1
|
Barron A, Tuulari J, Karlsson L, Karlsson H, O'Keeffe G, McCarthy C. Simulated ischaemia/reperfusion impairs trophoblast function through divergent oxidative stress- and MMP-9-dependent mechanisms. Biosci Rep 2024; 44:BSR20240763. [PMID: 39474810 PMCID: PMC11581840 DOI: 10.1042/bsr20240763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 11/22/2024] Open
Abstract
Early-onset pre-eclampsia is believed to arise from defective placentation in the first trimester, leading to placental ischaemia/reperfusion (I/R) and oxidative stress. However, our current understanding of the effects of I/R and oxidative stress on trophoblast function is ambiguous in part due to studies exposing trophoblasts to hypoxia instead of I/R, and which report conflicting results. Here, we present a model of simulated ischaemia/reperfusion (SI/R) to recapitulate the pathophysiological events of early-onset pre-eclampsia (PE), by exposing first trimester cytotrophoblast HTR-8/SVneo cells to a simulated ischaemia buffer followed by reperfusion. We examined different ischaemia and reperfusion times and observed that 1 h ischaemia and 24 h reperfusion induced an increase in reactive oxygen species (ROS) production (P<0.0001) and oxygen consumption rate (P<0.01). SI/R-exposed trophoblast cells exhibited deficits in migration, proliferation, and invasion (P<0.01). While the deficits in migration and proliferation were rescued by antioxidants, suggesting an ROS-dependent mechanism, the loss of invasion was not affected by antioxidants, which suggests a divergent ROS-independent pathway. In line with this, we observed a decrease in MMP-9, the key regulatory enzyme necessary for trophoblast invasion (P<0.01), which was similarly unaffected by antioxidants, and pharmacological inhibition of MMP-9 replicated the phenotype of deficient invasion (P<0.01). Collectively, these data demonstrate that I/R impairs trophoblast migration and proliferation via a ROS-dependent mechanism, and invasion via an ROS-independent loss of MMP-9, disambiguating the role of oxidative stress and providing insights into the response of trophoblasts to I/R in the context of early-onset PE.
Collapse
Affiliation(s)
- Aaron Barron
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
- FinnBrain Birth Cohort Study, Turku Brain and Mind Centre, Department of Clinical Medicine, University of Turku, Turku, Finland
| | - Jetro J. Tuulari
- FinnBrain Birth Cohort Study, Turku Brain and Mind Centre, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Psychiatry and Turku Brain and Mind Centre, University of Turku and Turku University Hospital, Turku, Finland
- Turku Collegium for Science, Medicine and Technology, University of Turku, Turku, Finland
- Centre for Population Health Research, University of Turku, Turku University Hospital, Turku, Finland
| | - Linnea Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Centre, Department of Clinical Medicine, University of Turku, Turku, Finland
- Centre for Population Health Research, University of Turku, Turku University Hospital, Turku, Finland
- Department of Clinical Medicine, Paediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
| | - Hasse Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Centre, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Psychiatry and Turku Brain and Mind Centre, University of Turku and Turku University Hospital, Turku, Finland
- Centre for Population Health Research, University of Turku, Turku University Hospital, Turku, Finland
| | - Gerard W. O'Keeffe
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- Cork Neuroscience Centre, University College Cork, Cork, Ireland
| | - Cathal M. McCarthy
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| |
Collapse
|
2
|
Dergilev K, Gureenkov A, Parfyonova Y. Autophagy as a Guardian of Vascular Niche Homeostasis. Int J Mol Sci 2024; 25:10097. [PMID: 39337582 PMCID: PMC11432168 DOI: 10.3390/ijms251810097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
The increasing burden of vascular dysfunction on healthcare systems worldwide results in higher morbidity and mortality rates across pathologies, including cardiovascular diseases. Vasculopathy is suggested to be caused by the dysregulation of vascular niches, a microenvironment of vascular structures comprising anatomical structures, extracellular matrix components, and various cell populations. These elements work together to ensure accurate control of the vascular network. In recent years, autophagy has been recognized as a crucial regulator of the vascular microenvironment responsible for maintaining basic cell functions such as proliferation, differentiation, replicative senescence, and apoptosis. Experimental studies indicate that autophagy activation can be enhanced or inhibited in various pathologies associated with vascular dysfunction, suggesting that autophagy plays both beneficial and detrimental roles. Here, we review and assess the principles of autophagy organization and regulation in non-tumor vascular niches. Our analysis focuses on significant figures in the vascular microenvironment, highlighting the role of autophagy and summarizing evidence that supports the systemic or multiorgan nature of the autophagy effects. Finally, we discuss the critical organizational and functional aspects of the vasculogenic niche, specifically in relation to autophagy. The resulting dysregulation of the vascular microenvironment contributes to the development of vascular dysfunction.
Collapse
Affiliation(s)
- Konstantin Dergilev
- National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia
| | - Alexandre Gureenkov
- National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia
| | - Yelena Parfyonova
- National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
3
|
Solanki K, Bezsonov E, Orekhov A, Parihar SP, Vaja S, White FA, Obukhov AG, Baig MS. Effect of reactive oxygen, nitrogen, and sulfur species on signaling pathways in atherosclerosis. Vascul Pharmacol 2024; 154:107282. [PMID: 38325566 DOI: 10.1016/j.vph.2024.107282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 02/04/2024] [Indexed: 02/09/2024]
Abstract
Atherosclerosis is a chronic inflammatory disease in which fats, lipids, cholesterol, calcium, proliferating smooth muscle cells, and immune cells accumulate in the intima of the large arteries, forming atherosclerotic plaques. A complex interplay of various vascular and immune cells takes place during the initiation and progression of atherosclerosis. Multiple reports indicate that tight control of reactive oxygen species (ROS), reactive nitrogen species (RNS), and reactive sulfur species (RSS) production is critical for maintaining vascular health. Unrestricted ROS and RNS generation may lead to activation of various inflammatory signaling pathways, facilitating atherosclerosis. Given these deleterious consequences, it is important to understand how ROS and RNS affect the signaling processes involved in atherogenesis. Conversely, RSS appears to exhibit an atheroprotective potential and can alleviate the deleterious effects of ROS and RNS. Herein, we review the literature describing the effects of ROS, RNS, and RSS on vascular smooth muscle cells, endothelial cells, and macrophages and focus on how changes in their production affect the initiation and progression of atherosclerosis. This review also discusses the contribution of ROS, RNS, and RSS in mediating various post-translational modifications, such as oxidation, nitrosylation, and sulfation, of the molecules involved in inflammatory signaling.
