1
|
Sato N, Umemiya-Shirafuji R. Midgut-specific vitellogenin-1 is involved in the negative regulation of Babesia ovata migration or proliferation in Haemaphysalis longicornis tissues. Ticks Tick Borne Dis 2025; 16:102480. [PMID: 40252333 DOI: 10.1016/j.ttbdis.2025.102480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/17/2025] [Accepted: 03/21/2025] [Indexed: 04/21/2025]
Abstract
Transovarial transmission of bovine Babesia has been experimentally demonstrated using larvae from Haemaphysalis longicornis ticks that are parasitized on cattle infected with Babesia ovata. However, the molecular mechanisms underlying this transovarial transmission remain unclear. We previously showed that vitellogenin (Vg) and its receptor, essential for oogenesis, are key factors involved in Babesia infection in the ovary of H. longicornis. So far, three Vg genes (HlVg-1, HlVg-2, and HlVg-3) have been identified from H. longicornis, but the roles of Vgs other than HlVg-2 in Babesia-infected ticks are unknown. Here, we report the estimated roles of midgut-specific HlVg-1 in Babesia-infected ticks. Following semi-artificial feeding of B. ovata-infected bovine red blood cells, the expression level of HlVg-1 was significantly upregulated at 1 and 2 days after engorgement (dAE). Subsequently, gene silencing mediated via RNA interference (RNAi) was performed to infer the role of HlVg-1 in B. ovata-infected ticks. Interestingly, relative detection levels of Babesia DNA in HlVg-1 RNAi ticks were higher compared with control ticks at 1 and 2 dAE. These results indicate that HlVg-1 might regulate tissue-to-tissue migration or proliferation of Babesia in the tick body. Our data hypothesize that each organ-specific Vg has individual roles during Babesia infection.
Collapse
Affiliation(s)
- Nariko Sato
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Rika Umemiya-Shirafuji
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan.
| |
Collapse
|
2
|
Kwofie KD, Hernandez EP, Anisuzzaman, Kawada H, Koike Y, Sasaki S, Inoue T, Jimbo K, Mikami F, Ladzekpo D, Umemiya-Shirafuji R, Yamaji K, Tanaka T, Matsubayashi M, Alim MA, Dadzie SK, Iwanaga S, Tsuji N, Hatta T. RNA activation in ticks. Sci Rep 2023; 13:9341. [PMID: 37291173 PMCID: PMC10250327 DOI: 10.1038/s41598-023-36523-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/05/2023] [Indexed: 06/10/2023] Open
Abstract
RNA activation (RNAa) is a burgeoning area of research in which double-stranded RNAs (dsRNAs) or small activating RNAs mediate the upregulation of specific genes by targeting the promoter sequence and/or AU-rich elements in the 3'- untranslated region (3'-UTR) of mRNA molecules. So far, studies on the phenomenon have been limited to mammals, plants, bacteria, Caenorhabditis elegans, and recently, Aedes aegypti. However, it is yet to be applied in other arthropods, including ticks, despite the ubiquitous presence of argonaute 2 protein, which is an indispensable requirement for the formation of RNA-induced transcriptional activation complex to enable a dsRNA-mediated gene activation. In this study, we demonstrated for the first time the possible presence of RNAa phenomenon in the tick vector, Haemaphysalis longicornis (Asian longhorned tick). We targeted the 3'-UTR of a novel endochitinase-like gene (HlemCHT) identified previously in H. longicornis eggs for dsRNA-mediated gene activation. Our results showed an increased gene expression in eggs of H. longicornis endochitinase-dsRNA-injected (dsHlemCHT) ticks on day-13 post-oviposition. Furthermore, we observed that eggs of dsHlemCHT ticks exhibited relatively early egg development and hatching, suggesting a dsRNA-mediated activation of the HlemCHT gene in the eggs. This is the first attempt to provide evidence of RNAa in ticks. Although further studies are required to elucidate the detailed mechanism by which RNAa occurs in ticks, the outcome of this study provides new opportunities for the use of RNAa as a gene overexpression tool in future studies on tick biology, to reduce the global burden of ticks and tick-borne diseases.
