1
|
Optogenetic and Chemical Induction Systems for Regulation of Transgene Expression in Plants: Use in Basic and Applied Research. Int J Mol Sci 2022; 23:ijms23031737. [PMID: 35163658 PMCID: PMC8835832 DOI: 10.3390/ijms23031737] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 02/01/2023] Open
Abstract
Continuous and ubiquitous expression of foreign genes sometimes results in harmful effects on the growth, development and metabolic activities of plants. Tissue-specific promoters help to overcome this disadvantage, but do not allow one to precisely control transgene expression over time. Thus, inducible transgene expression systems have obvious benefits. In plants, transcriptional regulation is usually driven by chemical agents under the control of chemically-inducible promoters. These systems are diverse, but usually contain two elements, the chimeric transcription factor and the reporter gene. The commonly used chemically-induced expression systems are tetracycline-, steroid-, insecticide-, copper-, and ethanol-regulated. Unlike chemical-inducible systems, optogenetic tools enable spatiotemporal, quantitative and reversible control over transgene expression with light, overcoming limitations of chemically-inducible systems. This review updates and summarizes optogenetic and chemical induction methods of transgene expression used in basic plant research and discusses their potential in field applications.
Collapse
|
2
|
Abstract
With the increasing understanding of fundamentals of gene silencing pathways in plants, various tools and techniques for downregulating the expression of a target gene have been developed across multiple plant species. This chapter provides an insight into the molecular mechanisms of gene silencing and highlights the advancements in various gene silencing approaches. The prominent aspects of different gene silencing methods, their advantages and disadvantages have been discussed. A succinct discussion on the newly emerged microRNA-based technologies like microRNA-induced gene silencing (MIGS) and microRNA-mediated virus-induced gene silencing (MIR-VIGS) are also presented. We have also discussed the gene-editing system like CRISPR-Cas. The prominent bottlenecks in gene silencing methods are the off-target effects and lack of universal applicability. However, the tremendous growth in understanding of this field reflects the potentials for improvements in the currently available approaches and the development of new widely applicable methods for easy, fast, and efficient functional characterization of plant genes.
Collapse
Affiliation(s)
- Prachi Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Kirankumar S Mysore
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK, USA
| | | |
Collapse
|
3
|
Samalova M, Moore I. The steroid-inducible pOp6/LhGR gene expression system is fast, sensitive and does not cause plant growth defects in rice (Oryza sativa). BMC PLANT BIOLOGY 2021; 21:461. [PMID: 34627147 PMCID: PMC8501728 DOI: 10.1186/s12870-021-03241-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Inducible systems for transgene expression activated by a chemical inducer or an inducer of non-plant origin are desirable tools for both basic plant research and biotechnology. Although, the technology has been widely exploited in dicotyledonous model plants such as Arabidopsis, it has not been optimised for use with the monocotyledonous model species, namely rice. We have adapted the dexamethasone-inducible pOp6/LhGR system for rice and the results indicated that it is fast, sensitive and tightly regulated, with high levels of induction that remain stable over several generations. Most importantly, we have shown that the system does not cause negative growth defects in vitro or in soil grown plants. Interestingly in the process of testing, we found that another steroid, triamcinolone acetonide, is a more potent inducer in rice than dexamethasone. We present serious considerations for the construct design to avoid undesirable effects caused by the system in plants, leakiness and possible silencing, as well as simple steps to maximize translation efficiency of a gene of interest. Finally, we compare the performance of the pOp6/LhGR system with other chemically inducible systems tested in rice in terms of the properties of an ideal inducible system.
