1
|
Abstract
Susceptibility to atrial fibrillation (AF) is determined by well-recognized risk factors such as diabetes mellitus or hypertension, emerging risk factors such as sleep apnea or inflammation, and increasingly well-defined genetic variants. As discussed in detail in a companion article in this series, studies in families and in large populations have identified multiple genetic loci, specific genes, and specific variants increasing susceptibility to AF. Since it is becoming increasingly inexpensive to obtain genotype data and indeed whole genome sequence data, the question then becomes to define whether using emerging new genetics knowledge can improve care for patients both before and after development of AF. Examples of improvements in care could include identifying patients at increased risk for AF (and thus deploying increased surveillance or even low-risk preventive therapies should these be available), identifying patient subsets in whom specific therapies are likely to be effective or ineffective or in whom the driving biology could motivate the development of new mechanism-based therapies or identifying an underlying susceptibility to comorbid cardiovascular disease. While current guidelines for the care of patients with AF do not recommend routine genetic testing, this rapidly increasing knowledge base suggests that testing may now or soon have a place in the management of select patients. The opportunity is to generate, validate, and deploy clinical predictors (including family history) of AF risk, to assess the utility of incorporating genomic variants into those predictors, and to identify and validate interventions such as wearable or implantable device-based monitoring ultimately to intervene in patients with AF before they present with catastrophic complications like heart failure or stroke.
Collapse
Affiliation(s)
- M. Benjamin Shoemaker
- Department of Medicine (Cardiovascular Medicine), Vanderbilt University Medical Center, Nashville, TN
| | - Rajan L. Shah
- Department of Medicine (Cardiovascular Medicine), Stanford University Medical Center, Palo Alto, CA
| | - Dan M. Roden
- Departments of Medicine (Cardiovascular Medicine and Clinical Pharmacology), Pharmacology, and Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN
| | - Marco V. Perez
- Stanford Center for Inherited Cardiovascular Diseases, Stanford University, Palo Alto, CA
| |
Collapse
|
2
|
Büttner P, Ueberham L, Shoemaker MB, Roden DM, Dinov B, Hindricks G, Bollmann A, Husser D. Identification of Central Regulators of Calcium Signaling and ECM-Receptor Interaction Genetically Associated With the Progression and Recurrence of Atrial Fibrillation. Front Genet 2018; 9:162. [PMID: 29868113 PMCID: PMC5964985 DOI: 10.3389/fgene.2018.00162] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 04/20/2018] [Indexed: 01/04/2023] Open
Abstract
Atrial fibrillation (AF) is a multifactorial disease with a strong genetic background. It is assumed that common and rare genetic variants contribute to the progression and recurrence of AF. The pathophysiological impact of those variants, especially when they are synonymous or non-coding, is often elusive and translation into functional experiments is difficult. In this study, we propose a method to go straight from genetic variants to defined gene targets. We focused on 55 genes from calcium signaling and 26 genes from extra cellular matrix ECM–receptor interaction that we found to be associated with the progression and recurrence of AF. These genes were mapped on protein–protein interaction data from three different databases. Based on the concept that central regulators are highly connected with their neighbors, we identified central hub proteins according to random walk analysis derived scores representing interaction grade. Our approach resulted in the identification of EGFR, RYR2, and PRKCA (calcium signaling) and FN1 and LAMA1 (ECM–receptor interaction) which represent promising targets for further functional characterization or pharmaceutical intervention.