Collapse
Affiliation(s)
- Kundan Solanki
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Simrol, Indore, India
| | - Evgeny Bezsonov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia; Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, Russia; Department of Biology and General Genetics, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; The Cell Physiology and Pathology Laboratory, Turgenev State University of Orel, Orel, Russia
| | - Alexander Orekhov
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow, Russia
| | - Suraj P Parihar
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa) and Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Medical Microbiology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Department of Biochemistry, Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Shivani Vaja
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Simrol, Indore, India
| | - Fletcher A White
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Alexander G Obukhov
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Mirza S Baig
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Simrol, Indore, India.
| |
Collapse
|
4
|
Bu LL, Yuan HH, Xie LL, Guo MH, Liao DF, Zheng XL. New Dawn for Atherosclerosis: Vascular Endothelial Cell Senescence and Death. Int J Mol Sci 2023; 24:15160. [PMID: 37894840 PMCID: PMC10606899 DOI: 10.3390/ijms242015160] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/01/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Endothelial cells (ECs) form the inner linings of blood vessels, and are directly exposed to endogenous hazard signals and metabolites in the circulatory system. The senescence and death of ECs are not only adverse outcomes, but also causal contributors to endothelial dysfunction, an early risk marker of atherosclerosis. The pathophysiological process of EC senescence involves both structural and functional changes and has been linked to various factors, including oxidative stress, dysregulated cell cycle, hyperuricemia, vascular inflammation, and aberrant metabolite sensing and signaling. Multiple forms of EC death have been documented in atherosclerosis, including autophagic cell death, apoptosis, pyroptosis, NETosis, necroptosis, and ferroptosis. Despite this, the molecular mechanisms underlying EC senescence or death in atherogenesis are not fully understood. To provide a comprehensive update on the subject, this review examines the historic and latest findings on the molecular mechanisms and functional alterations associated with EC senescence and death in different stages of atherosclerosis.
Collapse
Affiliation(s)
- Lan-Lan Bu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (L.-L.B.); (D.-F.L.)
| | - Huan-Huan Yuan
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (H.-H.Y.); (L.-L.X.); (M.-H.G.)
| | - Ling-Li Xie
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (H.-H.Y.); (L.-L.X.); (M.-H.G.)
- Departments of Biochemistry and Molecular Biology and Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Min-Hua Guo
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (H.-H.Y.); (L.-L.X.); (M.-H.G.)
| | - Duan-Fang Liao
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (L.-L.B.); (D.-F.L.)
| | - Xi-Long Zheng
- Departments of Biochemistry and Molecular Biology and Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
5
|
Yang C, Cheng J, Zhu Q, Pan Q, Ji K, Li J. Review of the Protective Mechanism of Paeonol on Cardiovascular Disease. Drug Des Devel Ther 2023; 17:2193-2208. [PMID: 37525853 PMCID: PMC10387245 DOI: 10.2147/dddt.s414752] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/19/2023] [Indexed: 08/02/2023] Open
Abstract
Cardiovascular disease (CVD) is one of the leading causes of death in the world. Paeonol(Pae) is a phenolic component extracted from peony bark, peony root and Xu Changqing. Studies have shown that Pae can protect cardiomyocytes by inhibiting oxidative stress, promoting mitochondrial fusion, regulating mitochondrial autophagy and inhibiting inflammation. In addition, Pae improves ventricular remodeling by inhibiting myocardial apoptosis, hypertrophy and fibrosis. Pae also has a good protective effect on blood vessels by inhibiting vascular inflammation, reducing the expression of adhesion molecules, inhibiting vascular proliferation, and inhibiting oxidative stress and endoplasmic reticulum stress(ERS). Pae also has the effect of anti-endothelial cell senescence, promoting thrombus recanalization and vasodilating. In conclusion, the molecular targets of Pae are very complex, and the relationship between different targets and signaling pathways cannot be clearly explained, which requires us to use systems biology methods to further study specific molecular targets of Pae. It has to be mentioned that the bioavailability of Pae is poor, and some nanotechnology-assisted drug delivery systems improve the therapeutic effect of Pae. We reviewed the protective mechanism of paeonol on the cardiovascular system, hoping to provide help for drug development in the treatment of CVD.
Collapse
Affiliation(s)
- Chunkun Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Jiawen Cheng
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Qinwei Zhu
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, People's Republic of China
| | - Qingquan Pan
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, People's Republic of China
| | - Kui Ji
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, People's Republic of China
| | - Jun Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| |
Collapse
|
6
|
Ke X, Yu S, Situ S, Lin Z, Yuan Y. Morroniside inhibits Beclin1-dependent autophagic death and Bax-dependent apoptosis in cardiomyocytes through repressing BCL2 phosphorylation. In Vitro Cell Dev Biol Anim 2023:10.1007/s11626-023-00768-0. [PMID: 37155079 DOI: 10.1007/s11626-023-00768-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/13/2023] [Indexed: 05/10/2023]
Abstract
Morroniside can prevent myocardial injury caused by ischemia and hypoxia, which can be used to treat acute myocardial infarction (AMI). Hypoxia can cause apoptosis and autophagic death of cardiomyocytes. Morroniside has the ability to inhibit apoptosis and autophagy. However, the relationship between Morroniside-protected cardiomyocytes and two forms of death is unclear. The effects of Morroniside on the proliferation, apoptosis level, and autophagic activity of rat cardiomyocyte line H9c2 under hypoxia were first observed. Next, the roles of Morroniside in the phosphorylation of JNK and BCL2, BCL2-Beclin1, and BCL2-Bax complexes as well as mitochondrial membrane potential in H9c2 cells were evaluated upon hypoxia. Finally, the significance of BCL2 or JNK in Morroniside-regulated autophagy, apoptosis, and proliferation in H9c2 cells was assessed by combining Morroniside and BCL2 competitive inhibitor (ABT-737) or JNK activator (Anisomycin). Our results showed that hypoxia promoted autophagy and apoptosis of H9c2 cells, and inhibited their proliferation. However, Morroniside could block the effect of hypoxia on H9c2 cells. In addition, Morroniside could inhibit JNK phosphorylation, BCL2 phosphorylation at the Ser70 and Ser87 sites, and the dissociation of BCL2-Beclin1 and BCL2-Bax complexes in H9c2 cells upon hypoxia. Moreover, the reduction of mitochondrial membrane potential in H9c2 cells caused by hypoxia was improved by Morroniside administration. Importantly, the inhibited autophagy, apoptosis, and promoted proliferation in H9c2 cells by Morroniside were reversed by the application of ABT-737 or Anisomycin. Overall, Morroniside inhibits Beclin1-dependent autophagic death and Bax-dependent apoptosis via JNK-mediated BCL2 phosphorylation, thereby improving the survival of cardiomyocytes under hypoxia.
