1
|
Trevena RL, Veire BM, Chamberlain TJ, Moravec CE, Pelegri F. Embryonic Lethality, Juvenile Growth Variation, and Adult Sterility Correlate With Phylogenetic Distance of Danionin Hybrids. Evol Dev 2025; 27:e12495. [PMID: 39639649 PMCID: PMC11621593 DOI: 10.1111/ede.12495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 10/01/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024]
Abstract
Hybrid incompatibility, which plays a pivotal role in speciation, is expected to correlate with greater phylogenetic distance. Here, we investigate the fitness of interspecies hybrids within the Danionin subfamily, which includes the model species, Danio rerio, and its relatives - Danio kyathit, Danio albolineatus, Danio margaritatus, and Devario aequipinnatus. We generated hybrids through in vitro fertilization, using Danio rerio as the maternal species, with normal fertilization rates showing no incompatibilities in sperm-egg interactions within these two genera. Generally, all hybrids exhibit normal patterns and timelines in early developmental transitions, from cleavage stages to the initiation of epiboly, although inter-genera Danio-Devario hybrids subsequently exhibit fully penetrant embryonic lethality. Intra-genus Danio hybrids, on the other hand, can survive through embryogenesis and into adulthood. However, rates of survival during these stages diminish according to phylogenetic distance, with increasing early lethality in hybrids from more distantly related species. Additionally, Danio hybrids exhibit increased growth rate variability during juvenile stages. All Danio hybrids have reduced testes sizes, sperm counts, and sperm viabilities, with sperm displaying defects in flagellum formation and integrity. Adult male intra-genus hybrids are invariably sterile, except in the case of Danio rerio hybrids with the closely related Danio kyathit, which produced a backcrossed F2 generation that did not survive juvenile stages. Our studies highlight a loss of hybrid compatibility at various life stages in the Danio and Devario genera, based on deleterious effects and reduced developmental robustness, emphasizing a correlation between the severity of incompatibility outcomes and the degree of phylogenetic relatedness.
Collapse
Affiliation(s)
- Ryan L. Trevena
- Laboratory of GeneticsUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Benton M. Veire
- Laboratory of GeneticsUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | | | - Cara E. Moravec
- Laboratory of GeneticsUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Francisco Pelegri
- Laboratory of GeneticsUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| |
Collapse
|
2
|
Gouy A, Wang X, Kapopoulou A, Neuenschwander S, Schmid E, Excoffier L, Heckel G. Genomes of Microtus Rodents Highlight the Importance of Olfactory and Immune Systems in Their Fast Radiation. Genome Biol Evol 2024; 16:evae233. [PMID: 39445808 PMCID: PMC11579656 DOI: 10.1093/gbe/evae233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 10/02/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
The characterization of genes and biological functions underlying functional diversification and the formation of species is a major goal of evolutionary biology. In this study, we investigated the fast radiation of Microtus voles, one of the most speciose group of mammals, which shows strong genetic divergence despite few readily observable morphological differences. We produced an annotated reference genome for the common vole, Microtus arvalis, and resequenced the genomes of 10 different species and evolutionary lineages spanning the Microtus speciation continuum. Our full-genome sequences illustrate the recent and fast diversification of this group, and we identified genes in highly divergent genomic windows that have likely particular roles in their radiation. We found three biological functions enriched for highly divergent genes in most Microtus species and lineages: olfaction, immunity and metabolism. In particular, olfaction-related genes (mostly olfactory receptors and vomeronasal receptors) are fast evolving in all Microtus species indicating the exceptional importance of the olfactory system in the evolution of these rodents. Of note is e.g. the shared signature among vole species on Olfr1019 which has been associated with fear responses against predator odors in rodents. Our analyses provide a genome-wide basis for the further characterization of the ecological factors and processes of natural and sexual selection that have contributed to the fast radiation of Microtus voles.
Collapse
Affiliation(s)
- Alexandre Gouy
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Xuejing Wang
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Adamandia Kapopoulou
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | | | - Emanuel Schmid
- Vital-IT, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Laurent Excoffier
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Gerald Heckel
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
3
|
Lisachov A, Panthum T, Dedukh D, Singchat W, Ahmad SF, Wattanadilokcahtkun P, Thong T, Srikampa P, Noito K, Rasoarahona R, Kraichak E, Muangmai N, Chatchaiphan S, Sriphairoj K, Hatachote S, Chaiyes A, Jantasuriyarat C, Dokkaew S, Chailertlit V, Suksavate W, Sonongbua J, Prasanpan J, Payungporn S, Han K, Antunes A, Srisapoome P, Koga A, Duengkae P, Na-Nakorn U, Matsuda Y, Srikulnath K. Genome-wide sequence divergence of satellite DNA could underlie meiotic failure in male hybrids of bighead catfish and North African catfish (Clarias, Clariidae). Genomics 2024; 116:110868. [PMID: 38795738 DOI: 10.1016/j.ygeno.2024.110868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/19/2024] [Accepted: 05/23/2024] [Indexed: 05/28/2024]
Abstract
Hybrid sterility, a hallmark of postzygotic isolation, arises from parental genome divergence disrupting meiosis. While chromosomal incompatibility is often implicated, the underlying mechanisms remain unclear. This study investigated meiotic behavior and genome-wide divergence in bighead catfish (C. macrocephalus), North African catfish (C. gariepinus), and their sterile male hybrids (important in aquaculture). Repetitive DNA analysis using bioinformatics and cytogenetics revealed significant divergence in satellite DNA (satDNA) families between parental species. Notably, one hybrid exhibited successful meiosis and spermatozoa production, suggesting potential variation in sterility expression. Our findings suggest that genome-wide satDNA divergence, rather than chromosome number differences, likely contributes to meiotic failure and male sterility in these catfish hybrids.
