1
|
Salido-Guadarrama I, Romero-Cordoba SL, Rueda-Zarazua B. Multi-Omics Mining of lncRNAs with Biological and Clinical Relevance in Cancer. Int J Mol Sci 2023; 24:16600. [PMID: 38068923 PMCID: PMC10706612 DOI: 10.3390/ijms242316600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023] Open
Abstract
In this review, we provide a general overview of the current panorama of mining strategies for multi-omics data to investigate lncRNAs with an actual or potential role as biological markers in cancer. Several multi-omics studies focusing on lncRNAs have been performed in the past with varying scopes. Nevertheless, many questions remain regarding the pragmatic application of different molecular technologies and bioinformatics algorithms for mining multi-omics data. Here, we attempt to address some of the less discussed aspects of the practical applications using different study designs for incorporating bioinformatics and statistical analyses of multi-omics data. Finally, we discuss the potential improvements and new paradigms aimed at unraveling the role and utility of lncRNAs in cancer and their potential use as molecular markers for cancer diagnosis and outcome prediction.
Collapse
Affiliation(s)
- Ivan Salido-Guadarrama
- Departamento de Bioinformatìca y Análisis Estadísticos, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City 11000, Mexico
| | - Sandra L. Romero-Cordoba
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
- Biochemistry Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Bertha Rueda-Zarazua
- Posgrado en Ciencias Biológicas, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| |
Collapse
|
2
|
Yan K, Niu L, Wu B, He C, Deng L, Chen C, Lan Z, Lin C, Kuang W, Lin H, Zou J, Zhang W, Luo Z. Copy number variants landscape of multiple cancers and clinical applications based on NGS gene panel. Ann Med 2023; 55:2280708. [PMID: 37967237 PMCID: PMC10653745 DOI: 10.1080/07853890.2023.2280708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/30/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND The rapid adoption of next-generation sequencing in clinical oncology has enabled detection of molecular biomarkers which are shared between multiple tumour types. Intra-tumour heterogeneity is a mechanism of therapeutic resistance and therefore an important clinical challenge. However, the tumour-related copy number variants (CNVs), as key regulators of cancer origination, development, and progression, across various types of cancers are poorly understood. METHODS We performed pan-cancer CNV analysis of cancer-related genes in 15 types of cancers including 1438 cancerous patients by next-generation sequencing using a commercially available pan-cancer panel (Onco PanScan™). Downstream bioinformatics analysis was performed in order to detect CNVs, cluster analysis of the found CNVs, and comparison of the frequency of gained CNVs between different types of cancers. LASSO analysis was used for identification of the most important CNVs. RESULTS We also identified 523 CNVs among which 16 CNVs were common while 22 CNVs were caner-specific CNVs. Meanwhile, FAM58A was most commonly found in all studied cancers in this study and significant differences were found in FAM58A between female and male patients (p = .001). Common CNVs, such as FOXA1, NFKBIA, HEY1, MECOM, CHD7, AGO2, were mutated in 6.79%, 8.45%, 7.51%, 6.43%, 7.59%, 8.16% of tumours, while most of these mutations have proven roles in positive regulation of transcription from RNA polymerase II promoter. 11 features including sex, DIS3, EPHB1, ERBB2, FLT1, HCK, KEAP1, MYD88, PARP3, TBX3, and TOP2A were found as the key features for classification of cancers using CNVs. CONCLUSION The 16 common CNVs between cancers can be used to identify the target of pan-cancer drug design and targeted therapies. Additionally, 22 caner-specific CNVs can be used as unique diagnostic markers for each cancer type.