Collapse
Affiliation(s)
- Xueping Ke
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
- The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, 528200, China
| | - Shicheng Yu
- Department of Medicine, Liwan Central Hospital of Guangzhou, Guangzhou, 510145, China
| | - Shubiao Situ
- Department of Medicine, Liwan Central Hospital of Guangzhou, Guangzhou, 510145, China
| | - Zhenqian Lin
- Department of Cardiology, Henan Provincial Chest Hospital, Zhengzhou, 450008, Henan, China
| | - Yiqiang Yuan
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China.
- Department of Cardiology, Zheng Zhou NO.7 People's Hospital, No.17, Jingnan 5th Road, Zhengzhou Economic and Technological Development Zone, Zhengzhou, 450016, China.
| |
Collapse
|
7
|
Zhou Z, Zhang Y, Han F, Chen Z, Zheng Y. Umbelliferone protects against cerebral ischemic injury through selective autophagy of mitochondria. Neurochem Int 2023; 165:105520. [PMID: 36933866 DOI: 10.1016/j.neuint.2023.105520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/06/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
Effective therapeutic treatments for ischemic stroke are limited. Previous studies suggest selective activation of mitophagy alleviates cerebral ischemic injury while excessive autophagy is detrimental. However, few compounds are available to selectively activate mitophagy without affecting autophagy flux. Here, we found that acute administration of Umbelliferone (UMB) upon reperfusion exerted neuroprotective effects against ischemic injury in mice subjected to transient middle cerebral artery occlusion (tMCAO) and suppressed oxygen-glucose deprivation reperfusion (OGD-R)-induced apoptosis in SH-SY5Y cells. Interestingly, UMB promoted the translocation of mitophagy adaptor SQSTM1 to mitochondria and further reduced the mitochondrial content as well as the expression of SQSTM1 in SHSY5Y cells after OGD-R. Importantly, both the mitochondrial loss and reduction of SQSTM1 expression after UMB incubation can be reversed by autophagy inhibitor chloroquine and wortmannin, proving the mitophagy activation by UMB. Nevertheless, UMB failed to further affect neither LC3 lipidation nor the number of autophagosomes after cerebral ischemia in vivo and in vitro. Furthermore, UMB facilitated OGD-R-induced mitophagy in a Parkin-dependent manner. Inhibition of autophagy/mitophagy either pharmaceutically or genetically abolished the neuroprotective effects of UMB. Taken all, these results suggest that UMB protects against cerebral ischemic injury, both in vivo and in vitro, via promoting mitophagy without increasing the autophagic flux. UMB might serve as a potential leading compound for selectively activating mitophagy and the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Zhuchen Zhou
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yan Zhang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Feng Han
- Key Lab of Cardiovascular and Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, Nanjing, 210023, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Yanrong Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
8
|
Zhang R, Wu F, Cheng B, Wang C, Bai B, Chen J. Apelin-13 prevents the effects of oxygen-glucose deprivation/reperfusion on bEnd.3 cells by inhibiting AKT-mTOR signaling. Exp Biol Med (Maywood) 2023; 248:146-156. [PMID: 36573455 PMCID: PMC10041053 DOI: 10.1177/15353702221139186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Autophagy plays works by degrading misfolded proteins and dysfunctional organelles and maintains intracellular homeostasis. Apelin-13 has been investigated as an agent that might protect the blood-brain barrier (BBB) from cerebral ischemia/reperfusion (I/R) injury. In this study, we examined whether apelin-13 protects cerebral microvascular endothelial cells, important components of the BBB, from I/R injury by regulating autophagy. To mimic I/R injury, the mouse cerebral microvascular endothelia l cell line bEnd 3 undergoes the process of oxygen and glucose deprivation and re feeding in the process of culture. Cell viability was detected using a commercial kit, and cell migration was monitored by in vitro scratch assay. The tight junction (TJ) proteins ZO-1 and occludin; the autophagy markers LC3 II, beclin 1, and p62; and components of the AKT-mTOR signaling pathway were detected by Western blotting and immunofluorescence. To confirm the role of autophagy in OGD/R and the protective effect of apelin-13, we treated the cells with 3-methyladenine (3-MA), a pharmacological inhibitor of autophagy. Our results demonstrated that OGD/R increased autophagic activity but decreased viability, abundance of TJs, and migration. Viability and TJ abundance were further reduced when the OGD/R group was treated with 3-MA. These results indicated that bEnd.3 upregulates autophagy to ameliorate the effects of OGD/R injury on viability and TJs, but that the autophagy induced by OGD/R alone is not sufficient to protect against the effect on cell migration. Treatment of OGD/R samples with apelin-13 markedly increased viability, TJ abundance, and migration, as well as autophagic activity, whereas 3-MA inhibited this increase, suggesting that apelin-13 exerted its protective effects by upregulating autophagy.
