1
|
Tiegs G, Horst AK. TNF in the liver: targeting a central player in inflammation. Semin Immunopathol 2022; 44:445-459. [PMID: 35122118 PMCID: PMC9256556 DOI: 10.1007/s00281-022-00910-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/12/2022] [Indexed: 12/11/2022]
Abstract
Tumour necrosis factor-α (TNF) is a multifunctional cytokine. First recognized as an endogenous soluble factor that induces necrosis of solid tumours, TNF became increasingly important as pro-inflammatory cytokine being involved in the immunopathogenesis of several autoimmune diseases. In the liver, TNF induces numerous biological responses such as hepatocyte apoptosis and necroptosis, liver inflammation and regeneration, and autoimmunity, but also progression to hepatocellular carcinoma. Considering these multiple functions of TNF in the liver, we propose anti-TNF therapies that specifically target TNF signalling at the level of its specific receptors.
Collapse
Affiliation(s)
- Gisa Tiegs
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. .,Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Andrea K Horst
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
2
|
Nevzorova YA, Boyer-Diaz Z, Cubero FJ, Gracia-Sancho J. Animal models for liver disease - A practical approach for translational research. J Hepatol 2020; 73:423-440. [PMID: 32330604 DOI: 10.1016/j.jhep.2020.04.011] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/06/2020] [Accepted: 04/06/2020] [Indexed: 12/11/2022]
Abstract
Animal models are crucial for improving our understanding of human pathogenesis, enabling researchers to identify therapeutic targets and test novel drugs. In the current review, we provide a comprehensive summary of the most widely used experimental models of chronic liver disease, starting from early stages of fatty liver disease (non-alcoholic and alcoholic) to steatohepatitis, advanced cirrhosis and end-stage primary liver cancer. We focus on aspects such as reproducibility and practicality, discussing the advantages and weaknesses of available models for researchers who are planning to perform animal studies in the near future. Additionally, we summarise current and prospective models based on human tissue bioengineering.
Collapse
Affiliation(s)
- Yulia A Nevzorova
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University, Madrid, Spain; 12 de Octubre Health Research Institute (imas12), Madrid, Spain; Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Zoe Boyer-Diaz
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Unit, IDIBAPS Biomedical Research Institute, Barcelona, Spain; Barcelona Liver Bioservices, Barcelona, Spain
| | - Francisco Javier Cubero
- 12 de Octubre Health Research Institute (imas12), Madrid, Spain; Department of Immunology, Ophthalmology & ENT, Complutense University School of Medicine, Madrid, Spain.
| | - Jordi Gracia-Sancho
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Unit, IDIBAPS Biomedical Research Institute, Barcelona, Spain; Barcelona Liver Bioservices, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain; Hepatology, Department of Biomedical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
3
|
Clerbaux LA, Manco R, Van Hul N, Bouzin C, Sciarra A, Sempoux C, Theise ND, Leclercq IA. Invasive Ductular Reaction Operates Hepatobiliary Junctions upon Hepatocellular Injury in Rodents and Humans. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1569-1581. [PMID: 31108103 DOI: 10.1016/j.ajpath.2019.04.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 03/18/2019] [Accepted: 04/23/2019] [Indexed: 02/08/2023]
Abstract
Ductular reaction (DR) is observed in virtually all liver diseases in both humans and rodents. Depending on the injury, DR is confined within the periportal area or invades the parenchyma. On severe hepatocellular injury, invasive DR has been proposed to arise for supplying the liver with new hepatocytes. However, experimental data evidenced that DR contribution to hepatocyte repopulation is at the most modest, unless replicative capacity of hepatocytes is abrogated. Herein, we proposed that invasive DR could contribute to operating hepatobiliary junctions on hepatocellular injury. The choline-deficient ethionine-supplemented mouse model of hepatocellular injury and human liver samples were used to evaluate the hepatobiliary junctional role of the invasive form of DR. Choline-deficient ethionine-supplemented-induced DR expanded as biliary epithelium into the lobule and established new junctions with the canaliculi. By contrast, no new ductular-canalicular junctions were observed in mouse models of biliary obstructive injury exhibiting noninvasive DR. Similarly, in humans, an increased number of hepatobiliary junctions were observed in hepatocellular diseases (viral, drug induced, or metabolic) in which DR invaded the lobule but not in biliary diseases (obstruction or cholangitis) in which DR was contained within the portal mesenchyme. In conclusion, our data in rodents and humans support that invasive DR plays a hepatobiliary junctional role to maintain structural continuity between hepatocytes and ducts in disorders affecting hepatocytes.