Collapse
Affiliation(s)
- Kangpeng Yan
- Department of Abdominal Oncology Surgery, Jiangxi Cancer Hospital, Nanchang, China
| | - Li Niu
- CheerLand Clinical Laboratory Co., Ltd., Peking University Medical Industrial Park, Zhongguancun Life Science Park, Beijing, China
| | - Boyu Wu
- Department of General Surgery, Shangrao Municipal Hospital, Shangrao, China
| | - Chongwu He
- Department of Breast Surgery, Jiangxi Cancer Hospital, Nanchang, China
| | - Lei Deng
- Department of Medical Oncology, Jiangxi Cancer Hospital, Nanchang, China
| | - Chuan Chen
- Shenzhen Cheerland Biotechnology Co., Ltd., Shenzhen, China
| | - Zhangzhang Lan
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Chao Lin
- Department of Abdominal Oncology Surgery, Jiangxi Cancer Hospital, Nanchang, China
| | - Weihua Kuang
- Department of Abdominal Oncology Surgery, Jiangxi Cancer Hospital, Nanchang, China
| | - Huihong Lin
- Operating Room, Jiangxi Cancer Hospital, Nanchang, China
| | - Jun Zou
- Department of Abdominal Oncology Surgery, Jiangxi Cancer Hospital, Nanchang, China
| | - Wenyong Zhang
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Zhiqiang Luo
- Chest Radiotherapy Department 1, Jiangxi Cancer Hospital, Nanchang, China
| |
Collapse
|
3
|
Zhao M, Liu Y, Qu H. circExp database: an online transcriptome platform for human circRNA expressions in cancers. Database (Oxford) 2021; 2021:baab045. [PMID: 34296749 PMCID: PMC8299715 DOI: 10.1093/database/baab045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/15/2021] [Accepted: 07/13/2021] [Indexed: 01/30/2023]
Abstract
Circular RNA (circRNA) is a highly stable, single-stranded, closed-loop RNA that works as RNA or as a protein decoy to regulate gene expression. In humans, thousands of circRNA transcriptional products precisely express in specific developmental stages, tissues and cell types. Due to their stability and specificity, circRNAs are ideal biomarkers for cancer diagnosis and prognosis. To provide an integrated and standardized circRNA expression profile for human cancers, we performed extensive data curation across 11 technical platforms, collecting 48 expression profile data sets for 18 cancer types and amassing 860 751 expression records. We also identified 189 193 differential expression signatures that are significantly different between normal and cancer samples. All the pre-calculated expression analysis results are organized into 132 plain text files for bulk download. Our online interface, circExp, provides data browsing and search functions. For each data set, a dynamic expression heatmap provides a profile overview. Based on the processed data, we found that 52 circRNAs were consistently and differentially expressed in 20 or more processed analyses. By mapping those circRNAs to their parent protein-coding genes, we found that they may have profoundly affected the survival of 10 797 patients in the The Cancer Genome Atlas pan-cancer data set. In sum, we developed circExp and demonstrated that it is useful to identify circRNAs that have potential diagnostic and prognostic significance for a variety of cancer types. In this online and reusable database, found at http://soft.bioinfo-minzhao.org/circexp, we have provided pre-calculated expression data about circRNAs and their parental genes, as well as data browsing and searching functions. Database URL: http://soft.bioinfominzhao.org/circexp/.