Collapse
Affiliation(s)
- Kofi Dadzie Kwofie
- Department of Parasitology and Tropical Medicine, Kitasato University School of Medicine, Sagamihara, Kanagawa, 252-0374, Japan
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, P.O. Box LG 581, Legon, Accra, Ghana
| | - Emmanuel Pacia Hernandez
- Department of Parasitology and Tropical Medicine, Kitasato University School of Medicine, Sagamihara, Kanagawa, 252-0374, Japan
- Department of Veterinary Paraclinical Sciences, College of Veterinary Medicine, University of the Philippines at Los Baños, College, 4031, Laguna, Philippines
| | - Anisuzzaman
- Department of Parasitology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Hayato Kawada
- Department of Parasitology and Tropical Medicine, Kitasato University School of Medicine, Sagamihara, Kanagawa, 252-0374, Japan
- Department of Molecular and Cellular Parasitology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa, 252-0374, Japan
| | - Yuki Koike
- Department of Molecular and Cellular Parasitology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa, 252-0374, Japan
| | - Sana Sasaki
- Department of Molecular and Cellular Parasitology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa, 252-0374, Japan
| | - Takahiro Inoue
- Department of Molecular and Cellular Parasitology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa, 252-0374, Japan
| | - Kei Jimbo
- Department of Molecular and Cellular Parasitology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa, 252-0374, Japan
| | - Fusako Mikami
- Department of Parasitology and Tropical Medicine, Kitasato University School of Medicine, Sagamihara, Kanagawa, 252-0374, Japan
| | - Danielle Ladzekpo
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, P.O. Box LG 581, Legon, Accra, Ghana
- Department of Environmental Parasitology, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Rika Umemiya-Shirafuji
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, 080-8555, Japan
| | - Kayoko Yamaji
- Department of Tropical Medicine and Center for Medical Entomology, The Jikei University School of Medicine, Minato-ku, Tokyo, 105-8461, Japan
| | - Tetsuya Tanaka
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, 890-0065, Japan
| | - Makoto Matsubayashi
- Department of Veterinary Immunology, Graduate School of Veterinary Sciences, Osaka Metropolitan University, Izumisano, Osaka, 598-8531, Japan
| | - Md Abdul Alim
- Department of Parasitology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Samuel Kweku Dadzie
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, P.O. Box LG 581, Legon, Accra, Ghana
| | - Shiroh Iwanaga
- Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, Yamadaoka, Suita, Osaka, 565-0871, Japan
- Center for Infectious Disease Education and Research (CIDER), Osaka University, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Naotoshi Tsuji
- Department of Parasitology and Tropical Medicine, Kitasato University School of Medicine, Sagamihara, Kanagawa, 252-0374, Japan
- Department of Molecular and Cellular Parasitology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa, 252-0374, Japan
| | - Takeshi Hatta
- Department of Parasitology and Tropical Medicine, Kitasato University School of Medicine, Sagamihara, Kanagawa, 252-0374, Japan.
- Department of Molecular and Cellular Parasitology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa, 252-0374, Japan.
| |
Collapse
|
3
|
Ravindran R, Hembram PK, Kumar GS, Kumar KGA, Deepa CK, Varghese A. Transovarial transmission of pathogenic protozoa and rickettsial organisms in ticks. Parasitol Res 2023; 122:691-704. [PMID: 36797442 PMCID: PMC9936132 DOI: 10.1007/s00436-023-07792-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023]
Abstract
Transovarial transmission (TOT) is an efficient vertical transmission of pathogens that is observed in many arthropod vectors. This method seems to be an evolutionarily unique development observed only in Babesia sensu stricto (clade VI) and Rickettsia spp., whereas transstadial transmission is the common/default way of transmission. Transovarial transmission does not necessarily contribute to the amplification of tick-borne pathogens but does contribute to the maintenance of disease in the environment. This review aims to provide an updated summary of previous reports on TOT of tick-borne pathogens.
Collapse
Affiliation(s)
- Reghu Ravindran
- Department of Veterinary Parasitology, College of Veterinary and Animal Sciences, Pookode, Wayanad, Kerala, 673 576, India.
