Zaria, Kaduna State, Nigeria
| | - Stephen E Abechi
- Department of Chemistry, Faculty of Science, Ahmadu Bello University, Zaria, PMB: 1044 Zaria, Kaduna State, Nigeria
| |
Collapse
|
10
|
Wu C, Vellaisamy K, Yang G, Dong ZZ, Leung CH, Liu JB, Ma DL. A reaction-based luminescent switch-on sensor for the detection of OH - ions in simulated wastewater. Dalton Trans 2018; 46:6677-6682. [PMID: 28484771 DOI: 10.1039/c7dt00633k] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A series of luminescent iridium(iii) complexes were synthesized and evaluated for their ability to interact with hydroxide ions in semi-aqueous media at ambient temperature. Upon the addition of OH-, a nucleophilic aromatic substitution reaction takes place at the bromine groups of the N^N ligand of complex 1, resulting in the generation of a yellow-green luminescence. Complex 1 showed a 35-fold enhanced emission at pH 14 when compared to neutral pH, and the detection limit for OH- ions was 4.96 μM. Complex 1 exhibited high sensitivity and selectivity, long-lived luminescence and impressive stability. Additionally, we have demonstrated the practical application of complex 1 to detect OH- ions in simulated wastewater.
Collapse
Affiliation(s)
- Chun Wu
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | | | | | | | | | | | | |
Collapse
|
11
|
Wu C, Li G, Han QB, Pei RJ, Liu JB, Ma DL, Leung CH. Real-time detection of oxalyl chloride based on a long-lived iridium(iii) probe. Dalton Trans 2018; 46:17074-17079. [PMID: 29188252 DOI: 10.1039/c7dt04054g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A series of luminescent iridium(iii) complexes were designed and evaluated for their ability to detect oxalyl chloride ((COCl)2) at ambient temperature. In the presence of (COCl)2, a double amidation reaction takes place at the diamino functionality of complex 1, leading to the switching-on of a long-lived red luminescence with a 9-fold enhanced emission. Complex 1 exhibited high sensitivity and selectivity, with a detection limit for (COCl)2 at 32 nM. Additionally, complex 1 can be used to detect (COCl)2 using a simple smartphone, allowing for the portable and real-time monitoring of (COCl)2.
Collapse
Affiliation(s)
- Chun Wu
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - Guodong Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Quan-Bin Han
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Ren-Jun Pei
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Jin-Biao Liu
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China. and School of Metallurgical and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, China.
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| |
Collapse
|
12
|
Ma DL, NG HP, Wong SY, Vellaisamy K, Wu KJ, Leung CH. Iridium(iii) complexes as reaction based chemosensors for medical diagnostics. Dalton Trans 2018; 47:15278-15282. [DOI: 10.1039/c8dt03492c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This frontier article introduces recent developments and applications of iridium(iii) complexes as luminescent probes for ions and biomolecules.
Collapse
Affiliation(s)
- Dik-Lung Ma
- Department of Chemistry
- Hong Kong Baptist University
- Kowloon Tong
- China
| | - Hing Pan NG
- Department of Chemistry
- Hong Kong Baptist University
- Kowloon Tong
- China
| | - Suk-Yu Wong
- Department of Chemistry
- Hong Kong Baptist University
- Kowloon Tong
- China
| | | | - Ke-Jia Wu
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- China
| |
Collapse
|
13
|
Greene LE, Lincoln R, Krumova K, Cosa G. Development of a Fluorogenic Reactivity Palette for the Study of Nucleophilic Addition Reactions Based on meso-Formyl BODIPY Dyes. ACS OMEGA 2017; 2:8618-8624. [PMID: 31457394 PMCID: PMC6645663 DOI: 10.1021/acsomega.7b01795] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 11/21/2017] [Indexed: 06/10/2023]
Abstract
We describe herein a fluorescence-based assay to characterize and report on nucleophilic addition to carbonyl moieties and highlight the advantages a fluorescence-based assay and multiplex analysis can offer. The assay relies on the fluorogenic properties of meso-formyl boron-dipyrromethene (BODIPY) dyes that become emissive following nucleophilic addition. A reactivity palette is assembled based on the increasing electrophilic character of five meso-formyl BODIPY compounds tested. We show that increasing rates of emission enhancement correlate with the decreasing electrophilic character of BODIPY dyes in the presence of an acid catalyst and a nucleophile. These results are consistent with the rate-limiting step involving activation of the electrophile. Increasing product formation is shown to correlate with the increasing electrophilic character of the BODIPY dyes, as expected based on thermodynamics. In addition to providing rates of reaction, analysis of the fluorescence parameters for the reaction mixtures, including emission quantum yields and fluorescence lifetimes, enables us to determine the extent of reactant conversion at equilibrium (in our case the estimated yield of a transient species) and the presence of different products, without the need for isolation. We anticipate that our reactivity palette approach, combined with the in-depth fluorescence analysis discussed herein, will provide guidelines toward developing fluorogenic assays of reactivity offering multiplex information, beyond fluorescence intensity.