Collapse
Affiliation(s)
- Min Zhao
- School of Science and Engineering, University of the Sunshine Coast, Maroochydore DC, QLD 4558, Australia
| | - Yining Liu
- The School of Public Health, Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 510182, China
| | - Hong Qu
- Center for Bioinformatics, State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, P.R. China
| |
Collapse
|
4
|
Blesa S, Olivares MD, Alic AS, Serrano A, Lendinez V, González-Albert V, Olivares L, Martínez-Hervás S, Juanes JM, Marín P, Real JT, Navarro B, García-García AB, Chaves FJ, Ivorra C. Easy One-Step Amplification and Labeling Procedure for Copy Number Variation Detection. Clin Chem 2020; 66:463-473. [PMID: 32068788 DOI: 10.1093/clinchem/hvaa002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/21/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND The specific characteristics of copy number variations (CNVs) require specific methods of detection and characterization. We developed the Easy One-Step Amplification and Labeling procedure for CNV detection (EOSAL-CNV), a new method based on proportional amplification and labeling of amplicons in 1 PCR. METHODS We used tailed primers for specific amplification and a pair of labeling probes (only 1 labeled) for amplification and labeling of all amplicons in just 1 reaction. Products were loaded directly onto a capillary DNA sequencer for fragment sizing and quantification. Data obtained could be analyzed by Microsoft Excel spreadsheet or EOSAL-CNV analysis software. We developed the protocol using the LDLR (low density lipoprotein receptor) gene including 23 samples with 8 different CNVs. After optimizing the protocol, it was used for genes in the following multiplexes: BRCA1 (BRCA1 DNA repair associated), BRCA2 (BRCA2 DNA repair associated), CHEK2 (checkpoint kinase 2), MLH1 (mutL homolog 1) plus MSH6 (mutS homolog 6), MSH2 (mutS homolog 2) plus EPCAM (epithelial cell adhesion molecule) and chromosome 17 (especially the TP53 [tumor protein 53] gene). We compared our procedure with multiplex ligation-dependent probe amplification (MLPA). RESULTS The simple procedure for CNV detection required 150 min, with <10 min of handwork. After analyzing >240 samples, EOSAL-CNV excluded the presence of CNVs in all controls, and in all cases, results were identical using MLPA and EOSAL-CNV. Analysis of the 17p region in tumor samples showed 100% similarity between fluorescent in situ hybridization and EOSAL-CNV. CONCLUSIONS EOSAL-CNV allowed reliable, fast, easy detection and characterization of CNVs. It provides an alternative to targeted analysis methods such as MLPA.
Collapse
Affiliation(s)
- Sebastián Blesa
- Genomic and Genetic Diagnosis Unit, INCLIVA Biomedical Research Institute (UGDG, INCLIVA), Valencia, Valencian Community, Spain
| | - María D Olivares
- I+D+I Department, Sequencing Multiplex SL (I+d+I, Seqplexing), Serra, Valencian Community, Spain
| | - Andy S Alic
- I+D+I Department, Sequencing Multiplex SL (I+d+I, Seqplexing), Serra, Valencian Community, Spain
| | - Alicia Serrano
- Hematology Department, Clinical University Hospital of Valencia (HCUV), Valencia, Valencian Community, Spain.,Physiology Department, University of Valencia (FD, UV), Valencia, Valencian Community, Spain
| | - Verónica Lendinez
- Genomic and Genetic Diagnosis Unit, INCLIVA Biomedical Research Institute (UGDG, INCLIVA), Valencia, Valencian Community, Spain
| | - Verónica González-Albert
- Genomic and Genetic Diagnosis Unit, INCLIVA Biomedical Research Institute (UGDG, INCLIVA), Valencia, Valencian Community, Spain
| | - Laura Olivares
- Genomic and Genetic Diagnosis Unit, INCLIVA Biomedical Research Institute (UGDG, INCLIVA), Valencia, Valencian Community, Spain
| | - Sergio Martínez-Hervás
- Endocrinology Service, Clinical University Hospital of Valencia (HCUV), Valencia, Valencian Community, Spain
| | - José M Juanes
- Genomic and Genetic Diagnosis Unit, INCLIVA Biomedical Research Institute (UGDG, INCLIVA), Valencia, Valencian Community, Spain
| | - Pablo Marín
- Computational and Clinical Genomics Department, Kanteron Systems SLU (CCGD, Kanteron), Valencia, Valencian Community, Spain
