1
|
Alradwan I, Zhi P, Zhang T, Lip H, Zetrini A, He C, Henderson JT, Rauth AM, Wu XY. Nanoparticulate drug combination inhibits DNA damage repair and PD-L1 expression in BRCA-mutant and wild type triple-negative breast cancer. J Control Release 2025; 377:661-674. [PMID: 39615752 DOI: 10.1016/j.jconrel.2024.11.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 12/23/2024]
Abstract
The high mortality rate associated with metastatic breast cancer presents a significant global challenge. Inherent and chemotherapy-induced DNA damage repair, alongside immunosuppression, drastically contribute to triple-negative breast cancer (TNBC) relapse and metastasis. While poly (ADP-ribose) polymerase (PARP) inhibitors such as olaparib show effectiveness against BRCA1-mutant TNBC, they may lead to drug resistance and reduced efficacy due to increased programmed death-ligand 1 (PD-L1) expression. Our study explored the use of polymer-lipid nanoparticles (PLN) loaded with doxorubicin (DOX) and oligomeric hyaluronic acid (oHA), functionalized iRGD-peptide for integrins targeting (iRGD-DOX-oHA-PLN), to prevent TNBC immunosuppression, DNA repair, and metastasis. The results demonstrate that the iRGD-DOX-oHA-PLNs efficiently downregulated single and double-strand DNA repair proteins and enhanced DNA damage while decreasing PD-L1 expression compared to olaparib. Accordingly, iRGD-DOX-oHA-PLN treatment showed significantly higher efficiency in reducing levels of primary tumor growth and numbers of metastases to the lung and liver compared to olaparib in vitro and in vivo in both BRCA1-mutant and wild type TNBC orthotopic xenograft models.
Collapse
Affiliation(s)
- Ibrahim Alradwan
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto M5S 3M2, Ontario, Canada; Advanced Diagnostics and Therapeutics Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11461, Saudi Arabia
| | - Pei Zhi
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto M5S 3M2, Ontario, Canada
| | - Tian Zhang
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto M5S 3M2, Ontario, Canada
| | - HoYin Lip
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto M5S 3M2, Ontario, Canada
| | - Abdulmottaleb Zetrini
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto M5S 3M2, Ontario, Canada
| | - Chunsheng He
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto M5S 3M2, Ontario, Canada
| | - Jeffrey T Henderson
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto M5S 3M2, Ontario, Canada
| | - Andrew M Rauth
- Departments of Medical Biophysics and Radiation Oncology, University of Toronto, 610 University Ave, Toronto M5G 2M9, Ontario, Canada
| | - Xiao Yu Wu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto M5S 3M2, Ontario, Canada.
| |
Collapse
|
2
|
Fang J, Lu Y, Zheng J, Jiang X, Shen H, Shang X, Lu Y, Fu P. Exploring the crosstalk between endothelial cells, immune cells, and immune checkpoints in the tumor microenvironment: new insights and therapeutic implications. Cell Death Dis 2023; 14:586. [PMID: 37666809 PMCID: PMC10477350 DOI: 10.1038/s41419-023-06119-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/19/2023] [Accepted: 08/25/2023] [Indexed: 09/06/2023]
Abstract
The tumor microenvironment (TME) is a highly intricate milieu, comprising a multitude of components, including immune cells and stromal cells, that exert a profound influence on tumor initiation and progression. Within the TME, angiogenesis is predominantly orchestrated by endothelial cells (ECs), which foster the proliferation and metastasis of malignant cells. The interplay between tumor and immune cells with ECs is complex and can either bolster or hinder the immune system. Thus, a comprehensive understanding of the intricate crosstalk between ECs and immune cells is essential to advance the development of immunotherapeutic interventions. Despite recent progress, the underlying molecular mechanisms that govern the interplay between ECs and immune cells remain elusive. Nevertheless, the immunomodulatory function of ECs has emerged as a pivotal determinant of the immune response. In light of this, the study of the relationship between ECs and immune checkpoints has garnered considerable attention in the field of immunotherapy. By targeting specific molecular pathways and signaling molecules associated with ECs in the TME, novel immunotherapeutic strategies may be devised to enhance the efficacy of current treatments. In this vein, we sought to elucidate the relationship between ECs, immune cells, and immune checkpoints in the TME, with the ultimate goal of identifying novel therapeutic targets and charting new avenues for immunotherapy.