| | - Prabodh Kumar Hembram
- Department of Veterinary Parasitology, College of Veterinary and Animal Sciences, Pookode, Wayanad, Kerala, 673 576, India
| | - Gatchanda Shravan Kumar
- Department of Veterinary Parasitology, College of Veterinary and Animal Sciences, Pookode, Wayanad, Kerala, 673 576, India
| | | | - Chundayil Kalarickal Deepa
- Department of Veterinary Parasitology, College of Veterinary and Animal Sciences, Pookode, Wayanad, Kerala, 673 576, India
| | - Anju Varghese
- Department of Veterinary Parasitology, College of Veterinary and Animal Sciences, Pookode, Wayanad, Kerala, 673 576, India
| |
Collapse
|
4
|
Orkun Ö. Description of a novel Babesia sp. genotype from a naturally infected Eurasian lynx (Lynx lynx) in Anatolia, Turkey, with remarks on its morphology and phylogenetic relation to other piroplasmid species. Ticks Tick Borne Dis 2022; 13:102026. [PMID: 35985208 DOI: 10.1016/j.ttbdis.2022.102026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 07/18/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022]
Abstract
There are very limited data on Babesia species infecting lynx species worldwide, and almost nothing is known about babesias in the Eurasian lynx, the most widely distributed wild feline species in the Palearctic geography. This study describes a novel Babesia sp. genotype in a free-living Eurasian lynx in Turkey, named tentatively as 'Babesia sp. lynx', and its integrated genetic and morphological features. Phylogenetic analyses of piroplasmids with the novel Babesia sp. genotype in the current study indicated that this genotype falls into the 'carnivore clade A' of Babesia sensu stricto (true babesias), at the level of different genes (mainly 18S rRNA, ITS1, ITS2, and cyt b) and is monophyletic with the Babesia sp. Ankara genotype, previously observed in Turkey. Additionally, the constructed phylogenetic trees showed that the Babesia sp. lynx genotype infecting the Eurasian lynx is closely related to certain domestic and wild carnivore babesias, mainly Babesia rossi, Babesia presentii, and Babesia pisicii, at the level of different genes. This study also genetically barcoded the lynx infected with the Babesia sp. lynx and Haemaphysalis erinacei, and specimens collected from the animal revealed significant genetic variations between the sample Ha. erinacei and Babesia sp. Ankara-related Ha. erinacei that persists with sympatric populations in Central Anatolia. The lynx infected with the Babesia sp. lynx genotype was also found to be coinfected with Hepatozoon felis, an adeleorinid tick-borne protozoan parasite infecting wild and domestic felids, confirming for the first time its presence in a lynx species. Therefore, this study is the first to describe a potential novel Babesia sp. using its both morphological and phylogenetic characteristics in a lynx species. Adding the Babesia sp. lynx genotype to the phylogeny of feline piroplasmids significantly expands our knowledge of feline babesias in the Palearctic geography and their putative coevolution with their vertebrate hosts.
Collapse
Affiliation(s)
- Ömer Orkun
- Ticks and Tick-Borne Diseases Research Laboratory, Department of Parasitology, Faculty of Veterinary Medicine, Ankara University, Ankara 06110, Turkey.
| |
Collapse
|
5
|
Kuniyori M, Sato N, Yokoyama N, Kawazu SI, Xuan X, Suzuki H, Fujisaki K, Umemiya-Shirafuji R. Vitellogenin-2 Accumulation in the Fat Body and Hemolymph of Babesia-Infected Haemaphysalis longicornis Ticks. Front Cell Infect Microbiol 2022; 12:908142. [PMID: 35800383 PMCID: PMC9253295 DOI: 10.3389/fcimb.2022.908142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
The protozoan parasite Babesia spp. invades into tick oocytes and remains in the offspring. The transovarial transmission phenomenon of Babesia in ticks has been demonstrated experimentally, but the molecular mechanisms remain unclear. Babesia invasion into oocytes occurs along with the progression of oogenesis. In the present study, to find the key tick factor(s) for Babesia transmission, we focused on molecules involved in yolk protein precursor (vitellogenin, Vg) synthesis and Vg uptake, which are crucial events in tick oogenesis. With a Haemaphysalis longicornis tick–Babesia ovata experimental model, the expression profiles of Akt, target of rapamycin, S6K, GATA, and Vg, Vg synthesis-related genes, and Vg receptor (VgR) and autophagy-related gene 6 (ATG6), Vg uptake-related genes, were analyzed using real-time PCR using tissues collected during the preovipositional period in Babesia-infected ticks. The expression levels of H. longicornis Vg-2 (HlVg-2) and HlVg-3 decreased in the fat body of Babesia-infected ticks 1 day after engorgement. In the ovary, HlVg-2 mRNA expression was significantly higher in Babesia-infected ticks than in uninfected ticks 1 and 2 days after engorgement and decreased 3 days after engorgement. HlVgR expression was significantly lower in Babesia-infected ticks than in uninfected ticks 2 and 4 days after engorgement. HlATG6 had a lower gene expression in Babesia-infected ticks compared to uninfected ticks 2 days after engorgement. Additionally, western blot analysis using protein extracts from each collected tissue revealed that H. longicornis Vg-2 (HlVg-2) accumulate in the fat body and hemolymph of Babesia-infected ticks. These results suggest that Vg uptake from the hemolymph to the ovary was suppressed in the presence of B. ovata. Moreover, HlVg-2 knockdown ticks had a lower detection rate of B. ovata DNA in the ovary and a significant reduction of B. ovata DNA in the hemolymph compared with control ticks. Taken together, our results suggest that accumulated HlVg-2 is associated with Babesia infection or transmission in the tick body. These findings, besides previous reports on VgR, provide important information to elucidate the transovarial transmission mechanisms of pathogens in tick vectors.