| | - Jose T Real
- Endocrinology Service, Clinical University Hospital of Valencia (HCUV), Valencia, Valencian Community, Spain.,Department of Medicine, University of Valencia (DM; UV), Valencia, Valencian Community, Spain
| | - Blanca Navarro
- Hematology Department, Clinical University Hospital of Valencia (HCUV), Valencia, Valencian Community, Spain.,Physiology Department, University of Valencia (FD, UV), Valencia, Valencian Community, Spain
| | - Ana B García-García
- Genomic and Genetic Diagnosis Unit, INCLIVA Biomedical Research Institute (UGDG, INCLIVA), Valencia, Valencian Community, Spain.,CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Autonomous Community of Madrid, Spain
| | - Felipe J Chaves
- Genomic and Genetic Diagnosis Unit, INCLIVA Biomedical Research Institute (UGDG, INCLIVA), Valencia, Valencian Community, Spain.,I+D+I Department, Sequencing Multiplex SL (I+d+I, Seqplexing), Serra, Valencian Community, Spain.,CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Autonomous Community of Madrid, Spain
| | - Carmen Ivorra
- I+D+I Department, Sequencing Multiplex SL (I+d+I, Seqplexing), Serra, Valencian Community, Spain
| |
Collapse
|
5
|
Ota R, Sawada T, Tsuyama S, Sasaki Y, Suzuki H, Kaizaki Y, Hasatani K, Yamamoto E, Nakanishi H, Inagaki S, Tsuji S, Yoshida N, Doyama H, Minato H, Nakamura K, Kasashima S, Kubota E, Kataoka H, Tokino T, Yao T, Minamoto T. Integrated genetic and epigenetic analysis of cancer-related genes in non-ampullary duodenal adenomas and intramucosal adenocarcinomas. J Pathol 2020; 252:330-342. [PMID: 32770675 PMCID: PMC7693035 DOI: 10.1002/path.5529] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/20/2020] [Accepted: 07/28/2020] [Indexed: 12/24/2022]
Abstract
The molecular and clinical characteristics of non‐ampullary duodenal adenomas and intramucosal adenocarcinomas are not fully understood because they are rare. To clarify these characteristics, we performed genetic and epigenetic analysis of cancer‐related genes in these lesions. One hundred and seven non‐ampullary duodenal adenomas and intramucosal adenocarcinomas, including 100 small intestinal‐type tumors (90 adenomas and 10 intramucosal adenocarcinomas) and 7 gastric‐type tumors (2 pyloric gland adenomas and 5 intramucosal adenocarcinomas), were investigated. Using bisulfite pyrosequencing, we assessed the methylation status of CpG island methylator phenotype (CIMP) markers and MLH1. Then using next‐generation sequencing, we performed targeted exome sequence analysis within 75 cancer‐related genes in 102 lesions. There were significant differences in the clinicopathological and molecular variables between small intestinal‐ and gastric‐type tumors, which suggests the presence of at least two separate carcinogenic pathways in non‐ampullary duodenal adenocarcinomas. The prevalence of CIMP‐positive lesions was higher in intramucosal adenocarcinomas than in adenomas. Thus, concurrent hypermethylation of multiple CpG islands is likely associated with development of non‐ampullary duodenal intramucosal adenocarcinomas. Mutation analysis showed that APC was the most frequently mutated gene in these lesions (56/102; 55%), followed by KRAS (13/102; 13%), LRP1B (10/102; 10%), GNAS (8/102; 8%), ERBB3 (7/102; 7%), and RNF43 (6/102; 6%). Additionally, the high prevalence of diffuse or focal nuclear β‐catenin accumulation (87/102; 85%) as well as mutations of WNT pathway components (60/102; 59%) indicates the importance of WNT signaling to the initiation of duodenal adenomas. The higher than previously reported frequency of APC gene mutations in small bowel adenocarcinomas as well as the difference in the APC mutation distributions between small intestinal‐type adenomas and intramucosal adenocarcinomas may indicate that the adenoma–carcinoma sequence has only limited involvement in duodenal carcinogenesis. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Ryosuke Ota
- Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Takeshi Sawada
- Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan.,Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Sho Tsuyama