Collapse
Affiliation(s)
- Jianwen Fang
- Department of Breast Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China
| | - Yue Lu
- Department of Breast and Thyroid Surgery, First Affiliated Hospital of Huzhou University, 313000, Huzhou, China
| | - Jingyan Zheng
- Department of Breast and Thyroid Surgery, Lishui People's Hospital, The Six Affiliated Hospital of Wenzhou Medical University, 323000, Lishui, China
| | - Xiaocong Jiang
- Department of Breast Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China
| | - Haixing Shen
- Department of Breast Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China
- Department of Breast and Thyroid Surgery, Cixi People's Hospital, 315300, Cixi, China
| | - Xi Shang
- Department of Breast and Thyroid Surgery, Taizhou Hospital, Zhejiang University, 318000, Taizhou, China
| | - Yuexin Lu
- Department of Breast Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China
| | - Peifen Fu
- Department of Breast Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China.
| |
Collapse
|
3
|
Itzhaki Ben Zadok O, Leshem-Lev D, Ben-Gal T, Hamdan A, Schamroth Pravda N, Steinmetz T, Kandinov I, Ovadia I, Kornowski R, Eisen A. The Effect of Tafamidis on Circulating Endothelial Progenitor Cells in Patients with Transthyretin Cardiac Amyloidosis. Cardiovasc Drugs Ther 2021; 36:489-496. [PMID: 34550515 DOI: 10.1007/s10557-021-07265-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/11/2021] [Indexed: 11/30/2022]
Abstract
AIMS Endothelial microvascular dysfunction is a known mechanism of vascular pathology in cardiac amyloidosis (CA). Scientific evidence regarding the possible protective role of the amyloid transthyretin (ATTR) stabilizer, tafamidis, is lacking. Circulating endothelial progenitor cells (cEPCs) have an important role in the process of vascular repair. We aimed to examine the effect of tafamidis on cEPCs. METHODS AND RESULTS Study population included patients with ATTR-CA. cEPCs were assessed using flow cytometry by the expression of CD34(+)/CD133(+) and vascular endothelial growth factor receptor (VEGFR)-2(+) and by the formation of colony-forming units (CFUs) and production of VEGF. Tests were repeated at pre-specified time-points up to 12 months following the initiation of tafamidis. Included were 18 ATTR-CA patients at a median age of 77 (IQR 71, 85) years and male predominance (n = 15, 83%). Following the initiation of tafamidis and during 12 months of drug treatment, there was a gradual increase in the levels of CD34(+)/VEGFR-2(+) (0.43 to 2.42% (IQR 1.53, 2.91)%, p = 0.002) and CD133(+)/VEGFR-2(+) (0.49 to 1.64% (IQR 0.97, 2.90)%, p = 0.004). Functionally, increase in EPCs-CFUs was microscopically evident following treatment with tafamidis (from 0.5 CFUs (IQR 0.0, 1.0) to 3.0 (IQR 1.3, 3.8) p < 0.001) with a concomitant increase in EPC's viability as demonstrated by an MTT assay (from 0.12 (IQR 0.03, 0.16) to 0.30 (IQR 0.18, 0.33), p < 0.001). VEGF levels increased following treatment (from 54 (IQR 52, 72) to 107 (IQR 62, 129) pg/ml, p = 0.039). CONCLUSIONS Tafamidis induced the activation of the cEPCs pathway, possibly promoting endothelial repair in ATTR-CA.