Collapse
Affiliation(s)
- Artem Lisachov
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Thitipong Panthum
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Dmitrij Dedukh
- Laboratory of Non-Mendelian Evolution, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, Liběchov 27721, Czech Republic
| | - Worapong Singchat
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Syed Farhan Ahmad
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Pish Wattanadilokcahtkun
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Thanyapat Thong
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Phanitada Srikampa
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Kantika Noito
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Ryan Rasoarahona
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Ekaphan Kraichak
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; Department of Botany, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Narongrit Muangmai
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; Department of Fishery Biology, Faculty of Fisheries, Kasetsart University, Bangkok 10900, Thailand
| | - Satid Chatchaiphan
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok 10900, Thailand
| | - Kednapat Sriphairoj
- Faculty of Natural Resources and Agro-Industry, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000, Thailand
| | - Sittichai Hatachote
- Faculty of Natural Resources and Agro-Industry, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000, Thailand
| | - Aingorn Chaiyes
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; School of Agriculture and Cooperatives, Sukhothai Thammathirat Open University, Nonthaburi 11120, Thailand
| | - Chatchawan Jantasuriyarat
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; Department of Genetics, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Sahabhop Dokkaew
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok 10900, Thailand
| | - Visarut Chailertlit
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; Department of Genetics, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand; Pathum Thani Aquatic Animal Genetics Research and Development Center, Aquatic Animal Genetics Research and Development Division, Department of Fisheries, Pathum Thani 12120, Thailand
| | - Warong Suksavate
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Jumaporn Sonongbua
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; Faculty of Interdisciplinary Studies, Khon Kaen University, Nong Kom Ko, Mueang Nong Khai District, Nong Khai 43000, Thailand
| | - Jiraboon Prasanpan
- Kalasin Fish Hatchery Farm (Betagro), Buaban, Yangtalad District, Kalasin 46120, Thailand
| | - Sunchai Payungporn
- Research Unit of Systems Microbiology, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kyudong Han
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; Department of Microbiology, Dankook University, Cheonan 31116, Republic of Korea; Bio-Medical Engineering Core Facility Research Center, Dankook University, Cheonan 31116, Republic of Korea
| | - Agostinho Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Prapansak Srisapoome
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok 10900, Thailand
| | - Akihiko Koga
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Prateep Duengkae
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Uthairat Na-Nakorn
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok 10900, Thailand
| | - Yoichi Matsuda
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Kornsorn Srikulnath
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; Department of Genetics, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand.
| |
Collapse
|
4
|
Dedukh D, Marta A, Myung RY, Ko MH, Choi DS, Won YJ, Janko K. A cyclical switch of gametogenic pathways in hybrids depends on the ploidy level. Commun Biol 2024; 7:424. [PMID: 38589507 PMCID: PMC11001910 DOI: 10.1038/s42003-024-05948-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 02/21/2024] [Indexed: 04/10/2024] Open
Abstract
The cellular and molecular mechanisms governing sexual reproduction are conserved across eukaryotes. Nevertheless, hybridization can disrupt these mechanisms, leading to asexual reproduction, often accompanied by polyploidy. In this study, we investigate how ploidy level and ratio of parental genomes in hybrids affect their reproductive mode. We analyze the gametogenesis of sexual species and their diploid and triploid hybrids from the freshwater fish family Cobitidae, using newly developed cytogenetic markers. We find that diploid hybrid females possess oogonia and oocytes with original (diploid) and duplicated (tetraploid) ploidy. Diploid oocytes cannot progress beyond pachytene due to aberrant pairing. However, tetraploid oocytes, which emerge after premeiotic genome endoreplication, exhibit normal pairing and result in diploid gametes. Triploid hybrid females possess diploid, triploid, and haploid oogonia and oocytes. Triploid and haploid oocytes cannot progress beyond pachytene checkpoint due to aberrant chromosome pairing, while diploid oocytes have normal pairing in meiosis, resulting in haploid gametes. Diploid oocytes emerge after premeiotic elimination of a single-copied genome. Triploid hybrid males are sterile due to aberrant pairing and the failure of chromosomal segregation during meiotic divisions. Thus, changes in ploidy and genome dosage may lead to cyclical alteration of gametogenic pathways in hybrids.
Collapse
Affiliation(s)
- Dmitrij Dedukh
- Laboratory of Non-Mendelian Evolution, Institute of Animal Physiology and Genetics of the CAS, Liběchov, Czech Republic.
| | - Anatolie Marta
- Laboratory of Non-Mendelian Evolution, Institute of Animal Physiology and Genetics of the CAS, Liběchov, Czech Republic
| | - Ra-Yeon Myung
- Division of EcoScience, Ewha Womans University, Seoul, South Korea
| | | | - Da-Song Choi
- Division of EcoScience, Ewha Womans University, Seoul, South Korea
| | - Yong-Jin Won
- Division of EcoScience, Ewha Womans University, Seoul, South Korea
| | - Karel Janko
- Laboratory of Non-Mendelian Evolution, Institute of Animal Physiology and Genetics of the CAS, Liběchov, Czech Republic.
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic.
| |
Collapse
|
5
|
Lisachov A, Dedukh D, Simanovsky S, Panthum T, Singchat W, Srikulnath K. Spaghetti Connections: Synaptonemal Complexes as a Tool to Explore Chromosome Structure, Evolution, and Meiotic Behavior in Fish. Cytogenet Genome Res 2024; 164:1-15. [PMID: 38452741 DOI: 10.1159/000538238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/05/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND The synaptonemal complex (SC) is a protein axis formed along chromosomes during meiotic prophase to ensure proper pairing and crossing over. SC analysis has been widely used to study the chromosomes of mammals and less frequently of birds, reptiles, and fish. It is a promising method to investigate the evolution of fish genomes and chromosomes as a part of complex approach. SUMMARY Compared with conventional metaphase chromosomes, pachytene chromosomes are less condensed and exhibit pairing between homologous chromosomes. These features of SCs facilitate the study of the small chromosomes that are typical in fish. Moreover, it allows the study of heteromorphisms in sex chromosomes and supernumerary chromosomes. In addition, it enables the investigation of the pairing between orthologous chromosomes in hybrids, which is crucial for uncovering the causes of hybrid sterility and asexual reproduction, such as gynogenesis or hybridogenesis. However, the application of SC analysis to fish chromosomes is limited by the associated complications. First, in most fish, meiosis does not occur during every season and life stage. Second, different SC preparation methods are optimal for different fish species. Third, commercial antibodies targeting meiotic proteins have been primarily developed against mammalian antigens, and not all of them are suitable for fish chromosomes. KEY MESSAGES In the present review, we provide an overview of the methods for preparing fish SCs and highlight important studies using SC analysis in fish. This study will be valuable for planning and designing research that applies SC analysis to fish cytogenetics and genomics.