- Department of Human Pathology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yasushi Sasaki
- Division of Biology, Department of Liberal Arts and Sciences, Center for Medical Education, Sapporo Medical University, Sapporo, Japan
| | - Hiromu Suzuki
- Department of Molecular Biology, Sapporo Medical University, Sapporo, Japan
| | - Yasuharu Kaizaki
- Department of Pathology, Fukui Prefectural Hospital, Fukui, Japan
| | - Kenkei Hasatani
- Department of Gastroenterology, Fukui Prefectural Hospital, Fukui, Japan
| | - Eiichiro Yamamoto
- Department of Molecular Biology, Sapporo Medical University, Sapporo, Japan
| | - Hiroyoshi Nakanishi
- Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Satoko Inagaki
- Department of Advanced Research in Community Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Shigetsugu Tsuji
- Department of Gastroenterology, Ishikawa Prefectural Central Hospital, Kanazawa, Japan
| | - Naohiro Yoshida
- Department of Gastroenterology, Ishikawa Prefectural Central Hospital, Kanazawa, Japan
| | - Hisashi Doyama
- Department of Gastroenterology, Ishikawa Prefectural Central Hospital, Kanazawa, Japan
| | - Hiroshi Minato
- Department of Pathology, Ishikawa Prefectural Central Hospital, Kanazawa, Japan
| | - Keishi Nakamura
- Department of Gastroenterological Surgery, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Satomi Kasashima
- Department of Clinical Laboratory Science, Kanazawa University, Kanazawa, Japan
| | - Eiji Kubota
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hiromi Kataoka
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takashi Tokino
- Department of Medical Genome Sciences, Research Institute for Frontier Medicine, Sapporo Medical University, Sapporo, Japan
| | - Takashi Yao
- Department of Human Pathology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Toshinari Minamoto
- Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
6
|
Nakanishi H, Sawada T, Kaizaki Y, Ota R, Suzuki H, Yamamoto E, Aoki H, Eizuka M, Hasatani K, Takahashi N, Inagaki S, Ebi M, Kato H, Kubota E, Kataoka H, Takahashi S, Tokino T, Minamoto T, Sugai T, Sasaki Y. Significance of gene mutations in the Wnt signaling pathway in traditional serrated adenomas of the colon and rectum. PLoS One 2020; 15:e0229262. [PMID: 32092099 PMCID: PMC7039454 DOI: 10.1371/journal.pone.0229262] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/02/2020] [Indexed: 12/16/2022] Open
Abstract
Recent studies have shown that colorectal serrated lesions, which include sessile serrated adenomas (SSAs) and traditional serrated adenomas (TSAs), are precursors of colorectal cancer. However, the molecular mechanisms underlying the carcinogenesis, particularly in TSAs, remain largely uncharacterized. To clarify their molecular and clinicopathological characteristics, we performed mutation and methylation analyses of cancer-associated genes in 78 serrated lesions, including TSAs, SSAs and microvesicular hyperplastic polyps. Target exon sequence analysis was performed with 39 genes, including genes known to be frequently mutated in colorectal cancers and/or serrated lesions. We also used bisulfite pyrosequencing to assess the methylation status of various cancer-associated genes and marker genes of the CpG island methylator phenotype (CIMP). The prevalence of mutations in genes associated with Wnt signaling was significantly higher in TSAs than SSAs (65% vs. 28%, p < 0.01). Among those, RNF43 mutations were observed in 38% of TSAs and 17% of SSAs. In immunohistochemical studies of 39 serrated lesions, the prevalence of abnormal nuclear β-catenin accumulation was significantly higher in TSAs (57%) than SSAs (8%) (P = 0.01). SMOC1 methylation was detected in 54% of TSAs but in no SSAs (p < 0.01). Additionally, SMOC1 methylation was more prevalent among TSAs with KRAS mutation (82%) than with BRAF mutation (38%, p = 0.03). Lesions with CIMP-high or RNF43 mutations were detected only in TSAs with BRAF mutation, suggesting two distinct carcinogenic pathways in TSAs. Mutations in genes associated with Wnt signaling play a greater role in the carcinogenesis of TSAs than SSAs.