Collapse
Affiliation(s)
- Maki Kuniyori
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Nariko Sato
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Naoaki Yokoyama
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Shin-ichiro Kawazu
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Hiroshi Suzuki
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Kozo Fujisaki
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
- National Agricultural and Food Research Organization, Tsukuba, Japan
| | - Rika Umemiya-Shirafuji
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
- *Correspondence: Rika Umemiya-Shirafuji,
| |
Collapse
|
6
|
Bonnet SI, Nadal C. Experimental Infection of Ticks: An Essential Tool for the Analysis of Babesia Species Biology and Transmission. Pathogens 2021; 10:pathogens10111403. [PMID: 34832559 PMCID: PMC8620118 DOI: 10.3390/pathogens10111403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022] Open
Abstract
Babesiosis is one of the most important tick-borne diseases in veterinary health, impacting mainly cattle, equidae, and canidae, and limiting the development of livestock industries worldwide. In humans, babesiosis is considered to be an emerging disease mostly due to Babesia divergens in Europe and Babesia microti in America. Despite this importance, our knowledge of Babesia sp. transmission by ticks is incomplete. The complexity of vectorial systems involving the vector, vertebrate host, and pathogen, as well as the complex feeding biology of ticks, may be part of the reason for the existing gaps in our knowledge. Indeed, this complexity renders the implementation of experimental systems that are as close as possible to natural conditions and allowing the study of tick-host-parasite interactions, quite difficult. However, it is unlikely that the development of more effective and sustainable control measures against babesiosis will emerge unless significant progress can be made in understanding this tripartite relationship. The various methods used to date to achieve tick transmission of Babesia spp. of medical and veterinary importance under experimental conditions are reviewed and discussed here.
Collapse
Affiliation(s)
- Sarah I. Bonnet
- Animal Health Department, INRAE, 37380 Nouzilly, France
- Functional Genetics of Infectious Diseases Unit, Institut Pasteur, CNRS UMR 2000, Université de Paris, 75015 Paris, France
- Correspondence:
| | - Clémence Nadal
- Epidemiology Unit, Laboratory for Animal Health, University Paris Est, 94700 Maisons-Alfort, France;
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700 Maisons-Alfort, France
| |
Collapse
|
7
|
Rego ROM, Trentelman JJA, Anguita J, Nijhof AM, Sprong H, Klempa B, Hajdusek O, Tomás-Cortázar J, Azagi T, Strnad M, Knorr S, Sima R, Jalovecka M, Fumačová Havlíková S, Ličková M, Sláviková M, Kopacek P, Grubhoffer L, Hovius JW. Counterattacking the tick bite: towards a rational design of anti-tick vaccines targeting pathogen transmission. Parasit Vectors 2019; 12:229. [PMID: 31088506 PMCID: PMC6518728 DOI: 10.1186/s13071-019-3468-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/29/2019] [Indexed: 02/07/2023] Open
Abstract
Hematophagous arthropods are responsible for the transmission of a variety of pathogens that cause disease in humans and animals. Ticks of the Ixodes ricinus complex are vectors for some of the most frequently occurring human tick-borne diseases, particularly Lyme borreliosis and tick-borne encephalitis virus (TBEV). The search for vaccines against these diseases is ongoing. Efforts during the last few decades have primarily focused on understanding the biology of the transmitted viruses, bacteria and protozoans, with the goal of identifying targets for intervention. Successful vaccines have been developed against TBEV and Lyme borreliosis, although the latter is no longer available for humans. More recently, the focus of intervention has shifted back to where it was initially being studied which is the vector. State of the art technologies are being used for the identification of potential vaccine candidates for anti-tick vaccines that could be used either in humans or animals. The study of the interrelationship between ticks and the pathogens they transmit, including mechanisms of acquisition, persistence and transmission have come to the fore, as this knowledge may lead to the identification of critical elements of the pathogens' life-cycle that could be targeted by vaccines. Here, we review the status of our current knowledge on the triangular relationships between ticks, the pathogens they carry and the mammalian hosts, as well as methods that are being used to identify anti-tick vaccine candidates that can prevent the transmission of tick-borne pathogens.