Collapse
Affiliation(s)
- Rumin Zhang
- Neurobiology Key Laboratory of Jining Medical University, Jining 272067, China
| | - Fei Wu
- Neurobiology Key Laboratory of Jining Medical University, Jining 272067, China
| | - Baohua Cheng
- Neurobiology Key Laboratory of Jining Medical University, Jining 272067, China
| | - Chunmei Wang
- Neurobiology Key Laboratory of Jining Medical University, Jining 272067, China
| | - Bo Bai
- Neurobiology Key Laboratory of Jining Medical University, Jining 272067, China
| | - Jing Chen
- Neurobiology Key Laboratory of Jining Medical University, Jining 272067, China
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
9
|
Kim HK, Kim M, Marquez JC, Jeong SH, Ko TH, Noh YH, Kha PT, Choi HM, Kim DH, Kim JT, Yang YI, Ko KS, Rhee BD, Shubina LK, Makarieva TN, Yashunsky DY, Gerbst AG, Nifantiev NE, Stonik VA, Han J. Novel GSK-3β Inhibitor Neopetroside A Protects Against Murine Myocardial Ischemia/Reperfusion Injury. JACC Basic Transl Sci 2022; 7:1102-1116. [PMID: 36687267 PMCID: PMC9849271 DOI: 10.1016/j.jacbts.2022.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 03/31/2022] [Accepted: 05/09/2022] [Indexed: 02/01/2023]
Abstract
Recent trends suggest novel natural compounds as promising treatments for cardiovascular disease. The authors examined how neopetroside A, a natural pyridine nucleoside containing an α-glycoside bond, regulates mitochondrial metabolism and heart function and investigated its cardioprotective role against ischemia/reperfusion injury. Neopetroside A treatment maintained cardiac hemodynamic status and mitochondrial respiration capacity and significantly prevented cardiac fibrosis in murine models. These effects can be attributed to preserved cellular and mitochondrial function caused by the inhibition of glycogen synthase kinase-3 beta, which regulates the ratio of nicotinamide adenine dinucleotide to nicotinamide adenine dinucleotide, reduced, through activation of the nuclear factor erythroid 2-related factor 2/NAD(P)H quinone oxidoreductase 1 axis in a phosphorylation-independent manner.
Collapse
Key Words
- ATP, adenosine triphosphate
- GSK-3, glycogen synthase kinase–3
- GSK-3β inhibition
- I/R, ischemia/reperfusion
- MI, myocardial infarction
- NAD+, nicotinamide adenine dinucleotide
- NADH, nicotinamide adenine dinucleotide, reduced
- NPS A
- NPS A, neopetroside A
- Nqo1, NAD(P)H:quinone oxidoreductase 1
- Nrf2, nuclear factor erythroid 2–related factor 2
- OCR, oxygen consumption rate
- ischemia/reperfusion injury
- mPTP, mitochondrial permeability transition pore
- mTOR, mammalian target of rapamycin
- marine pyridine α-nucleoside
- mitochondria
Collapse
Affiliation(s)
- Hyoung Kyu Kim
- Cardiovascular and Metabolic Disease Center, Inje University, Busan, South Korea,Department of Health Sciences and Technology, Graduate School, Inje University, Busan, South Korea
| | - Min Kim
- Cardiovascular and Metabolic Disease Center, Inje University, Busan, South Korea,Department of Physiology, BK Plus Project Team, College of Medicine, Inje University, Busan, South Korea
| | - Jubert C. Marquez
- Cardiovascular and Metabolic Disease Center, Inje University, Busan, South Korea,Department of Health Sciences and Technology, Graduate School, Inje University, Busan, South Korea
| | - Seung Hun Jeong
- Cardiovascular and Metabolic Disease Center, Inje University, Busan, South Korea,Department of Physiology, BK Plus Project Team, College of Medicine, Inje University, Busan, South Korea
| | - Tae Hee Ko
- Cardiovascular and Metabolic Disease Center, Inje University, Busan, South Korea,Department of Physiology, BK Plus Project Team, College of Medicine, Inje University, Busan, South Korea
| | - Yeon Hee Noh
- Cardiovascular and Metabolic Disease Center, Inje University, Busan, South Korea,Department of Physiology, BK Plus Project Team, College of Medicine, Inje University, Busan, South Korea
| | - Pham Trong Kha
- Cardiovascular and Metabolic Disease Center, Inje University, Busan, South Korea,Department of Physiology, BK Plus Project Team, College of Medicine, Inje University, Busan, South Korea
| | - Ha Min Choi
- Cardiovascular and Metabolic Disease Center, Inje University, Busan, South Korea,Department of Physiology, BK Plus Project Team, College of Medicine, Inje University, Busan, South Korea
| | - Dong Hyun Kim
- Department of Pharmacology and Pharmaco-Genomics Research Center, College of Medicine, Inje University, Busan, South Korea
| | - Jong Tae Kim
- Paik Institute for Clinical Research, Inje University College of Medicine, Busan, South Korea
| | - Young Il Yang
- Paik Institute for Clinical Research, Inje University College of Medicine, Busan, South Korea
| | - Kyung Soo Ko
- Cardiovascular and Metabolic Disease Center, Inje University, Busan, South Korea,Department of Health Sciences and Technology, Graduate School, Inje University, Busan, South Korea
| | - Byoung Doo Rhee
- Cardiovascular and Metabolic Disease Center, Inje University, Busan, South Korea,Department of Health Sciences and Technology, Graduate School, Inje University, Busan, South Korea
| | - Larisa K. Shubina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, Vladivostok, Russia
| | - Tatyana N. Makarieva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, Vladivostok, Russia
| | - Dmitry Y. Yashunsky
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexey G. Gerbst
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Nikolay E. Nifantiev
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Valentin A. Stonik
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, Vladivostok, Russia
| | - Jin Han
- Cardiovascular and Metabolic Disease Center, Inje University, Busan, South Korea,Department of Health Sciences and Technology, Graduate School, Inje University, Busan, South Korea,Department of Physiology, BK Plus Project Team, College of Medicine, Inje University, Busan, South Korea,Address for correspondence: Dr Jin Han, National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47393, South Korea.