Collapse
Affiliation(s)
- Petra Büttner
- Department of Electrophysiology, Heart Center Leipzig, Leipzig University, Leipzig, Germany
| | - Laura Ueberham
- Department of Electrophysiology, Heart Center Leipzig, Leipzig University, Leipzig, Germany
| | - M B Shoemaker
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Dan M Roden
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Borislav Dinov
- Department of Electrophysiology, Heart Center Leipzig, Leipzig University, Leipzig, Germany
| | - Gerhard Hindricks
- Department of Electrophysiology, Heart Center Leipzig, Leipzig University, Leipzig, Germany
| | - Andreas Bollmann
- Department of Electrophysiology, Heart Center Leipzig, Leipzig University, Leipzig, Germany
| | - Daniela Husser
- Department of Electrophysiology, Heart Center Leipzig, Leipzig University, Leipzig, Germany
| |
Collapse
|
3
|
Husser D, Büttner P, Stübner D, Ueberham L, Platonov PG, Dinov B, Arya A, Hindricks G, Bollmann A. PR Interval Associated Genes, Atrial Remodeling and Rhythm Outcome of Catheter Ablation of Atrial Fibrillation-A Gene-Based Analysis of GWAS Data. Front Genet 2018; 8:224. [PMID: 29312445 PMCID: PMC5742186 DOI: 10.3389/fgene.2017.00224] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 12/11/2017] [Indexed: 01/25/2023] Open
Abstract
Background: PR interval prolongation has recently been shown to associate with advanced left atrial remodeling and atrial fibrillation (AF) recurrence after catheter ablation. While different genome-wide association studies (GWAS) have implicated 13 loci to associate with the PR interval as an AF endophenotype their subsequent associations with AF remodeling and response to catheter ablation are unknown. Here, we perform a gene-based analysis of GWAS data to test the hypothesis that PR interval candidate genes also associate with left atrial remodeling and arrhythmia recurrence following AF catheter ablation. Methods and Results: Samples from 660 patients with paroxysmal (n = 370) or persistent AF (n = 290) undergoing AF catheter ablation were genotyped for ~1,000,000 SNPs. Gene-based association was investigated using VEGAS (versatile gene-based association study). Among the 13 candidate genes, SLC8A1, MEIS1, ITGA9, SCN5A, and SOX5 associated with the PR interval. Of those, ITGA9 and SOX5 were significantly associated with left atrial low voltage areas and left atrial diameter and subsequently with AF recurrence after radiofrequency catheter ablation. Conclusion: This study suggests contributions of ITGA9 and SOX5 to AF remodeling expressed as PR interval prolongation, low voltage areas and left atrial dilatation and subsequently to response to catheter ablation. Future and larger studies are necessary to replicate and apply these findings with the aim of designing AF pathophysiology-based multi-locus risk scores.
Collapse
Affiliation(s)
- Daniela Husser
- Department of Electrophysiology, Heart Center Leipzig, Leipzig University, Leipzig, Germany
| | - Petra Büttner
- Department of Electrophysiology, Heart Center Leipzig, Leipzig University, Leipzig, Germany
| | - Dorian Stübner
- Department of Electrophysiology, Heart Center Leipzig, Leipzig University, Leipzig, Germany
| | - Laura Ueberham
- Department of Electrophysiology, Heart Center Leipzig, Leipzig University, Leipzig, Germany.,Leipzig Heart Institute, Leipzig, Germany
| | - Pyotr G Platonov
- Department of Cardiology, Clinical Sciences, Lund University, Lund, Sweden
| | - Borislav Dinov
- Department of Electrophysiology, Heart Center Leipzig, Leipzig University, Leipzig, Germany
| | - Arash Arya
- Department of Electrophysiology, Heart Center Leipzig, Leipzig University, Leipzig, Germany
| | - Gerhard Hindricks
- Department of Electrophysiology, Heart Center Leipzig, Leipzig University, Leipzig, Germany.,Leipzig Heart Institute, Leipzig, Germany
| | - Andreas Bollmann
- Department of Electrophysiology, Heart Center Leipzig, Leipzig University, Leipzig, Germany.,Leipzig Heart Institute, Leipzig, Germany
| |
Collapse
|
4
|
Zhao G, Zhou J, Gao J, Liu Y, Gu S, Zhang X, Su P. Genome-wide DNA methylation analysis in permanent atrial fibrillation. Mol Med Rep 2017; 16:5505-5514. [DOI: 10.3892/mmr.2017.7221] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 04/25/2017] [Indexed: 11/06/2022] Open
|