1
|
Kompatscher M, Bartosik K, Erharter K, Plangger R, Juen F, Kreutz C, Micura R, Westhof E, Erlacher M. Contribution of tRNA sequence and modifications to the decoding preferences of E. coli and M. mycoides tRNAGlyUCC for synonymous glycine codons. Nucleic Acids Res 2024; 52:1374-1386. [PMID: 38050960 PMCID: PMC10853795 DOI: 10.1093/nar/gkad1136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 12/07/2023] Open
Abstract
tRNA superwobbling, used by certain bacteria and organelles, is an intriguing decoding concept in which a single tRNA isoacceptor is used to decode all synonymous codons of a four-fold degenerate codon box. While Escherichia coli relies on three tRNAGly isoacceptors to decode the four glycine codons (GGN), Mycoplasma mycoides requires only a single tRNAGly. Both organisms express tRNAGly with the anticodon UCC, which are remarkably similar in sequence but different in their decoding ability. By systematically introducing mutations and altering the number and type of tRNA modifications using chemically synthesized tRNAs, we elucidated the contribution of individual nucleotides and chemical groups to decoding by the E. coli and M. mycoides tRNAGly. The tRNA sequence was identified as the key factor for superwobbling, revealing the T-arm sequence as a novel pivotal element. In addition, the presence of tRNA modifications, although not essential for providing superwobbling, was shown to delicately fine-tune and balance the decoding of synonymous codons. This emphasizes that the tRNA sequence and its modifications together form an intricate system of high complexity that is indispensable for accurate and efficient decoding.
Collapse
Affiliation(s)
- Maria Kompatscher
- Institute of Genomics and RNomics, Biocenter, Medical University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Karolina Bartosik
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Kevin Erharter
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Raphael Plangger
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Fabian Sebastian Juen
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Christoph Kreutz
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Ronald Micura
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Eric Westhof
- Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire, Architecture et Réactivité de l’ARN, CNRS UPR 9002, 2, allée Konrad Roentgen, F-67084 Strasbourg, France
| | - Matthias D Erlacher
- Institute of Genomics and RNomics, Biocenter, Medical University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| |
Collapse
|
2
|
Everaert C, Verwilt J, Verniers K, Vandamme N, Marcos Rubio A, Vandesompele J, Mestdagh P. Blocking Abundant RNA Transcripts by High-Affinity Oligonucleotides during Transcriptome Library Preparation. Biol Proced Online 2023; 25:7. [PMID: 36890441 PMCID: PMC9996952 DOI: 10.1186/s12575-023-00193-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/14/2023] [Indexed: 03/10/2023] Open
Abstract
BACKGROUND RNA sequencing has become the gold standard for transcriptome analysis but has an inherent limitation of challenging quantification of low-abundant transcripts. In contrast to microarray technology, RNA sequencing reads are proportionally divided in function of transcript abundance. Therefore, low-abundant RNAs compete against highly abundant - and sometimes non-informative - RNA species. RESULTS We developed an easy-to-use strategy based on high-affinity RNA-binding oligonucleotides to block reverse transcription and PCR amplification of specific RNA transcripts, thereby substantially reducing their abundance in the final sequencing library. To demonstrate the broad application potential of our method, we applied it to different transcripts and library preparation strategies, including YRNAs in small RNA sequencing of human blood plasma, mitochondrial rRNAs in both 3' end sequencing and long-read sequencing, and MALAT1 in single-cell 3' end sequencing. We demonstrate that the blocking strategy is highly efficient, reproducible, specific, and generally results in better transcriptome coverage and complexity. CONCLUSION Our method does not require modifications of the library preparation procedure apart from simply adding blocking oligonucleotides to the RT reaction and can thus be easily integrated into virtually any RNA sequencing library preparation protocol.
Collapse
Affiliation(s)
- Celine Everaert
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent University, Ghent, Belgium
| | - Jasper Verwilt
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent University, Ghent, Belgium
| | - Kimberly Verniers
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent University, Ghent, Belgium
| | - Niels Vandamme
- Cancer Research Institute Ghent, Ghent University, Ghent, Belgium
- VIB Single Cell Core, Vlaams Instituut voor Biotechnologie, Ghent-Leuven, Belgium
| | - Alvaro Marcos Rubio
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent University, Ghent, Belgium
| | - Jo Vandesompele
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent University, Ghent, Belgium
| | - Pieter Mestdagh
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.