Collapse
Affiliation(s)
- Artem Lisachov
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok, Thailand
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russian Federation
| | - Dmitrij Dedukh
- Laboratory of Non-Mendelian Evolution, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Libechov, Czechia
| | - Sergey Simanovsky
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russian Federation
| | - Thitipong Panthum
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Worapong Singchat
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Kornsorn Srikulnath
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
6
|
Bikchurina T, Pavlenko M, Kizilova E, Rubtsova D, Sheremetyeva I, Kartavtseva I, Torgasheva A, Borodin P. Chromosome Asynapsis Is the Main Cause of Male Sterility in the Interspecies Hybrids of East Asian Voles ( Alexandromys, Rodentia, Arvicolinae). Genes (Basel) 2023; 14:genes14051022. [PMID: 37239382 DOI: 10.3390/genes14051022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Closely related mammalian species often have differences in chromosome number and morphology, but there is still a debate about how these differences relate to reproductive isolation. To study the role of chromosome rearrangements in speciation, we used the gray voles in the Alexandromys genus as a model. These voles have a high level of chromosome polymorphism and substantial karyotypic divergence. We investigated testis histology and meiotic chromosome behavior in the captive-bred colonies of Alexandromys maximowiczii, Alexandromys mujanensis, two chromosome races of Alexandromys evoronensis, and their interracial and interspecies hybrids, to explore the relationship between karyotypic differences and male hybrid sterility. We found that the seminiferous tubules of the males of the parental species and the interracial hybrids, which were simple heterozygotes for one or more chromosome rearrangements, contained germ cells at all stages of spermatogenesis, indicating their potential fertility. Their meiotic cells displayed orderly chromosome synapsis and recombination. In contrast, all interspecies male hybrids, which were complex heterozygotes for a series of chromosome rearrangements, showed signs of complete sterility. Their spermatogenesis was mainly arrested at the zygotene- or pachytene-like stages due to the formation of complex multivalent chains, which caused extended chromosome asynapsis. The asynapsis led to the silencing of unsynapsed chromatin. We suggest that chromosome asynapsis is the main cause of meiotic arrest and male sterility in the interspecies hybrids of East Asian voles.
Collapse
Affiliation(s)
- Tatiana Bikchurina
- Department of Cytology and Genetics, Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Marina Pavlenko
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far East Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Elena Kizilova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Daria Rubtsova
- Department of Cytology and Genetics, Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Irina Sheremetyeva
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far East Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Irina Kartavtseva
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far East Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Anna Torgasheva
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Pavel Borodin
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| |
Collapse
|
7
|
Duan T, Sicard A, Glémin S, Lascoux M. Expression pattern of resynthesized allotetraploid Capsella is determined by hybridization, not whole-genome duplication. THE NEW PHYTOLOGIST 2023; 237:339-353. [PMID: 36254103 PMCID: PMC10099941 DOI: 10.1111/nph.18542] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Polyploidization, the process leading to the increase in chromosome sets, is a major evolutionary transition in plants. Whole-genome duplication (WGD) within the same species gives rise to autopolyploids, whereas allopolyploids result from a compound process with two distinct components: WGD and interspecific hybridization. To dissect the instant effects of WGD and hybridization on gene expression and phenotype, we created a series of synthetic hybrid and polyploid Capsella plants, including diploid hybrids, autotetraploids of both parental species, and two kinds of resynthesized allotetraploids with different orders of WGD and hybridization. Hybridization played a major role in shaping the relative expression pattern of the neo-allopolyploids, whereas WGD had almost no immediate effect on relative gene expression pattern but, nonetheless, still affected phenotypes. No transposable element-mediated genomic shock scenario was observed in either neo-hybrids or neo-polyploids. Finally, WGD and hybridization interacted and the distorting effects of WGD were less strong in hybrids. Whole-genome duplication may even improve hybrid fertility. In summary, while the initial relative gene expression pattern in neo-allotetraploids was almost entirely determined by hybridization, WGD only had trivial effects on relative expression patterns, both processes interacted and had a strong impact on physical attributes and meiotic behaviors.
Collapse
Affiliation(s)
- Tianlin Duan
- Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life LaboratoryUppsala University75236UppsalaSweden
| | - Adrien Sicard
- Department of Plant BiologySwedish University of Agricultural Sciences750 07UppsalaSweden
| | - Sylvain Glémin
- Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life LaboratoryUppsala University75236UppsalaSweden
- UMR CNRS 6553 ECOBIOCampus Beaulieu, bât 14a, p.118, CS 7420535042RennesFrance
| | - Martin Lascoux
- Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life LaboratoryUppsala University75236UppsalaSweden
| |
Collapse
|
8
|
Pustovalova E, Choleva L, Shabanov D, Dedukh D. The high diversity of gametogenic pathways in amphispermic water frog hybrids from Eastern Ukraine. PeerJ 2022; 10:e13957. [PMID: 36032956 PMCID: PMC9415524 DOI: 10.7717/peerj.13957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/06/2022] [Indexed: 01/20/2023] Open
Abstract
Interspecific hybridization can disrupt canonical gametogenic pathways, leading to the emergence of clonal and hemiclonal organisms. Such gametogenic alterations usually include genome endoreplication and/or premeiotic elimination of one of the parental genomes. The hybrid frog Pelophylax esculentus exploits genome endoreplication and genome elimination to produce haploid gametes with chromosomes of only one parental species. To reproduce, hybrids coexist with one of the parental species and form specific population systems. Here, we investigated the mechanism of spermatogenesis in diploid P. esculentus from sympatric populations of P. ridibundus using fluorescent in situ hybridization. We found that the genome composition and ploidy of germ cells, meiotic cells, and spermatids vary among P. esculentus individuals. The spermatogenic patterns observed in various hybrid males suggest the occurrence of at least six diverse germ cell populations, each with a specific premeiotic genome elimination and endoreplication pathway. Besides co-occurring aberrant cells detected during meiosis and gamete aneuploidy, alterations in genome duplication and endoreplication have led to either haploid or diploid sperm production. Diploid P. esculentus males from mixed populations of P. ridibundus rarely follow classical hybridogenesis. Instead, hybrid males simultaneously produce gametes with different genome compositions and ploidy levels. The persistence of the studied mixed populations highly relies on gametes containing a genome of the other parental species, P. lessonae.