| |
Collapse
|
10
|
Thankam FG, Huynh J, Fang W, Chen Y, Agrawal DK. Exosomal-ribosomal proteins-driven heterogeneity of epicardial adipose tissue derived stem cells under ischemia for cardiac regeneration. J Tissue Eng Regen Med 2022; 16:396-408. [PMID: 35142442 DOI: 10.1002/term.3289] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/19/2022] [Accepted: 01/31/2022] [Indexed: 12/22/2022]
Abstract
Extracellular ribosomal proteins secreted in exosomes elicit biological/regenerative responses; however, ribosomal proteins contained in the exosomes of ischemia-challenged epicardial adipose tissue-derived stem cells (EATDS) remain unexplored. This study focuses on the identification of ribosomal proteins in the exosomes of ischemia-challenged EATDS and their sub-populations based on the key ribosomal proteins using single-cell genomics. Exosomes were isolated from control, ischemic (ISC), and reperfused (ISC/R) EATDS harvested from hyperlipidemic microswine, and the proteins were detected using Liquid chromatography with tandem mass spectrometry (LC-MS/MS). One hundred ninety-nine proteins and 177 proteins were detected in ISC and ISC/R groups, respectively with significant fold-change compared to controls. Five ribosomal proteins, RPL10A, 40SRPS18, 40SRPS30, 60SRPL14, and 40SRPSA, were significant owing to their abundance based on LC-MS/MS data. Expression of these proteins, except RPL10A, at transcript and protein levels were lower in ISC group compared to the control. scRNAseq analysis revealed EATDS heterogeneity based on the upregulation of 40SRPSA, 40SRPL18, and 40SRPS18. Pro-inflammatory sub-populations upregulated CCL5, anti-inflammatory sub-population upregulated IL-11, proliferative sub-population upregulated cell cycle and DNA replication mediators, and non-proliferative population downregulated the cell cycle and DNA replication mediators. Overall, the functional role of extracellular ribosomal proteins in driving unique phenotypes of EATDS population offers promise for designing effective translational approaches for myocardial regeneration.
Collapse
Affiliation(s)
- Finosh G Thankam
- Department of Translational Research, Western University of Health Sciences, Pomona, California, USA
| | - James Huynh
- Department of Translational Research, Western University of Health Sciences, Pomona, California, USA
| | - William Fang
- Department of Translational Research, Western University of Health Sciences, Pomona, California, USA
| | - Yu Chen
- Molecular Instrumentation Center, University of California-Los Angeles, Los Angeles, California, USA
| | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Sciences, Pomona, California, USA
| |
Collapse
|
11
|
Doronzo G, Astanina E, Bussolino F. The Oncogene Transcription Factor EB Regulates Vascular Functions. Front Physiol 2021; 12:640061. [PMID: 33912071 PMCID: PMC8072379 DOI: 10.3389/fphys.2021.640061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/17/2021] [Indexed: 12/19/2022] Open
Abstract
Transcription factor EB (TFEB) represents an emerging player in vascular biology. It belongs to the bHLH-leucine zipper transcription factor microphthalmia family, which includes microphthalmia-associated transcription factor, transcription factor E3 and transcription factor EC, and is known to be deregulated in cancer. The canonical transcriptional pathway orchestrated by TFEB adapts cells to stress in all kinds of tissues by supporting lysosomal and autophagosome biogenesis. However, emerging findings highlight that TFEB activates other genetic programs involved in cell proliferation, metabolism, inflammation and immunity. Here, we first summarize the general principles and mechanisms by which TFEB activates its transcriptional program. Then, we analyze the current knowledge of TFEB in the vascular system, placing particular emphasis on its regulatory role in angiogenesis and on the involvement of the vascular unit in inflammation and atherosclerosis.
Collapse
Affiliation(s)
- Gabriella Doronzo
- Department of Oncology, University of Torino, Candiolo, Italy.,Laboratory of Vascular Oncology, Candiolo Cancer Institute-IRCCS-FPO, Candiolo, Italy
| | - Elena Astanina
- Department of Oncology, University of Torino, Candiolo, Italy.,Laboratory of Vascular Oncology, Candiolo Cancer Institute-IRCCS-FPO, Candiolo, Italy
| | - Federico Bussolino
- Department of Oncology, University of Torino, Candiolo, Italy.,Laboratory of Vascular Oncology, Candiolo Cancer Institute-IRCCS-FPO, Candiolo, Italy
| |
Collapse
|
12
|
Tsai CF, Su HH, Chen K, Liao JM, Yao YT, Chen YH, Wang M, Chu YC, Wang YH, Huang SS. Paeonol Protects Against Myocardial Ischemia/Reperfusion-Induced Injury by Mediating Apoptosis and Autophagy Crosstalk. Front Pharmacol 2021; 11:586498. [PMID: 33551799 PMCID: PMC7858273 DOI: 10.3389/fphar.2020.586498] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/30/2020] [Indexed: 01/07/2023] Open
Abstract
Many studies have shown that crosstalk exists between apoptosis and autophagy, despite differences in mechanisms between these processes. Paeonol, a major phenolic compound isolated from Moutan Cortex Radicis, the root bark of Paeonia × suffruticosa Andrews (Paeoniaceae), is widely used in traditional Chinese medicine as an antipyretic, analgesic and anti-inflammatory agent. In this study, we investigated the detailed molecular mechanisms of the crosstalk between apoptosis and autophagy underlying the cardioprotective effects of paeonol in rats subjected to myocardial ischemia/reperfusion (I/R) injury. Myocardial I/R injury was induced by occlusion of the left anterior descending coronary artery (LAD) for 1 h followed by 3 h of reperfusion. Paeonol was intravenously administered 15 min before LAD ligation. We found that paeonol significantly improved cardiac function after myocardial I/R injury and significantly decreased myocardial I/R-induced arrhythmia and mortality. Paeonol also significantly decreased myocardial infarction and plasma LDH activity and Troponin-I levels in carotid blood after I/R. Compared with vehicle treatment, paeonol significantly upregulated Bcl-2 protein expression and significantly downregulated the cleaved forms of caspase-8, caspase-9, caspase-3 and PARP protein expression in the I/R injured myocardium. Myocardial I/R-induced autophagy, including the increase of Beclin-1, p62, LC3-I, and LC3-II protein expression in the myocardium was significantly reversed by paeonol treatment. Paeonol also significantly increased the Bcl-2/Bax and Bcl-2/Beclin-1 ratios in the myocardium after I/R injury. The cardioprotective role of paeonol during I/R injury may be due to its mediation of crosstalk between apoptotic and autophagic signaling pathways, which inhibits apoptosis and autophagic cell death.