- Cancer Research Institute Ghent, Ghent University, Ghent, Belgium.
| |
Collapse
|
3
|
Van Goethem A, Deleu J, Yigit N, Everaert C, Moreno-Smith M, Vasudevan S, Zeka F, Demuynck F, Barbieri E, Speleman F, Mestdagh P, Shohet J, Vandesompele J, Van Maerken T. Longitudinal evaluation of serum microRNAs as biomarkers for neuroblastoma burden and therapeutic p53 reactivation. NAR Cancer 2023; 5:zcad002. [PMID: 36683916 PMCID: PMC9846426 DOI: 10.1093/narcan/zcad002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/30/2022] [Accepted: 01/06/2023] [Indexed: 01/19/2023] Open
Abstract
Accurate assessment of treatment response and residual disease is indispensable for the evaluation of cancer treatment efficacy. However, performing tissue biopsies for longitudinal follow-up poses a major challenge in the management of solid tumours like neuroblastoma. In the present study, we evaluated whether circulating miRNAs are suitable to monitor neuroblastoma tumour burden and whether treatment-induced changes of miRNA abundance in the tumour are detectable in serum. We performed small RNA sequencing on longitudinally collected serum samples from mice carrying orthotopic neuroblastoma xenografts that were exposed to treatment with idasanutlin or temsirolimus. We identified 57 serum miRNAs to be differentially expressed upon xenograft tumour manifestation, out of which 21 were also found specifically expressed in the serum of human high-risk neuroblastoma patients. The murine serum levels of these 57 miRNAs correlated with tumour tissue expression and tumour volume, suggesting potential utility for monitoring tumour burden. In addition, we describe serum miRNAs that dynamically respond to p53 activation following treatment of engrafted mice with idasanutlin. We identified idasanutlin-induced serum miRNA expression changes upon one day and 11 days of treatment. By limiting to miRNAs with a tumour-related induction, we put forward hsa-miR-34a-5p as a potential pharmacodynamic biomarker of p53 activation in serum.
Collapse
Affiliation(s)
- Alan Van Goethem
- OncoRNALab, Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Jill Deleu
- OncoRNALab, Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Nurten Yigit
- OncoRNALab, Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Celine Everaert
- OncoRNALab, Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Myrthala Moreno-Smith
- Department of Pediatrics, Section of Hematology-Oncology, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Sanjeev A Vasudevan
- Department of Pediatrics, Section of Hematology-Oncology, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Fjoralba Zeka
- OncoRNALab, Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Fleur Demuynck
- OncoRNALab, Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Eveline Barbieri
- Department of Pediatrics, Section of Hematology-Oncology, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Frank Speleman
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- PPOL, Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Pieter Mestdagh
- OncoRNALab, Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Jason Shohet
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jo Vandesompele
- OncoRNALab, Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Tom Van Maerken
- OncoRNALab, Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Department of Laboratory Medicine, AZ Groeninge, Kortrijk, Belgium
| |
Collapse
|
4
|
David BM, Jensen PA. Improving an rRNA depletion protocol with statistical design of experiments. SLAS Technol 2023; 28:16-21. [PMID: 39692280 DOI: 10.1016/j.slast.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/17/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022]
Abstract
In prokaryotic RNA-seq library preparation, rRNA depletion is required to remove highly abundant rRNA transcripts from total RNA. rRNA is so abundant that small improvements in depletion efficiency lead to large increases in mRNA sequencing coverage. The current gold-standard method for rRNA depletion makes rRNA depletion the most expensive step in prokaryotic RNA-seq library preparation. A variety of commercial and home-made methods exist to lower the cost or increase the efficiency of rRNA removal. Many of these techniques are suboptimal when applied to new species of bacteria or when the protocol or reagents need to be changed. Re-optimizing a protocol by trial-and-error is an expensive and laborious process. Systematic frameworks like the statistical design of experiments (DOE) can efficiently improve processes by exploring the quantitative relationship between multiple factors. DOE allows experimenters to find factor interactions that may not be apparent when factors are studied in isolation. We used DOE to optimize an rRNA depletion protocol by updating reagents and identifying factors that maximize rRNA removal and minimize cost. The optimized protocol more efficiently removes rRNA, uses fewer reagents, and is less expensive than the original protocol. Our optimization required only 36 experiments and identified two significant interactions among three protocol factors. Overall, our approach demonstrates the utility of a rational, DOE framework for improving complex molecular biology protocols.
Collapse
Affiliation(s)
- Benjamin M David
- Department of Bioengineering, University of Illinois Urbana-Champaign, 1406 W Green St, Urbana, IL, 61801, United States
| | - Paul A Jensen
- Department of Bioengineering, University of Illinois Urbana-Champaign, 1406 W Green St, Urbana, IL, 61801, United States; Department of Microbiology, University of Illinois Urbana-Champaign, 601 S Goodwin Av, Urbana, IL, 61801, United States; Carl Woese Institute of Genomic Biology, University of Illinois Urbana-Champaign, 1206 W Gregory Dr, Urbana, IL, 61801, United States.