Collapse
Affiliation(s)
- Eleonora Pustovalova
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics of the CAS, v.v.i., Libechov, Czech Republic,Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic,Laboratory of Amphibian Population Ecology, Department of Zoology and Animal Ecology, School of Biology, V. N. Karazin Kharkiv National University, Kharkiv, Ukraine
| | - Lukaš Choleva
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics of the CAS, v.v.i., Libechov, Czech Republic,Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Dmytro Shabanov
- Laboratory of Amphibian Population Ecology, Department of Zoology and Animal Ecology, School of Biology, V. N. Karazin Kharkiv National University, Kharkiv, Ukraine
| | - Dmitrij Dedukh
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics of the CAS, v.v.i., Libechov, Czech Republic
| |
Collapse
|
9
|
Beaudry FEG, Rifkin JL, Peake AL, Kim D, Jarvis-Cross M, Barrett SCH, Wright SI. Effects of the neo-X chromosome on genomic signatures of hybridization in Rumex hastatulus. Mol Ecol 2022; 31:3708-3721. [PMID: 35569016 DOI: 10.1111/mec.16496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/23/2022] [Accepted: 05/05/2022] [Indexed: 11/30/2022]
Abstract
Natural hybrid zones provide opportunities for studies of the evolution of reproductive isolation in wild populations. Although recent investigations have found that the formation of neo-sex chromosomes is associated with reproductive isolation, the mechanisms remain unclear in most cases. Here, we assess the contemporary structure of gene flow in the contact zone between largely allopatric cytotypes of the dioecious plant Rumex hastatulus, a species with evidence of sex chromosome turn-over. Males to the west of the Mississippi river, USA, have an X and a single Y chromosome, whereas populations to the east of the river have undergone a chromosomal rearrangement giving rise to a larger X and two Y chromosomes. Using reduced-representation sequencing, we provide evidence that hybrids form readily and survive multiple backcross generations in the field, demonstrating the potential for ongoing gene flow between the cytotypes. Cline analysis of each chromosome separately captured no signals of difference in cline shape between chromosomes. However, principal component regression revealed a significant increase in the contribution of individual SNPs to inter-cytotype differentiation on the neo-X chromosome, but no correlation with recombination rate. Cline analysis revealed that the only SNPs with significantly steeper clines than the genome average were located on the neo-X. Our data are consistent with a role for neo-sex chromosomes in reproductive isolation between R. hastatulus cytotypes. Our investigation highlights the importance of studying plant hybrid zones for understanding the evolution of sex chromosomes.
Collapse
Affiliation(s)
- Felix E G Beaudry
- The University of Toronto, Department of Ecology and Evolutionary Biology, Toronto, ON, Canada
| | - Joanna L Rifkin
- The University of Toronto, Department of Ecology and Evolutionary Biology, Toronto, ON, Canada
| | - Amanda L Peake
- The University of Toronto, Department of Ecology and Evolutionary Biology, Toronto, ON, Canada
| | - Deanna Kim
- The University of Toronto, Department of Ecology and Evolutionary Biology, Toronto, ON, Canada
| | - Madeline Jarvis-Cross
- The University of Toronto, Department of Ecology and Evolutionary Biology, Toronto, ON, Canada
| | - Spencer C H Barrett
- The University of Toronto, Department of Ecology and Evolutionary Biology, Toronto, ON, Canada
| | - Stephen I Wright
- The University of Toronto, Department of Ecology and Evolutionary Biology, Toronto, ON, Canada
| |
Collapse
|
10
|
Dedukh D, Altmanová M, Klíma J, Kratochvíl L. Premeiotic endoreplication is essential for obligate parthenogenesis in geckos. Development 2022; 149:274975. [PMID: 35388415 DOI: 10.1242/dev.200345] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/08/2022] [Indexed: 02/05/2023]
Abstract
Obligate parthenogenesis evolved in reptiles convergently several times, mainly through interspecific hybridization. The obligate parthenogenetic complexes typically include both diploid and triploid lineages. Offspring of parthenogenetic hybrids are genetic copies of their mother; however, the cellular mechanism enabling the production of unreduced cells is largely unknown. Here, we show that oocytes go through meiosis in three widespread, or even strongly invasive, obligate parthenogenetic complexes of geckos, namely in diploid and triploid Lepidodactylus lugubris, and triploid Hemiphyllodactylus typus and Heteronotia binoei. In all four lineages, the majority of oocytes enter the pachytene at the original ploidy level, but their chromosomes cannot pair properly and instead form univalents, bivalents and multivalents. Unreduced eggs with clonally inherited genomes are formed from germ cells that had undergone premeiotic endoreplication, in which appropriate segregation is ensured by the formation of bivalents made from copies of identical chromosomes. We conclude that the induction of premeiotic endoreplication in reptiles was independently co-opted at least four times as an essential component of parthenogenetic reproduction and that this mechanism enables the emergence of fertile polyploid lineages within parthenogenetic complexes.