Collapse
Affiliation(s)
- Chin-Feng Tsai
- Division of Cardiology, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan,School of Medicine, Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Hsing-Hui Su
- Department of Pharmacology, Chung Shan Medical University, Taichung, Taiwan
| | - Ke‐Min Chen
- Department of Parasitology, Chung Shan Medical University, Taichung, Taiwan
| | - Jiuan-Miaw Liao
- Department of Physiology, Chung Shan Medical University and Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yi-Ting Yao
- School of Medicine, Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yi-Hung Chen
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan,Research Center for Chinese Medicine and Acupuncture, China Medical University, Taichung, Taiwan,Department of Photonics and Communication Engineering, Asia University, Taichung, Taiwan
| | - Meilin Wang
- Department of Microbiology and Immunology, School of Medicine, Chung-Shan Medical University, Taichung, Taiwan
| | - Ya-Chun Chu
- Department of Anesthesiology, Taipei Veterans General Hospital and National Yang-Ming University, Taipei, Taiwan,*Correspondence: Ya-Chun Chu, ; Yi-Hsin Wang, ; Shiang-Suo Huang,
| | - Yi-Hsin Wang
- School of Medicine, Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan,Department of Pharmacology, Chung Shan Medical University, Taichung, Taiwan,*Correspondence: Ya-Chun Chu, ; Yi-Hsin Wang, ; Shiang-Suo Huang,
| | - Shiang-Suo Huang
- School of Medicine, Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan,Department of Pharmacology, Chung Shan Medical University, Taichung, Taiwan,Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan,*Correspondence: Ya-Chun Chu, ; Yi-Hsin Wang, ; Shiang-Suo Huang,
| |
Collapse
|
13
|
Lu Y, Wang S, Cai S, Gu X, Wang J, Yang Y, Hu Z, Zhang X, Ye Y, Shen S, Joshi K, Ma D, Zhang L. Propofol-induced MiR-20b expression initiates endogenous cellular signal changes mitigating hypoxia/re-oxygenation-induced endothelial autophagy in vitro. Cell Death Dis 2020; 11:681. [PMID: 32826852 PMCID: PMC7442825 DOI: 10.1038/s41419-020-02828-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 12/31/2022]
Abstract
Certain miRNAs can attenuate hypoxia/re-oxygenation-induced autophagic cell death reported in our previous studies, but how these miRNAs regulate the autophagy-related cellular signaling pathway in preventing cell death is largely unknown. In the current study, the autophagy-related miRNAs of hsa-miR-20b were investigated in an in vitro model of hypoxia/re-oxygenation-induced endothelial autophagic cell death. Of these, miR-20b was found to be the most important miRNA which targeted on the key autophagy kinase ULK1 and inhibited hypoxia/re-oxygenation injury-induced autophagy by decreasing both autophagosomes and LC3I to II transition rate and P62 degradation. These processes were reversed by the transfection of an miR-20b inhibitor. Re-expression of ULK1 restores miR-20b-inhibited autophagy. Propofol, a commonly used anesthetic, promoted miR-20b and METTL3 expression and attenuated endothelial autophagic cell death. The inhibited endogenous expression of miR-20b or silenced METTL3 diminished the protective effect of propofol and accentuated autophagy. Additionally, METTL3 knockdown significantly inhibited miR-20b expression but up-regulated pri-miR-20b expression. Together, our data shows that propofol protects against endothelial autophagic cell death induced by hypoxia/re-oxygenation injury, associated with activation of METTL3/miR-20b/ULK1 cellular signaling.
Collapse
Affiliation(s)
- Yue Lu
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Sijie Wang
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Shuyun Cai
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Xiaoxia Gu
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Jingjing Wang
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Yue Yang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Zhe Hu
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Xihe Zhang
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Yongcai Ye
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Siman Shen
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Kiran Joshi
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Daqing Ma
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK.
| | - Liangqing Zhang
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| |
Collapse
|
14
|
Liu Q, Tan Y, Qu T, Zhang J, Duan X, Xu H, Mu Y, Ma H, Wang F. Therapeutic mechanism of human neural stem cell-derived extracellular vesicles against hypoxia-reperfusion injury in vitro. Life Sci 2020; 254:117772. [PMID: 32437794 DOI: 10.1016/j.lfs.2020.117772] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 12/15/2022]
Abstract
AIMS This study aimed to explore that the human neural stem cell derived extracellular vesicles (hNSC-EVs) have therapeutic effect on neuronal hypoxia-reperfusion (H/R) injured neurons in vitro by mediating the nuclear translocation of NF-E2-related factor 2 (Nrf2) to regulate the expression of downstream oxidative kinases. MAIN METHODS The neuroprotective effects of hNSC-EVs were evaluated in an in vitro neuronal H/R model. Three parameters of hNSC-EVs, structure, phenotype and particle size, were characterized. At the cellular level, a human neuron cerebral ischemic reperfusion (CIR) injury model was constructed. Cell viability, apoptosis, and the amount of reactive oxygen species (ROS) were detected using real-time cell analysis (RTCA), terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and dichloro-dihydro-fluorescein diacetate (DCFH-DA), respectively. The neuronal axonal elongation was assessed by Opera Phenix™ screening system. The angiogenesis of human umbilical vein endothelial cells (HUVECs) was evaluated by co-culturing HUVECs with hNSC-EVs in Matrigel. The expression of apoptosis and oxidative stress-related proteins in cells and the nuclear transfer of Nrf2 following hypoxia-reperfusion (H/R) was verified by Western-blotting. KEY FINDINGS We found that the hNSC-EVs can promote the survival of post-H/R injury neurons, inhibit neuronal apoptosis, and enhance nuclear transfer of Nrf2, in response to oxidative stress. We also found the hNSC-EVs can promote the elongation of neuronal axons and the angiogenesis of HUVECs. SIGNIFICANCE At present, there is no effective therapy for CIR injury. We suggest that the hNSC-EVs could be considered a new strategy to achieve nerve repair for the treatment of neurological diseases, especially stroke.
