1
|
Pashirova T, Salah-Tazdaït R, Tazdaït D, Masson P. Applications of Microbial Organophosphate-Degrading Enzymes to Detoxification of Organophosphorous Compounds for Medical Countermeasures against Poisoning and Environmental Remediation. Int J Mol Sci 2024; 25:7822. [PMID: 39063063 PMCID: PMC11277490 DOI: 10.3390/ijms25147822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Mining of organophosphorous (OPs)-degrading bacterial enzymes in collections of known bacterial strains and in natural biotopes are important research fields that lead to the isolation of novel OP-degrading enzymes. Then, implementation of strategies and methods of protein engineering and nanobiotechnology allow large-scale production of enzymes, displaying improved catalytic properties for medical uses and protection of the environment. For medical applications, the enzyme formulations must be stable in the bloodstream and upon storage and not susceptible to induce iatrogenic effects. This, in particular, includes the nanoencapsulation of bioscavengers of bacterial origin. In the application field of bioremediation, these enzymes play a crucial role in environmental cleanup by initiating the degradation of OPs, such as pesticides, in contaminated environments. In microbial cell configuration, these enzymes can break down chemical bonds of OPs and usually convert them into less toxic metabolites through a biotransformation process or contribute to their complete mineralization. In their purified state, they exhibit higher pollutant degradation efficiencies and the ability to operate under different environmental conditions. Thus, this review provides a clear overview of the current knowledge about applications of OP-reacting enzymes. It presents research works focusing on the use of these enzymes in various bioremediation strategies to mitigate environmental pollution and in medicine as alternative therapeutic means against OP poisoning.
Collapse
Affiliation(s)
- Tatiana Pashirova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia;
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, 420088 Kazan, Russia
| | - Rym Salah-Tazdaït
- Bioengineering and Process Engineering Laboratory (BIOGEP), National Polytechnic School, 10 Rue des Frères Oudek, El Harrach, Algiers 16200, Algeria; (R.S.-T.); (D.T.)
| | - Djaber Tazdaït
- Bioengineering and Process Engineering Laboratory (BIOGEP), National Polytechnic School, 10 Rue des Frères Oudek, El Harrach, Algiers 16200, Algeria; (R.S.-T.); (D.T.)
- Department of Nature and Life Sciences, University of Algiers, Benyoucef Benkhedda, 2 Rue Didouche Mourad, Algiers 16000, Algeria
| | - Patrick Masson
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia;
| |
Collapse
|
2
|
Rants'o TA, Johan van der Westhuizen C, van Zyl RL. Optimization of covalent docking for organophosphates interaction with Anopheles acetylcholinesterase. J Mol Graph Model 2021; 110:108054. [PMID: 34688161 DOI: 10.1016/j.jmgm.2021.108054] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 11/29/2022]
Abstract
Organophosphates (OPs) used as potent insecticides for malaria vector control, covalently phosphorylate the catalytic serine residue of Anopheles gambiae AChE (AgAChE) in a reaction that liberates their leaving groups. In the recent 10-year insecticide use assessment, OPs were the most frequently used World Health Organization prequalified insecticides. Molecular modelling programs are best suited to display molecular interactions between ligands and the target proteins. The docking modes that generate ligand poses closer to the binding site show high accuracy in predicting the ligand binding mode. The implicit solvation approach such as molecular mechanics-generalized born surface area (MM-GBSA) is a more reliable method to predict ligand onformations and binding affinities. Apart from covalent docking studies being scarce, current molecular docking programs do not adequately possess the covalent docking reaction algorithm to display the molecular mechanism of OPs at the AgAChE catalytic site. This results into OP docking studies commonly being conducted through noncovalent pannels. The aim of this study was to establish the optimim covalent docking system for OPs through manual customization of Schrödinger's Glide covalent docking reaction algorithm. To achieve this, a newly customized covalent reaction algorithm was assessed on a set of ligands covering aromatic, non-aromatic and hydrophobic OPs and compared to the noncovalent docking results in terms of reliability based on the reported X-ray diffraction molecular interactions and crystal poses. The study established that by virtue of omitting the well-known OP hydrolysis, noncovalent mode suggested molecular interactions that were further from the catalytic triad and could not otherwise occur when the molecule is hydrolyzed as in the customized covalent docking mode. Moreover, the MM-GBSA concurred with the optimized covalent docking in eliminating such inaccurate molecular interactions. Additionally, the covalent docking mode confined the interactions and ligand poses to the catalytic site indicating relatively high accuracy and reliability. This study reports the optimized covalent docking panel that effectively confirmed the molecular mechanisms of OPs, as well as indentifying the corresponding amino acid residues required to stabilize the aromatic, non-aromatic and hydrophobic OPs at the AgAChE catalytic site in line with the reported X-ray diffraction studies. As such, the proposed manual customization of the Schrödinger's Glide covalent docking platform can be used to reliably predict molecular interactions between OPs and AgAChE target.