Collapse
Affiliation(s)
- Marketa Samalova
- Department of Experimental Biology, Masaryk University, Brno, Czech Republic.
| | - Ian Moore
- Department of Plant Sciences, Oxford University, Oxford, UK
| |
Collapse
|
4
|
Orr RG, Foley SJ, Sherman C, Abreu I, Galotto G, Liu B, González-Guerrero M, Vidali L. Robust Survival-Based RNA Interference of Gene Families Using in Tandem Silencing of Adenine Phosphoribosyltransferase. PLANT PHYSIOLOGY 2020; 184:607-619. [PMID: 32764132 PMCID: PMC7536682 DOI: 10.1104/pp.20.00865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 07/15/2020] [Indexed: 05/07/2023]
Abstract
RNA interference (RNAi) enables flexible and dynamic interrogation of entire gene families or essential genes without the need for exogenous proteins, unlike CRISPR-Cas technology. Unfortunately, isolation of plants undergoing potent gene silencing requires laborious design, visual screening, and physical separation for downstream characterization. Here, we developed an adenine phosphoribosyltransferase (APT)-based RNAi technology (APTi) in Physcomitrella patens that improves upon the multiple limitations of current RNAi techniques. APTi exploits the prosurvival output of transiently silencing APT in the presence of 2-fluoroadenine, thereby establishing survival itself as a reporter of RNAi. To maximize the silencing efficacy of gene targets, we created vectors that facilitate insertion of any gene target sequence in tandem with the APT silencing motif. We tested the efficacy of APTi with two gene families, the actin-dependent motor, myosin XI (a,b), and the putative chitin receptor Lyk5 (a,b,c). The APTi approach resulted in a homogenous population of transient P. patens mutants specific for our gene targets with zero surviving background plants within 8 d. The observed mutants directly corresponded to a maximal 93% reduction of myosin XI protein and complete loss of chitin-induced calcium spiking in the Lyk5-RNAi background. The positive selection nature of APTi represents a fundamental improvement in RNAi technology and will contribute to the growing demand for technologies amenable to high-throughput phenotyping.
Collapse
Affiliation(s)
- Robert G Orr
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts 01609
| | - Stephen J Foley
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts 01609
| | - Catherine Sherman
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts 01609
- Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, Massachusetts 01605
| | - Isidro Abreu
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Madrid 28223, Spain
| | - Giulia Galotto
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts 01609
| | - Boyuan Liu
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts 01609
| | - Manuel González-Guerrero
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Madrid 28223, Spain
| | - Luis Vidali
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts 01609
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts 01609
| |
Collapse
|
5
|
Yoon M, Rikkerink EHA. Rpa1 mediates an immune response to avrRpm1 Psa and confers resistance against Pseudomonas syringae pv. actinidiae. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:688-702. [PMID: 31849122 DOI: 10.1111/tpj.14654] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023]
Abstract
The type three effector AvrRpm1Pma from Pseudomonas syringae pv. maculicola (Pma) triggers an RPM1-mediated immune response linked to phosphorylation of RIN4 (RPM1-interacting protein 4) in Arabidopsis. However, the effector-resistance (R) gene interaction is not well established with different AvrRpm1 effectors from other pathovars. We investigated the AvrRpm1-triggered immune responses in Nicotiana species and isolated Rpa1 (Resistance to Pseudomonas syringae pv. actinidiae 1) via a reverse genetic screen in Nicotiana tabacum. Transient expression and gene silencing were performed in combination with co-immunoprecipitation and growth assays to investigate the specificity of interactions that lead to inhibition of pathogen growth. Two closely related AvrRpm1 effectors derived from Pseudomonas syringae pv. actinidiae biovar 3 (AvrRpm1Psa ) and Pseudomonas syringae pv. syringae strain B728a (AvrRpm1Psy ) trigger immune responses mediated by RPA1, a nucleotide-binding leucine-rich repeat protein with an N-terminal coiled-coil domain. In a display of contrasting specificities, RPA1 does not respond to AvrRpm1Pma , and correspondingly AvrRpm1Psa and AvrRpm1Psy do not trigger the RPM1-mediated response, demonstrating that separate R genes mediate specific immune responses to different AvrRpm1 effectors. AvrRpm1Psa co-immunoprecipitates with RPA1, and both proteins co-immunoprecipitate with RIN4. In contrast with RPM1, however, RPA1 was not activated by the phosphomimic RIN4T166D and silencing of RIN4 did not affect the RPA1 activity. Delivery of AvrRpm1Psa by Pseudomonas syringae pv. tomato (Pto) in combination with transient expression of Rpa1 resulted in inhibition of the pathogen growth in N. benthamiana. Psa growth was also inhibited by RPA1 in N. tabacum.