Collapse
Affiliation(s)
- Laure-Alix Clerbaux
- Laboratory of Gastroenterology, Université Catholique de Louvain, Brussels, Belgium
| | - Rita Manco
- Laboratory of Gastroenterology, Université Catholique de Louvain, Brussels, Belgium
| | - Noémi Van Hul
- Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden
| | - Caroline Bouzin
- Imaging Platform, Institute of clinical and Experimental Research, Université Catholique de Louvain, Brussels, Belgium
| | - Amedeo Sciarra
- Service of Clinical Pathology, Lausanne University Hospital, Institute of Pathology, Lausanne, Switzerland
| | - Christine Sempoux
- Service of Clinical Pathology, Lausanne University Hospital, Institute of Pathology, Lausanne, Switzerland
| | - Neil D Theise
- Department of Pathology, New York University School of Medicine, New York, New York
| | - Isabelle A Leclercq
- Laboratory of Gastroenterology, Université Catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
4
|
Abstract
Liver cholestasis is characterized by impairment in bile flow. Among cholestatic diseases, primary biliary cholangitis and primary sclerosing cholangitis represent relevant causes of chronic liver disease, associated to significant morbidity and mortality. To better understand and to address therapeutic strategies to cholangiopathies is essential to develop an in vivo model which recapitulates the pathological features of the disease. Chronic feeding of 3,5-diethoxycarbonyl-1,4-dihydrocollidine, named DDC, has been proposed as an in vivo model for cholestatic disease due to the formation of intraductal porphyrin plugs. Chronic feeding of DDC in mice reproduces the main histopathological hallmarks of human cholestatic disease such as (1) remodeling of biliary compartments giving rise to ductular reaction, (2) periductular fibrosis, and (3) inflammatory infiltrate. This chapter describes the materials and methods necessary for the development and characterization of DDC diet-based mouse model.
Collapse
|
5
|
Petrescu AD, Grant S, Frampton G, Kain J, Hadidi K, Williams E, McMillin M, DeMorrow S. Glucocorticoids Cause Gender-Dependent Reversal of Hepatic Fibrosis in the MDR2-Knockout Mouse Model. Int J Mol Sci 2017; 18:E2389. [PMID: 29125588 PMCID: PMC5713358 DOI: 10.3390/ijms18112389] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/06/2017] [Accepted: 11/06/2017] [Indexed: 12/12/2022] Open
Abstract
Hepatic cholestasis is associated with a significant suppression of the hypothalamus-pituitary-adrenal axis (HPA). In the present study, we tested the hypothesis that activation of the HPA axis by corticosterone treatment can reverse liver inflammation and fibrosis in a multidrug resistance protein 2 knockout (MDR2KO) transgenic mouse model of hepatic cholestasis. Friend Virus B NIH-Jackson (FVBN) control and MDR2KO male and female mice were treated with vehicle or corticosterone for two weeks, then serum and liver analyses of hepatic cholestasis markers were performed. Indicators of inflammation, such as increased numbers of macrophages, were determined. MDR2KO mice had lower corticotropin releasing hormone and corticosterone levels than FVBN controls in the serum. There was a large accumulation of CD68 and F4/80 macrophages in MDR2KO mice livers, which indicated greater inflammation compared to FVBNs, an effect reversed by corticosterone treatment. Intrahepatic biliary duct mass, collagen deposition and alpha smooth muscle actin (αSMA) were found to be much higher in livers of MDR2KO mice than in controls; corticosterone treatment significantly decreased these fibrosis markers. When looking at the gender-specific response to corticosterone treatment, male MDR2KO mice tended to have a more pronounced reversal of liver fibrosis than females treated with corticosterone.