Collapse
Affiliation(s)
- Hiroyoshi Nakanishi
- Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Takeshi Sawada
- Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan.,Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yasuharu Kaizaki
- Department of Pathology, Fukui Prefectural Hospital, Fukui, Japan
| | - Ryosuke Ota
- Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Hiromu Suzuki
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Eiichiro Yamamoto
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hironori Aoki
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Makoto Eizuka
- Department of Molecular Diagnostic Pathology, Iwate Medical University School of Medicine, Morioka, Japan
| | - Kenkei Hasatani
- Department of Gastroenterology, Fukui Prefectural Hospital, Fukui, Japan
| | - Naoki Takahashi
- Department of Gastroenterology, Saitama Cancer Center, Saitama, Japan
| | - Satoko Inagaki
- Department of Advanced Research in Community Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Masahide Ebi
- Department of Gastroenterology, Aichi Medical University, Nagakute, Japan
| | - Hiroyuki Kato
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Eiji Kubota
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hiromi Kataoka
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Satoru Takahashi
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takashi Tokino
- Department of Medical Genome Sciences, Research Institute for Frontier Medicine, Sapporo Medical University, Sapporo, Japan
| | - Toshinari Minamoto
- Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Tamotsu Sugai
- Department of Molecular Diagnostic Pathology, Iwate Medical University School of Medicine, Morioka, Japan
| | - Yasushi Sasaki
- Division of Biology, Department of Liberal Arts and Sciences, Center for Medical Education, Sapporo Medical University, Sapporo, Japan
| |
Collapse
|
7
|
Clinically Actionable Insights into Initial and Matched Recurrent Glioblastomas to Inform Novel Treatment Approaches. JOURNAL OF ONCOLOGY 2019; 2019:4878547. [PMID: 32082376 PMCID: PMC7012245 DOI: 10.1155/2019/4878547] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 10/07/2019] [Accepted: 10/25/2019] [Indexed: 12/31/2022]
Abstract
Glioblastoma is the most common primary adult brain tumour, and despite optimal treatment, the median survival is 12–15 months. Patients with matched recurrent glioblastomas were investigated to try to find actionable mutations. Tumours were profiled using a validated DNA-based gene panel. Copy number variations (CNVs) and single nucleotide variants (SNVs) were examined, and potentially pathogenic variants and clinically actionable mutations were identified. The results revealed that glioblastomas were IDH-wildtype (IDHWT; n = 38) and IDH-mutant (IDHMUT; n = 3). SNVs in TSC2, MSH6, TP53, CREBBP, and IDH1 were variants of unknown significance (VUS) that were predicted to be pathogenic in both subtypes. IDHWT tumours had SNVs that impacted RTK/Ras/PI(3)K, p53, WNT, SHH, NOTCH, Rb, and G-protein pathways. Many tumours had BRCA1/2 (18%) variants, including confirmed somatic mutations in haemangioblastoma. IDHWT recurrent tumours had fewer pathways impacted (RTK/Ras/PI(3)K, p53, WNT, and G-protein) and CNV gains (BRCA2, GNAS, and EGFR) and losses (TERT and SMARCA4). IDHMUT tumours had SNVs that impacted RTK/Ras/PI(3)K, p53, and WNT pathways. VUS in KLK1 was possibly pathogenic in IDHMUT. Recurrent tumours also had fewer pathways (p53, WNT, and G-protein) impacted by genetic alterations. Public datasets (TCGA and GDC) confirmed the clinical significance of findings in both subtypes. Overall in this cohort, potentially actionable variation was most often identified in EGFR, PTEN, BRCA1/2, and ATM. This study underlines the need for detailed molecular profiling to identify individual GBM patients who may be eligible for novel treatment approaches. This information is also crucial for patient recruitment to clinical trials.