Collapse
Affiliation(s)
- Dmitrij Dedukh
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 277 21, Liběchov, Czech Republic
| | - Marie Altmanová
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 277 21, Liběchov, Czech Republic.,Department of Ecology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague, Czech Republic
| | - Jiří Klíma
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 277 21, Liběchov, Czech Republic
| | - Lukáš Kratochvíl
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague, Czech Republic
| |
Collapse
|
11
|
Hunnicutt KE, Good JM, Larson EL. Unraveling patterns of disrupted gene expression across a complex tissue. Evolution 2022; 76:275-291. [PMID: 34882778 PMCID: PMC9355168 DOI: 10.1111/evo.14420] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 11/11/2021] [Accepted: 11/26/2021] [Indexed: 02/03/2023]
Abstract
Whole tissue RNASeq is the standard approach for studying gene expression divergence in evolutionary biology and provides a snapshot of the comprehensive transcriptome for a given tissue. However, whole tissues consist of diverse cell types differing in expression profiles, and the cellular composition of these tissues can evolve across species. Here, we investigate the effects of different cellular composition on whole tissue expression profiles. We compared gene expression from whole testes and enriched spermatogenesis populations in two species of house mice, Mus musculus musculus and M. m. domesticus, and their sterile and fertile F1 hybrids, which differ in both cellular composition and regulatory dynamics. We found that cellular composition differences skewed expression profiles and differential gene expression in whole testes samples. Importantly, both approaches were able to detect large-scale patterns such as disrupted X chromosome expression, although whole testes sampling resulted in decreased power to detect differentially expressed genes. We encourage researchers to account for histology in RNASeq and consider methods that reduce sample complexity whenever feasible. Ultimately, we show that differences in cellular composition between tissues can modify expression profiles, potentially altering inferred gene ontological processes, insights into gene network evolution, and processes governing gene expression evolution.
Collapse
Affiliation(s)
- Kelsie E Hunnicutt
- Department of Biological Sciences, University of Denver, Denver, Colorado, 80208
| | - Jeffrey M Good
- Division of Biological Sciences, University of Montana, Missoula, Montana, 59812
| | - Erica L Larson
- Department of Biological Sciences, University of Denver, Denver, Colorado, 80208
| |
Collapse
|
12
|
Malinovskaya LP, Tishakova KV, Bikchurina TI, Slobodchikova AY, Torgunakov NY, Torgasheva AA, Tsepilov YA, Volkova NA, Borodin PM. Negative heterosis for meiotic recombination rate in spermatocytes of the domestic chicken Gallus gallus. Vavilovskii Zhurnal Genet Selektsii 2021; 25:661-668. [PMID: 34782886 PMCID: PMC8558918 DOI: 10.18699/vj21.075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 11/24/2022] Open
Abstract
Benef its and costs of meiotic recombination are a matter of discussion. Because recombination breaks
allele combinations already tested by natural selection and generates new ones of unpredictable f itness, a high
recombination rate is generally benef icial for the populations living in a f luctuating or a rapidly changing environment
and costly in a stable environment. Besides genetic benef its and costs, there are cytological effects of recombination,
both positive and negative. Recombination is necessary for chromosome synapsis and segregation. However,
it involves a massive generation of double-strand DNA breaks, erroneous repair of which may lead to germ
cell death or various mutations and chromosome rearrangements. Thus, the benef its of recombination (generation
of new allele combinations) would prevail over its costs (occurrence of deleterious mutations) as long as the population
remains suff iciently heterogeneous. Using immunolocalization of MLH1, a mismatch repair protein, at the
synaptonemal complexes, we examined the number and distribution of recombination nodules in spermatocytes
of two chicken breeds with high (Pervomai) and low (Russian Crested) recombination rates and their F1 hybrids and
backcrosses. We detected negative heterosis for recombination rate in the F1 hybrids. Backcrosses to the Pervomai
breed were rather homogenous and showed an intermediate recombination rate. The differences in overall recombination
rate between the breeds, hybrids and backcrosses were mainly determined by the differences in the crossing
over number in the seven largest macrochromosomes. The decrease in recombination rate in F1 is probably
determined by diff iculties in homology matching between the DNA sequences of genetically divergent breeds. The
suppression of recombination in the hybrids may impede gene f low between parapatric populations and therefore
accelerate their genetic divergence.
Collapse
Affiliation(s)
- L P Malinovskaya
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | | | - T I Bikchurina
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A Yu Slobodchikova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - N Yu Torgunakov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A A Torgasheva
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Y A Tsepilov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - N A Volkova
- L.K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, Moscow region, Russia
| | - P M Borodin
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
13
|
Bikchurina TI, Golenishchev FN, Kizilova EA, Mahmoudi A, Borodin PM. Reproductive Isolation Between Taxonomically Controversial Forms of the Gray Voles ( Microtus, Rodentia; Arvicolinae): Cytological Mechanisms and Taxonomical Implications. Front Genet 2021; 12:653837. [PMID: 34040633 PMCID: PMC8141921 DOI: 10.3389/fgene.2021.653837] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/26/2021] [Indexed: 01/03/2023] Open
Abstract
The formation of hybrid sterility is an important stage of speciation. The voles of the genus Microtus, which is the most speciose genus of rodents, provide a good model for studying the cytological mechanisms of hybrid sterility. The voles of the "mystacinus" group of the subgenus Microtus (2n = 54) comprising several recently diverged forms with unclear taxonomic status are especially interesting. To resolve the taxonomic status of Microtus mystacinus and Microtus kermanensis, we crossed both with Microtus rossiaemeridionalis, and M. kermanensis alone with Microtus arvalis "obscurus" and M. transcaspicus and examined the reproductive performance of their F1 hybrids. All interspecies male hybrids were sterile. Female M. kermanensis × M. arvalis and M. kermanensis × M. transcaspicus hybrids were sterile as well. Therefore, M. mystacinus, M. kermanensis, and M. rossiaemeridionalis could be considered valid species. To gain an insight into the cytological mechanisms of male hybrid sterility, we carried out a histological analysis of spermatogenesis and a cytological analysis of chromosome synapsis, recombination, and epigenetic chromatin modifications in the germ cells of the hybrids using immunolocalization of key meiotic proteins. The hybrids showed wide variation in the onset of spermatogenesis arrest stage, from mature (although abnormal) spermatozoa to spermatogonia only. Chromosome asynapsis was apparently the main cause of meiotic arrest. The degree of asynapsis varied widely across cells, individuals, and the crosses-from partial asynapsis of several small bivalents to complete asynapsis of all chromosomes. The asynapsis was accompanied by a delayed repair of DNA double-strand breaks marked by RAD51 antibodies and silencing of unpaired chromatin marked by γH2A.X antibodies. Overall, the severity of disturbances in spermatogenesis in general and in chromosome synapsis in particular increased in the hybrids with an increase in the phylogenetic distance between their parental species.