Collapse
Affiliation(s)
- Osnat Itzhaki Ben Zadok
- Department of Cardiology, Rabin Medical Center, 39 Jabotinsky St. 49100, Petah Tikva, Israel. .,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Dorit Leshem-Lev
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Felsenstein Medical Research Center, Rabin Medical Center, Petah Tikva, Israel
| | - Tuvia Ben-Gal
- Department of Cardiology, Rabin Medical Center, 39 Jabotinsky St. 49100, Petah Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ashraf Hamdan
- Department of Cardiology, Rabin Medical Center, 39 Jabotinsky St. 49100, Petah Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nili Schamroth Pravda
- Department of Cardiology, Rabin Medical Center, 39 Jabotinsky St. 49100, Petah Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tali Steinmetz
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Nephrology, Rabin Medical Center, Petah Tikva, Israel
| | - Irit Kandinov
- Department of Cardiology, Rabin Medical Center, 39 Jabotinsky St. 49100, Petah Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ilit Ovadia
- Department of Cardiology, Rabin Medical Center, 39 Jabotinsky St. 49100, Petah Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ran Kornowski
- Department of Cardiology, Rabin Medical Center, 39 Jabotinsky St. 49100, Petah Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Alon Eisen
- Department of Cardiology, Rabin Medical Center, 39 Jabotinsky St. 49100, Petah Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
4
|
Wang C, An Y, Wang Y, Shen K, Wang X, Luan W, Ma F, Ni L, Liu M, Yu L. Insulin-like growth factor-I activates NFκB and NLRP3 inflammatory signalling via ROS in cancer cells. Mol Cell Probes 2020; 52:101583. [PMID: 32360740 DOI: 10.1016/j.mcp.2020.101583] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 12/17/2022]
Abstract
Previous studies have demonstrated that insulin-like growth factor-I (IGF-1) and reactive oxygen species (ROS) are involved in the development and progression of various cancers. However, their regulatory mechanism remains unknown. In this study, we treated cancer cells (HeLa, HepG2 and SW1116 cells) and normal cells (NCM-460) with IGF-1 at different concentrations and for different times and found that cancer cells produced large amounts of cytoplasmic ROS in cancer cells but not in normal cells. Further mechanistic analysis demonstrated that IGF-1 activated NFκB and NLRP3 inflammatory signalling in HeLa cells; systematic analysis indicated that IGF-1 activates NFκB and NLRP3, and the activation was cytosolic ROS- and NADPH oxidase 2 (NOX2)-dependent. Additionally, through coimmunoprecipitation experiments, we found that the IRS-1/COX2/mPGES-1/MAPKs/RAC2/NOX2 pathway nexus was involved in IGF-1-induced NFκB and NLRP3 production. Finally, we validated the regulatory mechanisms through IRS-1, mPGES-1 or NOX2 inhibition using their respective selective inhibitors or shRNA knockdown. Taken together, this is the first report on the mechanism by which IGF-1 activates NFκB and NLRP3 inflammatory signalling via ROS. These findings pave the way for an in-depth study of the role of IGF-1 and ROS in inflammation associated with the development and progression of cancer.
Collapse
Affiliation(s)
- Chao Wang
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine Jilin University, Department of Infectious Diseases of First Hospital of Jilin University, Changchun, 130062, China
| | - Yanan An
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine Jilin University, Department of Infectious Diseases of First Hospital of Jilin University, Changchun, 130062, China
| | - Yang Wang
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine Jilin University, Department of Infectious Diseases of First Hospital of Jilin University, Changchun, 130062, China
| | - Keshu Shen
- Jilin Hepatobiliary Hospital, Changchun, 130062, China
| | - Xuefei Wang
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine Jilin University, Department of Infectious Diseases of First Hospital of Jilin University, Changchun, 130062, China
| | - Wenjing Luan
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine Jilin University, Department of Infectious Diseases of First Hospital of Jilin University, Changchun, 130062, China
| | - Fangxue Ma
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine Jilin University, Department of Infectious Diseases of First Hospital of Jilin University, Changchun, 130062, China
| | - Lihui Ni
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine Jilin University, Department of Infectious Diseases of First Hospital of Jilin University, Changchun, 130062, China
| | - Mingyuan Liu
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine Jilin University, Department of Infectious Diseases of First Hospital of Jilin University, Changchun, 130062, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Lu Yu
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine Jilin University, Department of Infectious Diseases of First Hospital of Jilin University, Changchun, 130062, China.