Collapse
Affiliation(s)
- Ryan O. M. Rego
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská 31, 37005 Ceske Budejovice, Czech Republic
| | - Jos J. A. Trentelman
- Amsterdam UMC, Location AMC, Center for Experimental and Molecular Medicine, Amsterdam, The Netherlands
| | - Juan Anguita
- CIC bioGUNE, 48160 Derio, Spain
- Ikerbasque, Basque Foundation for Science, 48012 Bilbao, Spain
| | - Ard M. Nijhof
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Hein Sprong
- Centre for Zoonoses and Environmental Microbiology, Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Boris Klempa
- Institute of Virology, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia
| | - Ondrej Hajdusek
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská 31, 37005 Ceske Budejovice, Czech Republic
| | | | - Tal Azagi
- Centre for Zoonoses and Environmental Microbiology, Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Martin Strnad
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská 31, 37005 Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 31, 37005 Ceske Budejovice, Czech Republic
| | - Sarah Knorr
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Radek Sima
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská 31, 37005 Ceske Budejovice, Czech Republic
| | - Marie Jalovecka
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská 31, 37005 Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 31, 37005 Ceske Budejovice, Czech Republic
| | - Sabína Fumačová Havlíková
- Institute of Virology, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia
| | - Martina Ličková
- Institute of Virology, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia
| | - Monika Sláviková
- Institute of Virology, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia
| | - Petr Kopacek
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská 31, 37005 Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 31, 37005 Ceske Budejovice, Czech Republic
| | - Libor Grubhoffer
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská 31, 37005 Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 31, 37005 Ceske Budejovice, Czech Republic
| | - Joppe W. Hovius
- Amsterdam UMC, Location AMC, Center for Experimental and Molecular Medicine, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Smotrys M, Magge T, Alkhuja S, Gandotra SD. Babesiosis as a cause of false-positive HIV serology. BMJ Case Rep 2018; 2018:bcr-2017-223738. [PMID: 29884713 DOI: 10.1136/bcr-2017-223738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
This is a case of a 71-year-old homosexual man who presented with a 4-day history of fever, weakness and headaches, near syncope, nausea and poor oral intake. The patient denied recent travel or sick contacts but had significant tick bites in the last 4 weeks. A peripheral blood smear showed 0.5% parasitaemia with signet ring appearance organisms consistent with Babesia microti. Serology testing for HIV 1 and 2 by ELISA and western blot were positive. Treatment for Babesia was started and the patient improved. Repeat serology testing for HIV was negative. To the best of our knowledge, this is the first case of false-positive HIV serology that is associated with active babesiosis. In this case, the positive HIV serology turned negative after successful treatment of babesiosis.
Collapse
Affiliation(s)
- Mariola Smotrys
- Department of Infectious Diseases, Lehigh Valley Health Network Pocono, East Stroudsburg, Pennsylvania, USA
| | - Tara Magge
- Department of Infectious Diseases, Lehigh Valley Health Network Pocono, East Stroudsburg, Pennsylvania, USA
| | - Samer Alkhuja
- Medicine, Geisinger Commonwealth School of Medicine, East Stroudsburg, Pennsylvania, USA
| | - Susheer Dilbagh Gandotra
- Department of Infectious Diseases, Lehigh Valley Health Network Pocono, East Stroudsburg, Pennsylvania, USA
| |
Collapse
|
9
|
Liu M, Adjou Moumouni PF, Asada M, Hakimi H, Masatani T, Vudriko P, Lee SH, Kawazu SI, Yamagishi J, Xuan X. Establishment of a stable transfection system for genetic manipulation of Babesia gibsoni. Parasit Vectors 2018; 11:260. [PMID: 29685172 PMCID: PMC5914073 DOI: 10.1186/s13071-018-2853-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/16/2018] [Indexed: 01/11/2023] Open
Abstract
Background Genetic manipulation techniques, such as transfection, have been previously reported in many protozoan parasites. In Babesia, stable transfection systems have only been established for bovine Babesia parasites. We recently reported a transient transfection system and the selection of promoter candidates for Babesia gibsoni. The establishment of a stable transfection system for B. gibsoni is considered to be urgent to improve our understanding of the basic biology of canine Babesia parasites for a better control of babesiosis. Results GFP-expressing parasites were observed by fluorescence microscopy as early as two weeks after drug selection, and consistently expressed GFP for more than 3 months without drug pressure. Genome integration was confirmed by PCR, sequencing and Southern blot analysis. Conclusions We present the first successful establishment of a stable transfection system for B. gibsoni. This finding will facilitate functional analysis of Babesia genomes using genetic manipulation and will serve as a foundation for the development of tick-Babesia and host-Babesia infection models. Electronic supplementary material The online version of this article (10.1186/s13071-018-2853-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mingming Liu
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Paul Franck Adjou Moumouni
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Masahito Asada
- Department of Protozoology, Institute of Tropical Medicine, Nagasaki University, Sakamoto 1-12-4, Nagasaki, 852-8523, Japan
| | - Hassan Hakimi
- Department of Protozoology, Institute of Tropical Medicine, Nagasaki University, Sakamoto 1-12-4, Nagasaki, 852-8523, Japan
| | - Tatsunori Masatani
- Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan
| | - Patrick Vudriko
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Seung-Hun Lee
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Shin-Ichiro Kawazu
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Junya Yamagishi
- Research Center for Zoonosis Control, Hokkaido University, North 20, West 10 Kita-ku, Sapporo, Hokkaido, 001-0020, Japan.,Global Station for Zoonosis Control, GI-CoRE, Hokkaido University, North 20, West 10 Kita-ku, Sapporo, Hokkaido, 001-0020, Japan
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan.