Collapse
Affiliation(s)
- Tatiana I Bikchurina
- Laboratory of Recombination and Segregation Analysis, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Laboratory of Structural and Functional Genome Organization, Novosibirsk State University, Novosibirsk, Russia
| | - Fedor N Golenishchev
- Laboratory of Theriology, Zoological Institute, Russian Academy of Sciences, St. Petersburg, Russia
| | - Elena A Kizilova
- Laboratory of Recombination and Segregation Analysis, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Department of Cytology and Genetics, Novosibirsk State University, Novosibirsk, Russia
| | - Ahmad Mahmoudi
- Department of Biology, Faculty of Science, Urmia University, Urmia, Iran
| | - Pavel M Borodin
- Laboratory of Recombination and Segregation Analysis, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Department of Cytology and Genetics, Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
14
|
Parthenogenesis as a Solution to Hybrid Sterility: The Mechanistic Basis of Meiotic Distortions in Clonal and Sterile Hybrids. Genetics 2020; 215:975-987. [PMID: 32518062 PMCID: PMC7404241 DOI: 10.1534/genetics.119.302988] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 06/03/2020] [Indexed: 11/25/2022] Open
Abstract
Hybrid sterility is a hallmark of speciation, but the underlying molecular mechanisms remain poorly understood. Here, we report that speciation may regularly proceed through a stage at which gene flow is completely interrupted, but hybrid sterility occurs only in male hybrids whereas female hybrids reproduce asexually. We analyzed gametogenic pathways in hybrids between the fish species Cobitis elongatoides and C. taenia, and revealed that male hybrids were sterile owing to extensive asynapsis and crossover reduction among heterospecific chromosomal pairs in their gametes, which was subsequently followed by apoptosis. We found that polyploidization allowed pairing between homologous chromosomes and therefore partially rescued the bivalent formation and crossover rates in triploid hybrid males. However, it was not sufficient to overcome sterility. In contrast, both diploid and triploid hybrid females exhibited premeiotic genome endoreplication, thereby ensuring proper bivalent formation between identical chromosomal copies. This endoreplication ultimately restored female fertility but it simultaneously resulted in the obligate production of clonal gametes, preventing any interspecific gene flow. In conclusion, we demonstrate that the emergence of asexuality can remedy hybrid sterility in a sex-specific manner and contributes to the speciation process.
Collapse
|
15
|
Endoh M, Shima F, Havelka M, Asanuma R, Yamaha E, Fujimoto T, Arai K. Hybrid between Danio rerio female and Danio nigrofasciatus male produces aneuploid sperm with limited fertilization capacity. PLoS One 2020; 15:e0233885. [PMID: 32470029 PMCID: PMC7259755 DOI: 10.1371/journal.pone.0233885] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/14/2020] [Indexed: 12/23/2022] Open
Abstract
In the Danio species, interspecific hybridization has been conducted in several combinations. Among them, only the hybrid between a zebrafish (D. rerio) female and a spotted danio (D. nigrofasciatus) male was reported to be fertile. However, beyond these investigations, by means of reproductive biology, gametes of the hybrid have also not been investigated genetically. For this study, we induced a hybrid of the D. rerio female and D. nigrofasciatus male in order to study its developmental capacity, reproductive performance and gametic characteristics. Its hybrid nature was genetically verified by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis of the rhodopsin gene. Almost all the hybrids (36/37) were males, and only one was female. Developing oocytes were observed in the hybrid female, but ovulated eggs have not been obtained thus far. Microscopic observation revealed various head sizes of sperm in the hybrid males. Flow cytometry showed that the hybrid males generated aneuploid sperm with various ploidy levels up to diploidy. In backcrosses between D. rerio females and hybrid males, fertilization rates were significantly lower than the control D. rerio, and most resultant progeny with abnormal appearance exhibited various kinds of aneuploidies ranging from haploidy to triploidy, but only one viable progeny, which survived more than four months, was triploid. This suggested the contribution of fertile diploid sperm of the hybrid male to successful fertilization and development.