| |
Collapse
|
5
|
Di Paolo V, Colletti M, Ferruzzi V, Russo I, Galardi A, Alessi I, Milano GM, Di Giannatale A. Circulating Biomarkers for Tumor Angiogenesis: Where Are We? Curr Med Chem 2020; 27:2361-2380. [PMID: 30129403 DOI: 10.2174/0929867325666180821151409] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/10/2018] [Accepted: 07/17/2018] [Indexed: 01/26/2023]
Abstract
BACKGROUND In recent years, several anti-angiogenic drugs have been developed and their addition to standard treatment has been associated with clinical benefits. However, the response to anti-angiogenic therapy is characterized by considerable variability. In this context, the development of dynamic non-invasive biomarkers would be helpful to elucidate the emergence of anti-angiogenic resistance as well as to correctly address the treatment. OBJECTIVES The purpose of this review is to describe current reports on circulating diagnostic and prognostic biomarkers related to angiogenesis. We further discuss how this non-invasive strategy could improve the monitoring of tumor treatment and help clinical strategy. RESULTS We discuss the latest evidence in the literature regarding circulating anti-angiogenic markers. Besides growth factor proteins, different circulating miRNAs could exert a pro- or anti-angiogenic activity so as to represent suitable candidates for a non-invasive strategy. Recent reports indicate that tumor-derived exosomes, which are small membrane vesicles abundant in biological fluids, also have an impact on vascular remodeling. CONCLUSION Numerous circulating biomarkers related to angiogenesis have been recently identified. Their use will allow identifying patients who are more likely to benefit from a specific anti-angiogenic treatment, as well as detecting those who will develop resistance and/or adverse effects. Nonetheless, further studies are required to elucidate the role of these biomarkers in clinical settings.
Collapse
Affiliation(s)
- Virginia Di Paolo
- Department of Hematology/Oncology and Stem Cell Transplantation, Bambino Gesù Children's Hospital, IRCCS, Piazza di Sant'Onofrio, 4-00165 Rome, Italy
| | - Marta Colletti
- Department of Hematology/Oncology and Stem Cell Transplantation, Bambino Gesù Children's Hospital, IRCCS, Piazza di Sant'Onofrio, 4-00165 Rome, Italy
| | - Valentina Ferruzzi
- Department of Hematology/Oncology and Stem Cell Transplantation, Bambino Gesù Children's Hospital, IRCCS, Piazza di Sant'Onofrio, 4-00165 Rome, Italy
| | - Ida Russo
- Department of Hematology/Oncology and Stem Cell Transplantation, Bambino Gesù Children's Hospital, IRCCS, Piazza di Sant'Onofrio, 4-00165 Rome, Italy
| | - Angela Galardi
- Department of Hematology/Oncology and Stem Cell Transplantation, Bambino Gesù Children's Hospital, IRCCS, Piazza di Sant'Onofrio, 4-00165 Rome, Italy
| | - Iside Alessi
- Department of Hematology/Oncology and Stem Cell Transplantation, Bambino Gesù Children's Hospital, IRCCS, Piazza di Sant'Onofrio, 4-00165 Rome, Italy
| | - Giuseppe Maria Milano
- Department of Hematology/Oncology and Stem Cell Transplantation, Bambino Gesù Children's Hospital, IRCCS, Piazza di Sant'Onofrio, 4-00165 Rome, Italy
| | - Angela Di Giannatale
- Department of Hematology/Oncology and Stem Cell Transplantation, Bambino Gesù Children's Hospital, IRCCS, Piazza di Sant'Onofrio, 4-00165 Rome, Italy
| |
Collapse
|
6
|
Wang C, Li S, Wang Y, An Y, Shen K, Wang X, Luan W, Ma F, Ni L, Zhou H, Liu M, Yu L. Targeting IRS-1/mPGES-1/NOX2 to inhibit the inflammatory response caused by insulin-like growth factor-I-induced activation of NF-κB and NLRP3 in cancer cells. Vet Comp Oncol 2020; 18:689-698. [PMID: 32270590 DOI: 10.1111/vco.12596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 11/26/2022]
Abstract
The levels of insulin-like growth factor-l (IGF-1) and reactive oxygen species (ROS) are abnormally elevated in various tumour tissues, and IGF-1 has been reported to be associated with the development and progression of inflammation in cancers. In this study, we found that IGF-1 activated nuclear factor-κB (NF-κB) and NLRP3 inflammatory signalling via IRS-1/mPGES-1/NOX2-regulated ROS. Additionally, in the B16-F10 tumour-bearing mouse model, the number of tumours, tumour growth, invasion of tissues and expression of proinflammatory factors in peripheral blood were significantly decreased by treatment with an inhibitor combination compared with those of the IGF-1 group. Taken together, targeting IRS-1/mPGES-1/NOX2 to inhibit inflammation related to NF-κB and NLRP3 is a potential strategy for controlling the development and progression of cancer.