Collapse
Affiliation(s)
- Qingyue Liu
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Shandong University, No. 44 Wenhuaxi Road, Jinan 250012, China
| | - Yi Tan
- Qilu Cell Therapy Technology Co., Ltd, Jinan 250000, China; Shandong Yinfeng Life Science Research Institute, Jinan, 250000, Shandong, China
| | - Tingyu Qu
- Shandong Yinfeng Life Science Research Institute, Jinan, 250000, Shandong, China; R & D of Cell and Tissue Bank, Qilu Stem Cell Engineering Company of Shandong Province, Jinan 250000, Shandong, China
| | - Jianhui Zhang
- Qilu Cell Therapy Technology Co., Ltd, Jinan 250000, China
| | - Xuexia Duan
- Maternal and Child Health Care Hospital of Shandong Province, Jinan, 250014, Shandong, China
| | - Hongpeng Xu
- Qilu Cell Therapy Technology Co., Ltd, Jinan 250000, China
| | - Yue Mu
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Shandong University, No. 44 Wenhuaxi Road, Jinan 250012, China
| | - Heran Ma
- Qilu Cell Therapy Technology Co., Ltd, Jinan 250000, China; Shandong Yinfeng Life Science Research Institute, Jinan, 250000, Shandong, China.
| | - Fengshan Wang
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Shandong University, No. 44 Wenhuaxi Road, Jinan 250012, China.
| |
Collapse
|
15
|
Leonard A, Millar MW, Slavin SA, Bijli KM, Dionisio Santos DA, Dean DA, Fazal F, Rahman A. Critical role of autophagy regulator Beclin1 in endothelial cell inflammation and barrier disruption. Cell Signal 2019; 61:120-129. [PMID: 31054328 PMCID: PMC6685427 DOI: 10.1016/j.cellsig.2019.04.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/24/2019] [Accepted: 04/28/2019] [Indexed: 12/19/2022]
Abstract
Recent studies have implicated autophagy in several inflammatory diseases involving aberrant endothelial cell (EC) responses, such as acute lung injury (ALI). However, the mechanistic basis for a role of autophagy in EC inflammation and permeability remain poorly understood. In this study, we impaired autophagy by silencing the essential Beclin1 autophagy gene in human pulmonary artery EC. This resulted in reduced expression of proinflammatory genes in response to thrombin, a procoagulant and proinflammatory mediator whose concentration is elevated in many diseases including sepsis and ALI. These (Beclin1-depleted) cells also displayed a marked decrease in NF-κB activity secondary to impaired DNA binding of RelA/p65 in the nucleus, but exhibited normal IκBα degradation in the cytosol. Further analysis showed that Beclin1 knockdown was associated with impaired RelA/p65 translocation to the nucleus. Additionally, Beclin1 knockdown attenuated thrombin-induced phosphorylation of RelA/p65 at Ser536, a critical event necessary for the transcriptional activity of RelA/p65. Beclin1 silencing also protected against thrombin-induced EC barrier disruption by preventing the loss of VE-cadherin at adherens junctions. Moreover, Beclin1 knockdown reduced thrombin-induced phosphorylation/inactivation of actin depolymerizing protein Cofilin1 and thereby actin stress fiber formation required for EC permeability as well as RelA/p65 nuclear translocation. Together, these data identify Beclin1 as a novel mechanistic link between autophagy and EC dysfunction (inflammation and permeability).
Collapse
Affiliation(s)
- Antony Leonard
- Department of Pediatrics, Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States of America
| | - Michelle Warren Millar
- Department of Pediatrics, Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States of America
| | - Spencer A Slavin
- Department of Pediatrics, Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States of America
| | - Kaiser M Bijli
- Department of Pediatrics, Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States of America
| | - Dawling A Dionisio Santos
- Department of Pediatrics, Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States of America
| | - David A Dean
- Department of Pediatrics, Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States of America
| | - Fabeha Fazal
- Department of Pediatrics, Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States of America
| | - Arshad Rahman
- Department of Pediatrics, Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States of America.
| |
Collapse
|
16
|
Wu D, Zhang K, Hu P. The Role of Autophagy in Acute Myocardial Infarction. Front Pharmacol 2019; 10:551. [PMID: 31214022 PMCID: PMC6554699 DOI: 10.3389/fphar.2019.00551] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/01/2019] [Indexed: 12/14/2022] Open
Abstract
Acute myocardial infarction refers to a sudden death of cardiomyocytes, which leads to a large mortality worldwide. To attenuate acute myocardial infarction, strategies should be made to increase cardiomyocyte survival, improve postinfarcted cardiac function, and reverse the process of cardiac remodeling. Autophagy, a pivotal cellular response, has been widely studied and is known to be involved in various kinds of diseases. In the recent few years, the role of autophagy in diseases has been drawn increasing attention to by researchers. Here in this review, we mainly focus on the discussion of the effect of autophagy on the pathogenesis and progression of acute myocardial infarction under ischemic and ischemia/reperfusion injuries. Furthermore, several popular therapeutic agents and strategies taking advantage of autophagy will be described.