Collapse
Affiliation(s)
- Mitsuru Endoh
- Laboratory of Aquaculture Genetics and Genomics, Division of Marine Life Science, Faculty and Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, Japan
- Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
- * E-mail:
| | - Fumika Shima
- Laboratory of Aquaculture Genetics and Genomics, Division of Marine Life Science, Faculty and Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, Japan
| | - Miloš Havelka
- Laboratory of Aquaculture Genetics and Genomics, Division of Marine Life Science, Faculty and Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, Japan
| | - Rei Asanuma
- Laboratory of Aquaculture Genetics and Genomics, Division of Marine Life Science, Faculty and Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, Japan
| | - Etsuro Yamaha
- Nanae Fresh-Water Station, Field Science Center for Northern Biosphere, Hokkaido University, Nanae, Hokkaido, Japan
| | - Takafumi Fujimoto
- Laboratory of Aquaculture Genetics and Genomics, Division of Marine Life Science, Faculty and Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, Japan
| | - Katsutoshi Arai
- Laboratory of Aquaculture Genetics and Genomics, Division of Marine Life Science, Faculty and Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, Japan
| |
Collapse
|
16
|
Hybridization between subterranean tuco-tucos (Rodentia, Ctenomyidae) with contrasting phylogenetic positions. Sci Rep 2020; 10:1502. [PMID: 32001746 PMCID: PMC6992752 DOI: 10.1038/s41598-020-58433-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 12/10/2019] [Indexed: 11/17/2022] Open
Abstract
Reproductive compatibility usually decreases according to increasing genetic difference and the time of divergence between species. However, the amount of modification required to influence hybridization may vary in different species. Thus, it is extremely important to conduct studies that seek to understand what and how variables influence the reproductive isolation of species. We have explored a system involving two species of subterranean rodents that present morphological, karyotypic, and evolutionary history differences and are capable of generating hybrids. To gain insight into the karyotype organization of genus Ctenomys, we examined the chromosome evolution by classical and molecular cytogenetics of both parental species and hybrids. Furthermore, we have used different approaches to analyze the differences between the parental species and the hybrids, and determined the origin of the hybrids. The results of our work demonstrate unequivocally that some species that present extensive differences in chromosome organization, phenotype, evolutionary history, sperm morphology and genetic, which are usually associated with reproductive isolation, can generate natural hybrids. The results also demonstrate that females of both species are able to generate hybrids with males of the other species. In addition, the chromosome-specific probes prepared from Ctenomys flamarioni provide an invaluable tool for comparative cytogenetics in closely related species.
Collapse
|
17
|
Beaudry FEG, Barrett SCH, Wright SI. Ancestral and neo-sex chromosomes contribute to population divergence in a dioecious plant. Evolution 2019; 74:256-269. [PMID: 31808547 DOI: 10.1111/evo.13892] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 10/16/2019] [Accepted: 11/11/2019] [Indexed: 12/18/2022]
Abstract
Empirical evidence from several animal groups suggests sex chromosomes disproportionately contribute to reproductive isolation. This effect may be enhanced when sex chromosomes are associated with turnover of sex determination systems resulting from structural rearrangements to the chromosomes. We investigated these predictions in the dioecious plant Rumex hastatulus, which is composed of populations of two different sex chromosome cytotypes caused by an X-autosome fusion. Using population genomic analyses, we investigated the demographic history of R. hastatulus and explored the contributions of ancestral and neo-sex chromosomes to population genetic divergence. Our study revealed that the cytotypes represent genetically divergent populations with evidence for historical but not contemporary gene flow between them. In agreement with classical predictions, we found that the ancestral X chromosome was disproportionately divergent compared with the rest of the genome. Excess differentiation was also observed on the Y chromosome, even when we used measures of differentiation that control for differences in effective population size. Our estimates of the timing of the origin of neo-sex chromosomes in R. hastatulus are coincident with cessation of gene flow, suggesting that the chromosomal fusion event that gave rise to the origin of the XYY cytotype may have also contributed to reproductive isolation.
Collapse
Affiliation(s)
- Felix E G Beaudry
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Spencer C H Barrett
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Stephen I Wright
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| |
Collapse
|
18
|
Kuroda M, Fujimoto T, Murakami M, Yamaha E, Arai K. Aberrant Meiotic Configurations Cause Sterility in Clone-Origin Triploid and Inter-Group Hybrid Males of the Dojo Loach, Misgurnus anguillicaudatus. Cytogenet Genome Res 2019; 158:46-54. [DOI: 10.1159/000500303] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2019] [Indexed: 11/19/2022] Open
Abstract
Gonochoristic wild-type dojo loaches (Misgurnus anguillicaudatus) are diploid (2n = 50) and reproduce bisexually. However, sympatric clonal diploids generate unreduced diploid isogenic eggs that develop gynogenetically. Clone-origin triploidy arises following the incorporation of a haploid wild-type sperm nucleus into the diploid egg. Triploid females produce fertile haploid eggs by meiotic hybridogenesis, while triploid males are sterile. Clonal loaches arose from past hybridization event(s) between genetically diverse groups, A and B. Artificial hybrid females between the 2 groups produce unreduced and/or aneuploid eggs, but the hybrid males are sterile. In this study using FISH, we analyzed chromosome pairing in meiotic cells of clone-origin triploid and inter-group hybrid males to clarify the cytogenetic mechanisms underlying the male-specific sterility. We used a repetitive sequence probe to identify group B-derived chromosomes and a 5.8S + 28S rDNA probe to identify pairs of homologous chromosomes. We found that asynapsis and irregular synapsis occur in triploid and hybrid males containing 2 different genomes and that this may cause the formation of sterile germ cells. These results will help us to understand hybrid sterility from the viewpoint of synapsis behavior.
Collapse
|
19
|
Lin D, Bi K, Conroy CJ, Lacey EA, Schraiber JG, Bowie RCK. Mito-nuclear discordance across a recent contact zone for California voles. Ecol Evol 2018; 8:6226-6241. [PMID: 29988439 PMCID: PMC6024151 DOI: 10.1002/ece3.4129] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/16/2018] [Accepted: 03/29/2018] [Indexed: 11/17/2022] Open
Abstract
To examine the processes that maintain genetic diversity among closely related taxa, we investigated the dynamics of introgression across a contact zone between two lineages of California voles (Microtus californicus). We tested the prediction that introgression of nuclear loci would be greater than that for mitochondrial loci, assuming ongoing gene flow across the contact zone. We also predicted that genomic markers would show a mosaic pattern of differentiation across this zone, consistent with genomes that are semi-permeable. Using mitochondrial cytochrome b sequences and genome-wide loci developed via ddRAD-seq, we analyzed genetic variation for 10 vole populations distributed along the central California coast; this transect included populations from within the distributions of both parental lineages as well as the putative contact zone. Our analyses revealed that (1) the two lineages examined are relatively young, having diverged ca. 8.5-54 kya, (2) voles from the contact zone in Santa Barbara County did not include F1 or early generation backcrossed individuals, and (3) there appeared to be little to no recurrent gene flow across the contact zone. Introgression patterns for mitochondrial and nuclear markers were not concordant; only mitochondrial markers revealed evidence of introgression, putatively due to historical hybridization. These differences in genetic signatures are intriguing given that the contact zone occurs in a region of continuous vole habitat, with no evidence of past or present physical barriers. Future studies that examine specific isolating mechanisms, such as microhabitat use and mate choice, will facilitate our understanding of how genetic boundaries are maintained in this system.