| |
Collapse
|
10
|
Mihara R, Umemiya-Shirafuji R, Abe Y, Matsuo T, Horiuchi N, Kawano S, Fujisaki K, Suzuki H. The development of oocytes in the ovary of a parthenogenetic tick, Haemaphysalis longicornis. Parasitol Int 2018; 67:465-471. [PMID: 29678671 DOI: 10.1016/j.parint.2018.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 04/06/2018] [Accepted: 04/14/2018] [Indexed: 12/26/2022]
Abstract
Haemaphysalis longicornis is an important vector of various pathogens in domestic animals and humans. The tick is a unique species with bisexual and parthenogenetic races. Although mating induces oocyte development, it is possible in the parthenogenetic race to complete oogenesis without copulation. Here we examined the developmental process of oocytes from unfed to the oviposition period in parthenogenetic H. longicornis. We classified the developmental stages of oocytes into five stages: stage I, germinal vesicle occupies more than half of the cytoplasm; stage II, germinal vesicle occupies less than half of the cytoplasm; stage III, germinal vesicle migrates from the center in the oocyte to the vicinity of the pedicel cells; stage IV, the cytoplasm is filled with yolk granules of various sizes; stage V, the cytoplasm is occupied by large yolk granules. Oocytes at the unfed period were undeveloped and classified as stage I. Stage I and II oocytes were observed at the rapid feeding period, indicating that oocyte development began after the initiation of blood feeding. All developmental stages of oocytes were observed at the pre-oviposition period. At 10 days after the beginning of the oviposition period, the ratios of stage I and II oocytes were higher than those of the previous period, suggesting that the ovarian development and activity may be continuing. Based on these findings, we propose classification criteria for the oocyte development in the parthenogenetic H. longicornis. The criteria will be useful for understanding the mechanisms of tick reproduction and transovarial transmission of pathogens.
Collapse
Affiliation(s)
- Ryo Mihara
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido 080-8555, Japan
| | - Rika Umemiya-Shirafuji
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido 080-8555, Japan; Department of Basic Veterinary Science, The United Graduate School of Veterinary Sciences, Gifu University, Yanagito 1-1, Gifu 501-1193, Japan; Research Center for Global Agromedicine, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido 080-8555, Japan
| | - Yasuyuki Abe
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido 080-8555, Japan
| | - Tomohide Matsuo
- Laboratory of Parasitology, Joint Faculty of Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-0065, Japan
| | - Noriyuki Horiuchi
- Research Center for Global Agromedicine, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido 080-8555, Japan; Department of Basic Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido 080-8555, Japan
| | - Suguru Kawano
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido 080-8555, Japan; Department of Basic Veterinary Science, The United Graduate School of Veterinary Sciences, Gifu University, Yanagito 1-1, Gifu 501-1193, Japan
| | - Kozo Fujisaki
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido 080-8555, Japan; National Agricultural and Food Research Organization, Kannondai 3-1-5, Tsukuba, Ibaraki 305-0856, Japan
| | - Hiroshi Suzuki
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido 080-8555, Japan; Department of Basic Veterinary Science, The United Graduate School of Veterinary Sciences, Gifu University, Yanagito 1-1, Gifu 501-1193, Japan; Research Center for Global Agromedicine, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido 080-8555, Japan.