Collapse
Affiliation(s)
- Du Wu
- Department of Internal Medicine, The WuYun Mountain Sanatorium of Hangzhou, Hangzhou, China
| | - Kangfeng Zhang
- Department of Internal Medicine, The WuYun Mountain Sanatorium of Hangzhou, Hangzhou, China
| | - Pengfei Hu
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
17
|
Kim KA, Shin D, Kim JH, Shin YJ, Rajanikant GK, Majid A, Baek SH, Bae ON. Role of Autophagy in Endothelial Damage and Blood-Brain Barrier Disruption in Ischemic Stroke. Stroke 2018; 49:1571-1579. [PMID: 29724893 DOI: 10.1161/strokeaha.117.017287] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Kyeong-A Kim
- From the College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea (K.-A.K., D.S., J.-H.K., Y.-J.S., O.-N.B.)
| | - Donggeun Shin
- From the College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea (K.-A.K., D.S., J.-H.K., Y.-J.S., O.-N.B.)
| | - Jeong-Hyeon Kim
- From the College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea (K.-A.K., D.S., J.-H.K., Y.-J.S., O.-N.B.)
| | - Young-Jun Shin
- From the College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea (K.-A.K., D.S., J.-H.K., Y.-J.S., O.-N.B.)
| | - G K Rajanikant
- School of Biotechnology, National Institute of Technology Calicut, Kerala, India (G.K.R.)
| | - Arshad Majid
- Sheffield Institute for Translational Neuroscience, University of Sheffield, England (A.M.)
| | - Seung-Hoon Baek
- College of Pharmacy and Research Institute of Pharmaceutical Science and Technology, Ajou University, Suwon, Republic of Korea (S.-H.B.)
| | - Ok-Nam Bae
- From the College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea (K.-A.K., D.S., J.-H.K., Y.-J.S., O.-N.B.)
| |
Collapse
|
18
|
An Intervention Target for Myocardial Fibrosis: Autophagy. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6215916. [PMID: 29850542 PMCID: PMC5911341 DOI: 10.1155/2018/6215916] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 02/07/2018] [Accepted: 02/19/2018] [Indexed: 02/07/2023]
Abstract
Myocardial fibrosis (MF) is the result of metabolic imbalance of collagen synthesis and metabolism, which is widespread in various cardiovascular diseases. Autophagy is a lysosomal degradation pathway which is highly conserved. In recent years, research on autophagy has been increasing and the researchers have also become cumulatively aware of the specified association between autophagy and MF. This review highlights the role of autophagy in MF and the potential effects through the administration of medicine.
Collapse
|
19
|
吕 梦, 陆 航. [Role of Beclin 1 gene in autophagy and apoptosis of SW620 cells]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2017; 37:373-377. [PMID: 28377355 PMCID: PMC6780449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Indexed: 10/15/2023]
Abstract
OBJECTIVE To study the role of Beclin1 gene in autophagy and apoptosis of SW620 cells. METHODS RNA interference was used to knockdown the expression of Beclin 1 in SW620 cells, and the cell viability was measured by MTT assays. The autophagic activity in serum-starved SW620 CRC cells was evaluated by assessing endogenous microtubule-associated protein 1 light chain 3 (LC3) protein levels using immunofluorescence assay. Flow cytometry was used to measure the apoptosis rate of SW620 cells treated with serum deprivation, staurosporine or etoposide, and the protein expression of Beclin1 was detected using Western blotting. RESULTS The viability of cells in pSUPER-Becl group was significantly reduced after serum deprivation (P<0.05). Serum deprivation for 24 h resulted in a stronger apoptotic resistance in cells in the control and pSUPER-non groups than in pSUPER-Becl group (P<0.05). Treatment with staurosporine the most significantly increased the cell apoptosis in pSUPER-Becl group (P<0.05), and similar effect was observed with etoposide treatment (P<0.05). As the time of serum deprivation extended, the expression of Beclin 1 in control group and pSUPER-non group increased progressively (P<0.05), which was consistent with the changes in LC3 expression; LC3 expression in pSUPER-Becl group decreased significantly with a prolonged serum starvation (P<0.05). CONCLUSION Beclin 1 is a crucial regulator of autophagy and apoptosis in colorectal cancer cells to maintain the balance between autophagy and apoptosis. Beclin 1 may serve as a protective mechanism to protect colorectal cancer cells from injury caused by low nutrition and chemotherapy byregulating cell autophagy.
Collapse
Affiliation(s)
- 梦 吕
- 锦州医科大学 研究生学院Graduate School
| | - 航 陆
- 锦州医科大学锦州医科大学 附属第一医院大肠外科,辽宁 锦州 121000Department of Gastrointestinal Surgery, First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| |
Collapse
|
20
|
吕 梦, 陆 航. [Role of Beclin 1 gene in autophagy and apoptosis of SW620 cells]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2017; 37:373-377. [PMID: 28377355 PMCID: PMC6780449 DOI: 10.3969/j.issn.1673-4254.2017.03.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Indexed: 06/07/2023]
Abstract
OBJECTIVE To study the role of Beclin1 gene in autophagy and apoptosis of SW620 cells. METHODS RNA interference was used to knockdown the expression of Beclin 1 in SW620 cells, and the cell viability was measured by MTT assays. The autophagic activity in serum-starved SW620 CRC cells was evaluated by assessing endogenous microtubule-associated protein 1 light chain 3 (LC3) protein levels using immunofluorescence assay. Flow cytometry was used to measure the apoptosis rate of SW620 cells treated with serum deprivation, staurosporine or etoposide, and the protein expression of Beclin1 was detected using Western blotting. RESULTS The viability of cells in pSUPER-Becl group was significantly reduced after serum deprivation (P<0.05). Serum deprivation for 24 h resulted in a stronger apoptotic resistance in cells in the control and pSUPER-non groups than in pSUPER-Becl group (P<0.05). Treatment with staurosporine the most significantly increased the cell apoptosis in pSUPER-Becl group (P<0.05), and similar effect was observed with etoposide treatment (P<0.05). As the time of serum deprivation extended, the expression of Beclin 1 in control group and pSUPER-non group increased progressively (P<0.05), which was consistent with the changes in LC3 expression; LC3 expression in pSUPER-Becl group decreased significantly with a prolonged serum starvation (P<0.05). CONCLUSION Beclin 1 is a crucial regulator of autophagy and apoptosis in colorectal cancer cells to maintain the balance between autophagy and apoptosis. Beclin 1 may serve as a protective mechanism to protect colorectal cancer cells from injury caused by low nutrition and chemotherapy byregulating cell autophagy.
Collapse
Affiliation(s)
- 梦 吕
- 锦州医科大学 研究生学院Graduate School
| | - 航 陆
- 锦州医科大学锦州医科大学 附属第一医院大肠外科,辽宁 锦州 121000Department of Gastrointestinal Surgery, First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| |
Collapse
|