Collapse
Affiliation(s)
- Minsoo Yoon
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Erik H A Rikkerink
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| |
Collapse
|
6
|
Shanidze N, Lenkeit F, Hartig JS, Funck D. A Theophylline-Responsive Riboswitch Regulates Expression of Nuclear-Encoded Genes. PLANT PHYSIOLOGY 2020; 182:123-135. [PMID: 31704721 PMCID: PMC6945857 DOI: 10.1104/pp.19.00625] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 10/25/2019] [Indexed: 05/27/2023]
Abstract
Riboswitches are small cis-regulatory RNA elements that regulate gene expression by conformational changes in response to ligand binding. Synthetic riboswitches have been engineered as versatile and innovative tools for gene regulation by external application of their ligand in prokaryotes and eukaryotes. In plants, synthetic riboswitches were used to regulate gene expression in plastids, but the application of synthetic riboswitches for the regulation of nuclear-encoded genes in planta remains to be explored. Here, we characterize the properties of a theophylline-responsive synthetic aptazyme for control of nuclear-encoded transgenes in Arabidopsis (Arabidopsis thaliana). Activation of the aptazyme, inserted in the 3' UTR of the target gene, resulted in rapid self-cleavage and subsequent decay of the mRNA. This riboswitch allowed reversible, theophylline-dependent down-regulation of the GFP reporter gene in a dose- and time-dependent manner. Insertion of the riboswitch into the ONE HELIX PROTEIN1 gene allowed complementation of ohp1 mutants and induction of the mutant phenotype by theophylline. GFP and ONE HELIX PROTEIN1 transcript levels were downregulated by up to 90%, and GFP protein levels by 95%. These results establish artificial riboswitches as tools for externally controlled gene expression in synthetic biology in plants or functional crop design.
Collapse
Affiliation(s)
- Nana Shanidze
- Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| | - Felina Lenkeit
- Department of Biology, University of Konstanz, 78464 Konstanz, Germany
- Department of Chemistry, University of Konstanz, 78464 Konstanz, Germany
| | - Jörg S Hartig
- Department of Chemistry, University of Konstanz, 78464 Konstanz, Germany
| | - Dietmar Funck
- Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| |
Collapse
|
7
|
Aggarwal P, Challa KR, Rath M, Sunkara P, Nath U. Generation of Inducible Transgenic Lines of Arabidopsis Transcription Factors Regulated by MicroRNAs. Methods Mol Biol 2018; 1830:61-79. [PMID: 30043364 DOI: 10.1007/978-1-4939-8657-6_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Transcription factors play key regulatory roles in all the life processes across kingdoms. In plants, the genome of a typical model species such as Arabidopsis thaliana encodes over 1500 transcription factors that regulate the expression dynamics of all the genes in time and space. Therefore, studying their function by analyzing the loss and gain-of-function lines is of prime importance in basic plant biology and its agricultural application. However, the current approach of knocking out genes often causes embryonic lethal phenotype, while inactivating one or two members of a redundant gene family yields little phenotypic changes, thereby making the functional analysis a technically challenging task. In such cases, inducible knock-down or overexpression of transcription factors appears to be a more effective approach. Restricting the transcription factors in the cytoplasm by fusing them with animal glucocorticoid/estrogen receptors (GR/ER) and then re-localizing them to the nucleus by external application of animal hormone analogues has been a useful method of gene function analysis in the model plants. In this chapter, we describe the recent advancements in the GR and ER expression systems and their use in analyzing the function of transcription factors in Arabidopsis.
Collapse
Affiliation(s)
- Pooja Aggarwal
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Krishna Reddy Challa
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Monalisha Rath
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Preethi Sunkara
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Utpal Nath
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India.
| |
Collapse
|