| |
Collapse
|
11
|
Jongejan F, Su BL, Yang HJ, Berger L, Bevers J, Liu PC, Fang JC, Cheng YW, Kraakman C, Plaxton N. Molecular evidence for the transovarial passage of Babesia gibsoni in Haemaphysalis hystricis (Acari: Ixodidae) ticks from Taiwan: a novel vector for canine babesiosis. Parasit Vectors 2018; 11:134. [PMID: 29554924 PMCID: PMC5859485 DOI: 10.1186/s13071-018-2722-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 02/15/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Babesia gibsoni is the predominant tick-borne protozoan blood parasite affecting dogs throughout the Oriental region. Babesia gibsoni is transmitted by Haemaphysalis longicornis, whereas a similar role has been suggested for Rhipicephalus sanguineus. Haemaphysalis longicornis does not occur in Taiwan, but R. sanguineus is widely distributed on dogs. However, clinical cases of babesiosis are mainly restricted to the northern part of the island. The discrepancy between tick distribution and clinical cases stimulated us to investigate the tick species distribution on dogs in northern Taiwan, with the aim to identify the local vector for canine babesiosis. METHODS Ticks were collected from stray dogs or free ranging pet dogs in northern Taiwan between 2015 and 2017 and, after identification, were tested for the presence of tick-borne Babesia parasites using PCR and reverse line blot (RLB) hybridisation. Moreover, engorged ticks collected from the dogs were incubated at 28 °C to allow them to oviposit. Their subsequent larval progeny was also examined by PCR/RLB. RESULTS A total of 1085 ticks collected from 144 stray dogs at different residential areas consisted of 5 different species: H. hystricis (n = 435), R. sanguineus (n = 582), R. haemaphysaloides (n = 43), Amblyomma testudinarium (n = 14) and Ixodes ovatus (n = 11) were identified. Babesia gibsoni DNA was detected in H. hystricis females (10.3%), males (7.0%) and in 2.6% of the nymphs. One R. sanguineus female and one A. testudinarium female tick also carried B. gibsoni DNA. DNA of B. gibsoni was demonstrated in 11 out of 68 (16.2%) batches of larval ticks derived from engorged H. hystricus ticks only. Babesia vogeli DNA was detected only in R. sanguineus females (2.6%) and males (2.4%). DNA of B. vogeli was detected in 13 out of 95 (13.7%) batches of larval ticks derived from engorged R.sanguineus females. CONCLUSIONS Babesia gibsoni DNA was detected in the larval progeny of H. hystricis ticks only, whereas B. vogeli was restricted to the larvae of R. sanguineus. This provides evidence for transovarial passage of B. gibsoni in H. hystricis and evidence that this tick does act as the local vector for this parasite on dogs in northern Taiwan where most cases of babesiosis are reported. The vectorial capacity of R. sanguineus for babesiosis is probably restricted to the transmission of B. vogeli only.
Collapse
Affiliation(s)
- Frans Jongejan
- Utrecht Centre for Tick-borne Diseases (UCTD), FAO Reference Centre for Ticks and Tick-borne Diseases, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584, CL, Utrecht, The Netherlands. .,Vectors and Vector-borne Diseases Research Programme, Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa.
| | - Bi-Ling Su
- Institute of Veterinary Clinical Sciences, School of Veterinary Medicine, National Taiwan University, No.1, Sec. 4 Roosevelt Road, Taipei, 106, Taiwan.
| | - Hsiang-Ju Yang
- Institute of Veterinary Clinical Sciences, School of Veterinary Medicine, National Taiwan University, No.1, Sec. 4 Roosevelt Road, Taipei, 106, Taiwan
| | - Laura Berger
- Utrecht Centre for Tick-borne Diseases (UCTD), FAO Reference Centre for Ticks and Tick-borne Diseases, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584, CL, Utrecht, The Netherlands
| | - Judith Bevers
- Utrecht Centre for Tick-borne Diseases (UCTD), FAO Reference Centre for Ticks and Tick-borne Diseases, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584, CL, Utrecht, The Netherlands
| | - Pin-Chen Liu
- Institute of Veterinary Clinical Sciences, School of Veterinary Medicine, National Taiwan University, No.1, Sec. 4 Roosevelt Road, Taipei, 106, Taiwan
| | - Jou-Chien Fang
- Institute of Veterinary Clinical Sciences, School of Veterinary Medicine, National Taiwan University, No.1, Sec. 4 Roosevelt Road, Taipei, 106, Taiwan
| | - Ya-Wen Cheng
- Institute of Veterinary Clinical Sciences, School of Veterinary Medicine, National Taiwan University, No.1, Sec. 4 Roosevelt Road, Taipei, 106, Taiwan
| | - Charlotte Kraakman
- Utrecht Centre for Tick-borne Diseases (UCTD), FAO Reference Centre for Ticks and Tick-borne Diseases, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584, CL, Utrecht, The Netherlands
| | - Nadine Plaxton
- Utrecht Centre for Tick-borne Diseases (UCTD), FAO Reference Centre for Ticks and Tick-borne Diseases, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584, CL, Utrecht, The Netherlands