Collapse
|
8
|
Petukhova L, Patel AV, Rigo RK, Bian L, Verbitsky M, Sanna-Cherchi S, Erjavec SO, Abdelaziz AR, Cerise JE, Jabbari A, Christiano AM. Integrative analysis of rare copy number variants and gene expression data in alopecia areata implicates an aetiological role for autophagy. Exp Dermatol 2019; 29:243-253. [PMID: 31169925 DOI: 10.1111/exd.13986] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 04/23/2019] [Accepted: 05/09/2019] [Indexed: 12/26/2022]
Abstract
Alopecia areata (AA) is a highly prevalent autoimmune disease that attacks the hair follicle and leads to hair loss that can range from small patches to complete loss of scalp and body hair. Our previous linkage and genome-wide association studies (GWAS) generated strong evidence for aetiological contributions from inherited genetic variants at different population frequencies, including both rare mutations and common polymorphisms. Additionally, we conducted gene expression (GE) studies on scalp biopsies of 96 patients and controls to establish signatures of active disease. In this study, we performed an integrative analysis on these two datasets to test the hypothesis that rare CNVs in patients with AA could be leveraged to identify drivers of disease in our AA GE signatures. We analysed copy number variants (CNVs) in a case-control cohort of 673 patients with AA and 16 311 controls independent of the case-control cohort of 96 research participants used in our GE study. Using an integrative computational analysis, we identified 14 genes whose expression levels were altered by CNVs in a consistent direction of effect, corresponding to gene expression changes in lesional skin of patients. Four of these genes were affected by CNVs in three or more unrelated patients with AA, including ATG4B and SMARCA2, which are involved in autophagy and chromatin remodelling, respectively. Our findings identified new classes of genes with potential contributions to AA pathogenesis.
Collapse
Affiliation(s)
- Lynn Petukhova
- Department of Dermatology, College of Physicians and Surgeons, Columbia University, New York, New York.,Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York
| | - Aakash V Patel
- Department of Dermatology, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Rachel K Rigo
- Department of Dermatology, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Li Bian
- Department of Dermatology, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Miguel Verbitsky
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Simone Sanna-Cherchi
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Stephanie O Erjavec
- Department of Dermatology, College of Physicians and Surgeons, Columbia University, New York, New York.,Department of Genetics and Development, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Alexa R Abdelaziz
- Department of Dermatology, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Jane E Cerise
- Department of Dermatology, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Ali Jabbari
- Department of Dermatology, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Angela M Christiano
- Department of Dermatology, College of Physicians and Surgeons, Columbia University, New York, New York.,Department of Genetics and Development, College of Physicians and Surgeons, Columbia University, New York, New York
| |
Collapse
|
9
|
eQTL analysis from co-localization of 2739 GWAS loci detects associated genes across 14 human cancers. J Theor Biol 2019; 462:240-246. [PMID: 30391648 DOI: 10.1016/j.jtbi.2018.10.059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 09/28/2018] [Accepted: 10/31/2018] [Indexed: 12/21/2022]
Abstract
Genetic variants can predict other "linked" diseases because alterations in one or more genes in vivo may affect relevant phenotype properties. Our study systematically explored the pan-cancer common gene and cancer type-specific genes based on GWAS loci and TCGA data of multiple cancers. It was found that there were 17 SNPs were significantly associated with the expression of 18 genes. Associations between the 18 cis-regulatory genes and the pathologic stage of each cancer showed that MYL2 and PTGFR in HNSC, 4 genes (F8, SATB2, G6PD and UGT1A6) in KIRP, 3 genes (CHMP4C, MAP3K1 and MECP2) in LUAD were all strongly associated with cancer stage levels. Additionally, the survival association analysis showed that SATB2 was correlated with HNSC survival, and MPP1 was strongly associated with the survival of SARC. This study will shed light on the biological pathways involved in cancer-genetic associations, and has the potential to be applied to the predictions of the risk of cancers developing in healthy individuals.