Collapse
Affiliation(s)
- Thankhoe A Rants'o
- Pharmacology Division, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa; WITS Research Institute for Malaria (WRIM), Faculty of Health Sciences, University of Witwatersrand, Johannesburg, 2193, South Africa.
| | - C Johan van der Westhuizen
- Council for Scientific and Industrial Research (CSIR), Future Production: Chemicals Cluster, Meiring Naude Road, Brummeria, Pretoria, 0001, South Africa
| | - Robyn L van Zyl
- Pharmacology Division, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa; WITS Research Institute for Malaria (WRIM), Faculty of Health Sciences, University of Witwatersrand, Johannesburg, 2193, South Africa
| |
Collapse
|
3
|
Alozi M, Rawas-Qalaji M. Treating organophosphates poisoning: management challenges and potential solutions. Crit Rev Toxicol 2020; 50:764-779. [DOI: 10.1080/10408444.2020.1837069] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Maria Alozi
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Mutasem Rawas-Qalaji
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
| |
Collapse
|
4
|
Belinskaia DA, Terpilovskii MA, Batalova AA, Goncharov NV. Effect of Cys34 Oxidation State of Albumin on Its Interaction with Paraoxon according to Molecular Modeling Data. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162019060086] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
5
|
Lin VS, Volk RF, DeLeon AJ, Anderson LN, Purvine SO, Shukla AK, Bernstein HC, Smith JN, Wright AT. Structure Dependent Determination of Organophosphate Targets in Mammalian Tissues Using Activity-Based Protein Profiling. Chem Res Toxicol 2019; 33:414-425. [DOI: 10.1021/acs.chemrestox.9b00344] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Vivian S. Lin
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Regan F. Volk
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Adrian J. DeLeon
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Lindsey N. Anderson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Samuel O. Purvine
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Anil K. Shukla
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Hans C. Bernstein
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
- Faculty of Biosciences, Fisheries and Economics, UiT - The Arctic University of Norway, Tromsø 9019, Norway
- The Arctic Centre for Sustainable Energy, UiT - The Arctic University of Norway, Tromsø 9019, Norway
| | - Jordan N. Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Aaron T. Wright
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99163, United States
| |
Collapse
|
6
|
Lushchekina SV, Schopfer LM, Grigorenko BL, Nemukhin AV, Varfolomeev SD, Lockridge O, Masson P. Optimization of Cholinesterase-Based Catalytic Bioscavengers Against Organophosphorus Agents. Front Pharmacol 2018; 9:211. [PMID: 29593539 PMCID: PMC5859046 DOI: 10.3389/fphar.2018.00211] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 02/26/2018] [Indexed: 11/13/2022] Open
Abstract
Organophosphorus agents (OPs) are irreversible inhibitors of acetylcholinesterase (AChE). OP poisoning causes major cholinergic syndrome. Current medical counter-measures mitigate the acute effects but have limited action against OP-induced brain damage. Bioscavengers are appealing alternative therapeutic approach because they neutralize OPs in bloodstream before they reach physiological targets. First generation bioscavengers are stoichiometric bioscavengers. However, stoichiometric neutralization requires administration of huge doses of enzyme. Second generation bioscavengers are catalytic bioscavengers capable of detoxifying OPs with a turnover. High bimolecular rate constants (kcat/Km > 106 M−1min−1) are required, so that low enzyme doses can be administered. Cholinesterases (ChE) are attractive candidates because OPs are hemi-substrates. Moderate OP hydrolase (OPase) activity has been observed for certain natural ChEs and for G117H-based human BChE mutants made by site-directed mutagenesis. However, before mutated ChEs can become operational catalytic bioscavengers their dephosphylation rate constant must be increased by several orders of magnitude. New strategies for converting ChEs into fast OPase are based either on combinational approaches or on computer redesign of enzyme. The keystone for rational conversion of ChEs into OPases is to understand the reaction mechanisms with OPs. In the present work we propose that efficient OP hydrolysis can be achieved by re-designing the configuration of enzyme active center residues and by creating specific routes for attack of water molecules and proton transfer. Four directions for nucleophilic attack of water on phosphorus atom were defined. Changes must lead to a novel enzyme, wherein OP hydrolysis wins over competing aging reactions. Kinetic, crystallographic, and computational data have been accumulated that describe mechanisms of reactions involving ChEs. From these studies, it appears that introducing new groups that create a stable H-bonded network susceptible to activate and orient water molecule, stabilize transition states (TS), and intermediates may determine whether dephosphylation is favored over aging. Mutations on key residues (L286, F329, F398) were considered. QM/MM calculations suggest that mutation L286H combined to other mutations favors water attack from apical position. However, the aging reaction is competing. Axial direction of water attack is not favorable to aging. QM/MM calculation shows that F329H+F398H-based multiple mutants display favorable energy barrier for fast reactivation without aging.
Collapse
Affiliation(s)
- Sofya V Lushchekina
- Laboratory of Computer Modeling of Bimolecular Systems and Nanomaterials, N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, Russia
| | - Lawrence M Schopfer
- Department of Biochemistry and Molecular Biology, Eppley Institute, University of Nebraska Medical Center, Omaha, NE, United States
| | - Bella L Grigorenko
- Laboratory of Computer Modeling of Bimolecular Systems and Nanomaterials, N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, Russia.,Chemistry Department, Lomonosov State University, Moscow, Russia
| | - Alexander V Nemukhin
- Laboratory of Computer Modeling of Bimolecular Systems and Nanomaterials, N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, Russia.,Chemistry Department, Lomonosov State University, Moscow, Russia
| | - Sergei D Varfolomeev
- Laboratory of Computer Modeling of Bimolecular Systems and Nanomaterials, N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, Russia.,Chemistry Department, Lomonosov State University, Moscow, Russia
| | - Oksana Lockridge
- Department of Biochemistry and Molecular Biology, Eppley Institute, University of Nebraska Medical Center, Omaha, NE, United States
| | - Patrick Masson
- Neuropharmacology Laboratory, Kazan Federal University, Kazan, Russia
| |
Collapse
|