Collapse
Affiliation(s)
- Chao Wang
- Department of Infectious Diseases of First Hospital of Jilin University, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine Jilin University, Changchun, China
| | - Shulin Li
- Department of Infectious Diseases of First Hospital of Jilin University, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine Jilin University, Changchun, China
| | - Yang Wang
- Department of Infectious Diseases of First Hospital of Jilin University, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine Jilin University, Changchun, China
| | - Yanan An
- Department of Infectious Diseases of First Hospital of Jilin University, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine Jilin University, Changchun, China
| | - Keshu Shen
- Jilin Hepatobiliary Hospital, Changchun, China
| | - Xuefei Wang
- Department of Infectious Diseases of First Hospital of Jilin University, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine Jilin University, Changchun, China
| | - Wenjing Luan
- Department of Infectious Diseases of First Hospital of Jilin University, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine Jilin University, Changchun, China
| | - Fangxue Ma
- Department of Infectious Diseases of First Hospital of Jilin University, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine Jilin University, Changchun, China
| | - Lihui Ni
- Department of Infectious Diseases of First Hospital of Jilin University, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine Jilin University, Changchun, China
| | - Hong Zhou
- Department of Infectious Diseases of First Hospital of Jilin University, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine Jilin University, Changchun, China
| | - Mingyuan Liu
- Department of Infectious Diseases of First Hospital of Jilin University, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine Jilin University, Changchun, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Lu Yu
- Department of Infectious Diseases of First Hospital of Jilin University, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine Jilin University, Changchun, China
| |
Collapse
|
7
|
Insights into Endothelial Progenitor Cells: Origin, Classification, Potentials, and Prospects. Stem Cells Int 2018; 2018:9847015. [PMID: 30581475 PMCID: PMC6276490 DOI: 10.1155/2018/9847015] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/27/2018] [Accepted: 09/18/2018] [Indexed: 02/07/2023] Open
Abstract
With the discovery of endothelial progenitor cells (EPCs) in the late 1990s, a paradigm shift in the concept of neoangiogenesis occurred. The identification of circulating EPCs in peripheral blood marked the beginning of a new era with enormous potential in the rapidly transforming regenerative field. Overwhelmed with the revelation, researchers across the globe focused on isolating, defining, and interpreting the role of EPCs in various physiological and pathological conditions. Consequently, controversies emerged regarding the isolation techniques and classification of EPCs. Nevertheless, the potential of using EPCs in tissue engineering as an angiogenic source has been extensively explored. Concomitantly, the impact of EPCs on various diseases, such as diabetes, cancer, and cardiovascular diseases, has been studied. Within the limitations of the current knowledge, this review attempts to delineate the concept of EPCs in a sequential manner from the speculative history to a definitive presence (origin, sources of EPCs, isolation, and identification) and significance of these EPCs. Additionally, this review is aimed at serving as a guide for investigators, identifying potential research gaps, and summarizing our current and future prospects regarding EPCs.