Collapse
|
10
|
Wee Y, Wang T, Liu Y, Li X, Zhao M. A pan-cancer study of copy number gain and up-regulation in human oncogenes. Life Sci 2018; 211:206-214. [PMID: 30243646 DOI: 10.1016/j.lfs.2018.09.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/14/2018] [Accepted: 09/18/2018] [Indexed: 11/17/2022]
Abstract
AIM There has been limited research on CNVs in oncogenes and we conducted a systematic pan-cancer analysis of CNVs and their gene expression changes. The aim of the present study was to provide an insight into the relationships between gene expression and oncogenesis. MAIN METHODS We collected all the oncogenes from ONGene database and overlapped with CNVs TCGA tumour samples from Catalogue of Somatic Mutations in Cancer database. We further conducted an integrative analysis of CNV with gene expression using the data from the matched TCGA tumour samples. KEY FINDINGS From our analysis, we found 637 oncogenes associated with CNVs in 5900 tumour samples. There were 204 oncogenes with frequent copy number of gain (CNG). These 204 oncogenes were enriched in cancer-related pathways including the MAPK cascade and Ras GTPases signalling pathways. By using corresponding tumour samples data to perform integrative analyses of CNVs and gene expression changes, we identified 95 oncogenes with consistent CNG occurrence and up-regulation in the tumour samples, which may represent the recurrent driving force for oncogenesis. Surprisingly, eight oncogenes shown concordant CNG and gene up-regulation in at least 250 tumour samples: INTS8 (355), ECT2 (326), LSM1 (310), DDHD2 (298), COPS5 (286), EIF3E (281), TPD52 (258) and ERBB2 (254). SIGNIFICANCE As the first report about abundant CNGs on oncogene and concordant change of gene expression, our results may be valuable for the design of CNV-based cancer diagnostic strategy.
Collapse
Affiliation(s)
- YongKiat Wee
- School of Engineering, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Queensland 4558, Australia
| | - TianFang Wang
- School of Engineering, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Queensland 4558, Australia
| | - Yining Liu
- The School of Public Health, Institute for Chemical Carcinogenesis, Guangzhou Medical University, 195 Dongfengxi Road, Guangzhou 510182, China
| | - Xiaoyan Li
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung & Blood Vessel Disease, Beijing, China
| | - Min Zhao
- School of Engineering, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Queensland 4558, Australia.
| |
Collapse
|
11
|
Identification of novel prognosis-related genes associated with cancer using integrative network analysis. Sci Rep 2018; 8:3233. [PMID: 29459674 PMCID: PMC5818516 DOI: 10.1038/s41598-018-21691-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 02/08/2018] [Indexed: 12/28/2022] Open
Abstract
Prognosis identifies the seriousness and the chances of survival of a cancer patient. However, it remains a challenge to identify the key cancer genes in prognostic studies. In this study, we collected 2064 genes that were related to prognostic studies by using gene expression measurements curated from published literatures. Among them, 1820 genes were associated with copy number variations (CNVs). The further functional enrichment on 889 genes with frequent copy number gains (CNGs) revealed that these genes were significantly associated with cancer pathways including regulation of cell cycle, cell differentiation and mitogen-activated protein kinase (MAPK) cascade. We further conducted integrative analyses of CNV and their target genes expression using the data from matched tumour samples of The Cancer Genome Atlas (TCGA). Ultimately, 95 key prognosis-related genes were extracted, with concordant CNG events and increased up-regulation in at least 300 tumour samples. These genes, and the number of samples in which they were found, included: ACTL6A (399), ATP6V1C1 (425), EBAG9 (412), FADD (308), MTDH (377), and SENP5 (304). This study provides the first observation of CNV in prognosis-related genes across pan-cancer. The systematic concordance between CNG and up-regulation of gene expression in these novel prognosis-related genes may indicate their prognostic significance.
Collapse
|
12
|
Liu Y, Li Z, Lu J, Zhao M, Qu H. CMGene: A literature-based database and knowledge resource for cancer metastasis genes. J Genet Genomics 2017; 44:277-279. [PMID: 28527662 DOI: 10.1016/j.jgg.2017.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 04/27/2017] [Accepted: 04/30/2017] [Indexed: 12/26/2022]
Affiliation(s)
- Yining Liu
- The School of Public Health, Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 510182, China
| | - Zhe Li
- Center for Bioinformatics, State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Jiachun Lu
- The School of Public Health, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou 510120, China
| | - Min Zhao
- School of Engineering, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia.
| | - Hong Qu
- Center for Bioinformatics, State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|