Collapse
|
14
|
Ko CN, Wu C, Li G, Leung CH, Liu JB, Ma DL. A long-lived ferrocene-conjugated iridium(III) complex for sensitive turn-on luminescence detection of traces of DMSO in water and human serum. Anal Chim Acta 2017; 984:193-201. [DOI: 10.1016/j.aca.2017.06.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 06/26/2017] [Accepted: 06/27/2017] [Indexed: 02/09/2023]
|
15
|
Liu J, Dong ZZ, Yang C, Li G, Wu C, Lee FW, Leung CH, Ma DL. Turn-on Luminescent Probe for Hydrogen Peroxide Sensing and Imaging in Living Cells based on an Iridium(III) Complex-Silver Nanoparticle Platform. Sci Rep 2017; 7:8980. [PMID: 28827747 PMCID: PMC5566206 DOI: 10.1038/s41598-017-09478-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 07/25/2017] [Indexed: 11/27/2022] Open
Abstract
A sensitive turn-on luminescent sensor for H2O2 based on the silver nanoparticle (AgNP)-mediated quenching of an luminescent Ir(III) complex (Ir-1) has been designed. In the absence of H2O2, the luminescence intensity of Ir-1 can be quenched by AgNPs via non-radiative energy transfer. However, H2O2 can oxidize AgNPs to soluble Ag+ cations, which restores the luminescence of Ir-1. The sensing platform displayed a sensitive response to H2O2 in the range of 0-17 μM, with a detection limit of 0.3 μM. Importantly, the probe was successfully applied to monitor intracellular H2O2 in living cells, and it also showed high selectivity for H2O2 over other interfering substances.
Collapse
Affiliation(s)
- Jinshui Liu
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu, China
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Zhen-Zhen Dong
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Chao Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Guodong Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Chun Wu
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Fu-Wa Lee
- College of International Education, School of Continuing Education, Hong Kong Baptist University, Shek Mun, Hong Kong, China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| |
Collapse
|
16
|
A long-lived phosphorescence iridium(III) complex as a switch on-off-on probe for live zebrafish monitoring of endogenous sulfide generation. Biosens Bioelectron 2017; 94:575-583. [DOI: 10.1016/j.bios.2017.03.050] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/25/2017] [Accepted: 03/21/2017] [Indexed: 01/27/2023]
|
17
|
Liu C, Yang C, Lu L, Wang W, Tan W, Leung CH, Ma DL. Luminescent iridium( iii) complexes as COX-2-specific imaging agents in cancer cells. Chem Commun (Camb) 2017; 53:2822-2825. [DOI: 10.1039/c6cc08109f] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
This is the first application of iridium(iii) complexes as imaging agents for COX-2.
Collapse
Affiliation(s)
- Chenfu Liu
- Department of Chemistry
- Hong Kong Baptist University
- Kowloon Tong
- China
| | - Chao Yang
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Macao
- China
| | - Lihua Lu
- Department of Chemistry
- Hong Kong Baptist University
- Kowloon Tong
- China
- College of Chemistry and Pharmaceutical Sciences
| | - Wanhe Wang
- Department of Chemistry
- Hong Kong Baptist University
- Kowloon Tong
- China
| | - Weihong Tan
- Department of Chemistry and Department of Physiology and Functional Genomics
- Center for Research at the Bio/Nano Interface
- Shands Cancer Center
- UF Genetics Institute
- McKnight Brain Institute
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Macao
- China
| | - Dik-Lung Ma
- Department of Chemistry
- Hong Kong Baptist University
- Kowloon Tong
- China
| |
Collapse
|