Collapse
Affiliation(s)
- Dana Lin
- Museum of Vertebrate ZoologyUniversity of California, BerkeleyBerkeleyCalifornia
- Department of Integrative BiologyUniversity of California, BerkeleyBerkeleyCalifornia
| | - Ke Bi
- Computational Genomics Resource LaboratoryCalifornia Institute for Quantitative BiosciencesUniversity of California, BerkeleyBerkeleyCalifornia
| | - Christopher J. Conroy
- Department of Integrative BiologyUniversity of California, BerkeleyBerkeleyCalifornia
| | - Eileen A. Lacey
- Museum of Vertebrate ZoologyUniversity of California, BerkeleyBerkeleyCalifornia
- Department of Integrative BiologyUniversity of California, BerkeleyBerkeleyCalifornia
| | - Joshua G. Schraiber
- Department of BiologyCenter for Computational Genetics and GenomicsTemple UniversityPhiladelphiaPennsylvania
- Institute for Genomics and Evolutionary MedicineTemple UniversityPhiladelphiaPennsylvania
| | - Rauri C. K. Bowie
- Museum of Vertebrate ZoologyUniversity of California, BerkeleyBerkeleyCalifornia
- Department of Integrative BiologyUniversity of California, BerkeleyBerkeleyCalifornia
| |
Collapse
|
20
|
Bikchurina TI, Tishakova KV, Kizilova EA, Romanenko SA, Serdyukova NA, Torgasheva AA, Borodin PM. Chromosome Synapsis and Recombination in Male-Sterile and Female-Fertile Interspecies Hybrids of the Dwarf Hamsters ( Phodopus, Cricetidae). Genes (Basel) 2018; 9:genes9050227. [PMID: 29693587 PMCID: PMC5977167 DOI: 10.3390/genes9050227] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/09/2018] [Accepted: 04/18/2018] [Indexed: 02/06/2023] Open
Abstract
Hybrid sterility is an important step in the speciation process. Hybrids between dwarf hamsters Phodopus sungorus and P.campbelli provide a good model for studies in cytological and genetic mechanisms of hybrid sterility. Previous studies in hybrids detected multiple abnormalities of spermatogenesis and a high frequency of dissociation between the X and Y chromosomes at the meiotic prophase. In this study, we found that the autosomes of the hybrid males and females underwent paring and recombination as normally as their parental forms did. The male hybrids showed a significantly higher frequency of asynapsis and recombination failure between the heterochromatic arms of the X and Y chromosomes than the males of the parental species. Female hybrids as well as the females of the parental species demonstrated a high incidence of centromere misalignment at the XX bivalent and partial asynapsis of the ends of its heterochromatic arms. In all three karyotypes, recombination was completely suppressed in the heterochromatic arm of the X chromosome, where the pseudoautosomal region is located. We propose that this recombination pattern speeds up divergence of the X- and Y-linked pseudoautosomal regions between the parental species and results in their incompatibility in the male hybrids.
Collapse
Affiliation(s)
- Tatiana I Bikchurina
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Department, Novosibirsk 630090, Russia.
- Novosibirsk State University, Novosibirsk 630090, Russia.
| | - Katerina V Tishakova
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Department, Novosibirsk 630090, Russia.
- Novosibirsk State University, Novosibirsk 630090, Russia.
| | - Elena A Kizilova
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Department, Novosibirsk 630090, Russia.
- Novosibirsk State University, Novosibirsk 630090, Russia.
| | - Svetlana A Romanenko
- Novosibirsk State University, Novosibirsk 630090, Russia.
- Institute of Cell and Molecular Biology, Russian Academy of Sciences, Siberian Department, Novosibirsk 630090, Russia.
| | - Natalya A Serdyukova
- Institute of Cell and Molecular Biology, Russian Academy of Sciences, Siberian Department, Novosibirsk 630090, Russia.
| | - Anna A Torgasheva
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Department, Novosibirsk 630090, Russia.
- Novosibirsk State University, Novosibirsk 630090, Russia.
| | - Pavel M Borodin
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Department, Novosibirsk 630090, Russia.
- Novosibirsk State University, Novosibirsk 630090, Russia.
| |
Collapse
|
21
|
Hybrid Sterility in Fish Caused by Mitotic Arrest of Primordial Germ Cells. Genetics 2018; 209:507-521. [PMID: 29610216 DOI: 10.1534/genetics.118.300777] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/23/2018] [Indexed: 11/18/2022] Open
Abstract
Sterility in hybrid animals is widely known to be due to a cytological mechanism of aberrant homologous chromosome pairing during meiosis in hybrid germ cells. In this study, the gametes of four marine fish species belonging to the Sciaenid family were artificially fertilized, and germ cell development was examined at the cellular and molecular levels. One of the intergeneric hybrids had gonads that were testis-like in structure, small in size, and lacked germ cells. Specification of primordial germ cells (PGCs) and their migration toward genital ridges occurred normally in hybrid embryos, but these PGCs did not proliferate in the hybrid gonads. By germ cell transplantation assay, we showed that the gonadal microenvironment in hybrid recipients produced functional donor-derived gametes, suggesting that the germ cell-less phenotype was caused by cell autonomous proliferative defects of hybrid PGCs. This is the first evidence of mitotic arrest of germ cells causing hybrid sterility in animals.
Collapse
|