| |
Collapse
|
12
|
Umemiya-Shirafuji R, Hatta T, Okubo K, Sato M, Maeda H, Kume A, Yokoyama N, Igarashi I, Tsuji N, Fujisaki K, Inoue N, Suzuki H. Transovarial persistence of Babesia ovata DNA in a hard tick, Haemaphysalis longicornis, in a semi-artificial mouse skin membrane feeding system. Acta Parasitol 2017; 62:836-841. [PMID: 29035855 DOI: 10.1515/ap-2017-0100] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 08/16/2017] [Indexed: 01/02/2023]
Abstract
Bovine piroplasmosis, a tick-borne protozoan disease, is a major concern for the cattle industry worldwide due to its negative effects on livestock productivity. Toward the development of novel therapeutic and vaccine approaches, tick-parasite experimental models have been established to clarify the development of parasites in the ticks and the transmission of the parasites by ticks. A novel tick-Babesia experimental infection model recently revealed the time course of Babesia ovata migration in its vector Haemaphysalis longicornis, which is a dominant tick species in Japan. However, there has been no research on the transovarial persistence of B. ovata DNA using this experimental infection model. Here we assessed the presence of B. ovata DNA in eggs derived from parthenogenetic H. longicornis female ticks that had engorged after semi-artificial mouse skin membrane feeding of B. ovata-infected bovine red blood cells. The oviposition period of the engorged female ticks was 21-24 days in the semi-artificial feeding. Total egg weight measured daily reached a peak by day 3 in all female ticks. Nested PCR revealed that 3 of 10 female ticks laid B. ovata DNA-positive eggs after the semi-artificial feeding. In addition, B. ovata DNA was detected at the peak of egg weight during oviposition, indicating that B. ovata exist in the eggs laid a few days after the onset of oviposition in the tick. These findings will contribute to the establishment of B. ovata-infected H. longicornis colonies under laboratory conditions.
Collapse
|
13
|
Maeda H, Hatta T, Alim MA, Tsubokawa D, Mikami F, Kusakisako K, Matsubayashi M, Umemiya-Shirafuji R, Tsuji N, Tanaka T. Initial development of Babesia ovata in the tick midgut. Vet Parasitol 2016; 233:39-42. [PMID: 28043386 DOI: 10.1016/j.vetpar.2016.11.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/23/2016] [Accepted: 11/26/2016] [Indexed: 01/13/2023]
Abstract
The initial development of Babesia ovata in the midgut of the vector tick Haemaphysalis longicornis has been demonstrated through in vitro and in vivo studies. Although the research on the partial developmental cycles of B. ovata in the tick midgut was performed in our previous study by using ticks fed on experimentally B. ovata-infected cattle, detailed information on the developmental stages of B. ovata in H. longicornis was limited. This report describes the sequential development of stages of B. ovata in an in vitro study using B. ovata-infected erythrocytes and tick midgut contents. The in vivo study also confirmed the developmental stages in the midgut contents of artificially B. ovata-infected ticks. In this observation, we have recognized the distinct forms of B. ovata developmental stages in the tick midgut; the aggregation forms and ray bodies with shorter spikes and light-stained cytoplasm were shown by Giemsa staining. The similarities and differences of the stages as compared to previous reports have been discussed.
Collapse
Affiliation(s)
- Hiroki Maeda
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, Korimoto, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi 753-8515, Japan
| | - Takeshi Hatta
- Department of Parasitology, Kitasato University School of Medicine, 1-15-1 Kitasato, Kitasato, Minami, Sagamihara, Kanagawa 252-0374, Japan.
| | - M Abdul Alim
- Department of Parasitology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Daigo Tsubokawa
- Department of Parasitology, Kitasato University School of Medicine, 1-15-1 Kitasato, Kitasato, Minami, Sagamihara, Kanagawa 252-0374, Japan
| | - Fusako Mikami
- Department of Parasitology, Kitasato University School of Medicine, 1-15-1 Kitasato, Kitasato, Minami, Sagamihara, Kanagawa 252-0374, Japan
| | - Kodai Kusakisako
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, Korimoto, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi 753-8515, Japan
| | - Makoto Matsubayashi
- Laboratory of International Prevention of Epidemics, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Rika Umemiya-Shirafuji
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada, Obihiro, Hokkaido 080-8555, Japan
| | - Naotoshi Tsuji
- Department of Parasitology, Kitasato University School of Medicine, 1-15-1 Kitasato, Kitasato, Minami, Sagamihara, Kanagawa 252-0374, Japan
| | - Tetsuya Tanaka
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, Korimoto, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi 753-8515, Japan.
| |
Collapse
|