Collapse
|
8
|
Lodola F, Laforenza U, Cattaneo F, Ruffinatti FA, Poletto V, Massa M, Tancredi R, Zuccolo E, Khdar DA, Riccardi A, Biggiogera M, Rosti V, Guerra G, Moccia F. VEGF-induced intracellular Ca 2+ oscillations are down-regulated and do not stimulate angiogenesis in breast cancer-derived endothelial colony forming cells. Oncotarget 2017; 8:95223-95246. [PMID: 29221123 PMCID: PMC5707017 DOI: 10.18632/oncotarget.20255] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 07/12/2017] [Indexed: 01/08/2023] Open
Abstract
Endothelial colony forming cells (ECFCs) represent a population of truly endothelial precursors that promote the angiogenic switch in solid tumors, such as breast cancer (BC). The intracellular Ca2+ toolkit, which drives the pro-angiogenic response to VEGF, is remodelled in tumor-associated ECFCs such that they are seemingly insensitive to this growth factor. This feature could underlie the relative failure of anti-VEGF therapies in cancer patients. Herein, we investigated whether and how VEGF uses Ca2+ signalling to control angiogenesis in BC-derived ECFCs (BC-ECFCs). Although VEGFR-2 was normally expressed, VEGF failed to induce proliferation and in vitro tubulogenesis in BC-ECFCs. Likewise, VEGF did not trigger robust Ca2+ oscillations in these cells. Similar to normal cells, VEGF-induced intracellular Ca2+ oscillations were triggered by inositol-1,4,5-trisphosphate-dependent Ca2+ release from the endoplasmic reticulum (ER) and maintained by store-operated Ca2+ entry (SOCE). However, InsP3-dependent Ca2+ release was significantly lower in BC-ECFCs due to the down-regulation of ER Ca2+ levels, while there was no remarkable difference in the amplitude, pharmacological profile and molecular composition of SOCE. Thus, the attenuation of the pro-angiogenic Ca2+ response to VEGF was seemingly due to the reduction in ER Ca2+ concentration, which prevents VEGF from triggering robust intracellular Ca2+ oscillations. However, the pharmacological inhibition of SOCE prevented BC-ECFC proliferation and in vitro tubulogenesis. These findings demonstrate for the first time that BC-ECFCs are insensitive to VEGF, which might explain at cellular and molecular levels the failure of anti-VEGF therapies in BC patients, and hint at SOCE as a novel molecular target for this disease.
Collapse
Affiliation(s)
- Francesco Lodola
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia 27100, Italy.,Current address: Italian Institute of Technology, Center for Nano Science and Technology, Milano 20133, Italy
| | - Umberto Laforenza
- Department of Molecular Medicine, University of Pavia, Pavia 27100, Italy
| | - Fabio Cattaneo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples 80131, Italy
| | | | - Valentina Poletto
- Laboratory of Biochemistry, Biotechnology and Advanced Diagnosis, Foundation IRCCS Policlinico San Matteo, Pavia 27100, Italy
| | - Margherita Massa
- Laboratory of Immunology Transplantation, Foundation IRCCS Policlinico San Matteo, Pavia 27100, Italy
| | - Richard Tancredi
- Medical Oncology Unit, Foundation IRCCS Salvatore Maugeri, Pavia 27100, Italy
| | - Estella Zuccolo
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia 27100, Italy
| | - Dlzar Alì Khdar
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia 27100, Italy
| | - Alberto Riccardi
- Medical Oncology Unit, Foundation IRCCS Salvatore Maugeri, Pavia 27100, Italy.,Department of Internal Medicine, University of Pavia, Pavia 27100, Italy
| | - Marco Biggiogera
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia 27100, Italy
| | - Vittorio Rosti
- Laboratory of Biochemistry, Biotechnology and Advanced Diagnosis, Foundation IRCCS Policlinico San Matteo, Pavia 27100, Italy
| | - Germano Guerra
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso 86100, Italy
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia 27100, Italy
| |
Collapse
|
9
|
Tumor-specific circulating angiogenic progenitors in breast and renal cell cancer: What prospects? Eur J Cancer 2017; 77:153-154. [PMID: 28400088 DOI: 10.1016/j.ejca.2017.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|