Collapse
Affiliation(s)
- Anca D Petrescu
- Department of Medical Physiology, Texas A & M Health Science Center College of Medicine, Temple, TX 76504, USA.
| | - Stephanie Grant
- Department of Medical Physiology, Texas A & M Health Science Center College of Medicine, Temple, TX 76504, USA.
| | - Gabriel Frampton
- Department of Medical Physiology, Texas A & M Health Science Center College of Medicine, Temple, TX 76504, USA.
| | - Jessica Kain
- Department of Medical Physiology, Texas A & M Health Science Center College of Medicine, Temple, TX 76504, USA.
| | - Karam Hadidi
- Department of Medical Physiology, Texas A & M Health Science Center College of Medicine, Temple, TX 76504, USA.
| | - Elaina Williams
- Department of Medical Physiology, Texas A & M Health Science Center College of Medicine, Temple, TX 76504, USA.
| | - Matthew McMillin
- Central Texas Veterans Health Care System, Temple, TX 76504, USA.
| | - Sharon DeMorrow
- Department of Medical Physiology, Texas A & M Health Science Center College of Medicine, Temple, TX 76504, USA.
- Central Texas Veterans Health Care System, Temple, TX 76504, USA.
| |
Collapse
|
6
|
RNA-sequencing-based comparative analysis of human hepatic progenitor cells and their niche from alcoholic steatohepatitis livers. Cell Death Dis 2017; 8:e3164. [PMID: 29095436 PMCID: PMC5775409 DOI: 10.1038/cddis.2017.543] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 08/17/2017] [Accepted: 09/05/2017] [Indexed: 02/07/2023]
Abstract
Hepatic progenitor cells (HPCs) are small cells with a relative large oval nucleus and a scanty cytoplasm situated in the canals of Hering that express markers of (immature) hepatocytes and cholangiocytes. HPCs are present in large numbers in alcoholic steatohepatitis (ASH), one of the leading causes of chronic liver disease. To date, the mechanisms responsible for proliferation and differentiation of human HPCs are still poorly understood and the role of HPCs in ASH development is unknown. In this study, we aimed to characterise human HPCs and their interactions with other cells through comparison, on both protein and RNA level, of HPC-enriched cell populations from adult human liver tissue using different isolation methods. Fresh human liver tissue was collected from ASH explant livers and HPC-enriched cell populations were obtained via four different isolation methods: side population (SP), epithelial cell adhesion molecule (EpCAM) and trophoblast antigen 2 (TROP-2) membrane marker isolation and laser capture microdissection. Gene expression profiles of fluorescent-activated cell-sorted HPCs, whole liver extracts and laser microdissected HPC niches were determined by RNA-sequencing. Immunohistochemical evaluation of the isolated populations indicated the enrichment of HPCs in the SP, EpCAM+ and TROP-2+ cell populations. Pathway analysis of the transcription profiles of human HPCs showed an enrichment and activation of known HPC pathways like Wnt/β-catenin, TWEAK and HGF. Integration of the HPC niche profile suggests autocrine signalling by HPCs (TNFα, PDGFB and VEGFA) as well as paracrine signalling from the surrounding niche cells including MIF and IGF-1. In addition, we identified IL-17 A signalling as a potentially novel pathway in HPC biology. In conclusion, we provide the first RNA-seq-based, comparative transcriptome analysis of isolated human HPCs from ASH patients and revealed active signalling between HPCs and their surrounding niche cells in ASH livers and suggest that HPCs can actively contribute to liver inflammation.
Collapse
|