| |
Collapse
|
5
|
Small RNA-Sequencing for Analysis of Circulating miRNAs: Benchmark Study. J Mol Diagn 2022; 24:386-394. [PMID: 35081459 DOI: 10.1016/j.jmoldx.2021.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/15/2021] [Accepted: 12/20/2021] [Indexed: 11/22/2022] Open
Abstract
Small RNA-sequencing (RNA-Seq) is being increasingly used for profiling of circulating microRNAs (miRNAs), a new group of promising biomarkers. Unfortunately, small RNA-Seq protocols are prone to biases limiting quantification accuracy, which motivated development of several novel methods. Here, we present comparison of all small RNA-Seq library preparation approaches that are commercially available for quantification of miRNAs in biofluids. Using synthetic and human plasma samples, we compared performance of traditional two-adaptor ligation protocols (Lexogen, Norgen), as well as methods using randomized adaptors (NEXTflex), polyadenylation (SMARTer), circularization (RealSeq), capture probes (EdgeSeq), or unique molecular identifiers (QIAseq). There was no single protocol outperforming others across all metrics. Limited overlap of measured miRNA profiles was documented between methods largely owing to protocol-specific biases. Methods designed to minimize bias largely differ in their performance, and contributing factors were identified. Usage of unique molecular identifiers has rather negligible effect and, if designed incorrectly, can even introduce spurious results. Together, these results identify strengths and weaknesses of all current methods and provide guidelines for applications of small RNA-Seq in biomarker research.
Collapse
|
6
|
Micheel J, Safrastyan A, Wollny D. Advances in Non-Coding RNA Sequencing. Noncoding RNA 2021; 7:70. [PMID: 34842804 PMCID: PMC8628893 DOI: 10.3390/ncrna7040070] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 12/11/2022] Open
Abstract
Non-coding RNAs (ncRNAs) comprise a set of abundant and functionally diverse RNA molecules. Since the discovery of the first ncRNA in the 1960s, ncRNAs have been shown to be involved in nearly all steps of the central dogma of molecular biology. In recent years, the pace of discovery of novel ncRNAs and their cellular roles has been greatly accelerated by high-throughput sequencing. Advances in sequencing technology, library preparation protocols as well as computational biology helped to greatly expand our knowledge of which ncRNAs exist throughout the kingdoms of life. Moreover, RNA sequencing revealed crucial roles of many ncRNAs in human health and disease. In this review, we discuss the most recent methodological advancements in the rapidly evolving field of high-throughput sequencing and how it has greatly expanded our understanding of ncRNA biology across a large number of different organisms.
Collapse
Affiliation(s)
| | | | - Damian Wollny
- RNA Bioinformatics/High Throughput Analysis, Faculty of Mathematics and Computer Science, Friedrich Schiller University, 07743 Jena, Germany; (J.M.); (A.S.)
| |
Collapse
|
7
|
Juzenas S, Lindqvist CM, Ito G, Dolshanskaya Y, Halfvarson J, Franke A, Hemmrich-Stanisak G. Depletion of erythropoietic miR-486-5p and miR-451a improves detectability of rare microRNAs in peripheral blood-derived small RNA sequencing libraries. NAR Genom Bioinform 2020; 2:lqaa008. [PMID: 33575555 PMCID: PMC7671325 DOI: 10.1093/nargab/lqaa008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 02/07/2020] [Indexed: 12/31/2022] Open
Abstract
Erythroid-specific miR-451a and miR-486-5p are two of the most dominant microRNAs (miRNAs) in human peripheral blood. In small RNA sequencing libraries, their overabundance reduces diversity as well as complexity and consequently causes negative effects such as missing detectability and inaccurate quantification of low abundant miRNAs. Here we present a simple, cost-effective and easy to implement hybridization-based method to deplete these two erythropoietic miRNAs from blood-derived RNA samples. By utilization of blocking oligonucleotides, this method provides a highly efficient and specific depletion of miR-486-5p and miR-451a, which leads to a considerable increase of measured expression as well as detectability of low abundant miRNA species. The blocking oligos are compatible with common 5′ ligation-dependent small RNA library preparation protocols, including commercially available kits, such as Illumina TruSeq and Perkin Elmer NEXTflex. Furthermore, the here described method and oligo design principle can be easily adapted to target many other miRNA molecules, depending on context and research question.
Collapse
Affiliation(s)
- Simonas Juzenas
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, DE 24105 Kiel, Germany
| | - Carl M Lindqvist
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, DE 24105 Kiel, Germany.,School of Medical Sciences, Faculty of Medicine and Health, Örebro University, SE 70182 Örebro, Sweden
| | - Go Ito
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, DE 24105 Kiel, Germany
| | - Yewgenia Dolshanskaya
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, DE 24105 Kiel, Germany
| | - Jonas Halfvarson
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, SE 70182 Örebro, Sweden
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, DE 24105 Kiel, Germany
| | - Georg Hemmrich-Stanisak
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, DE 24105 Kiel, Germany
| |
Collapse
|
8
|
Zhong X, Heinicke F, Lie BA, Rayner S. Accurate Adapter Information Is Crucial for Reproducibility and Reusability in Small RNA Seq Studies. Noncoding RNA 2019; 5:ncrna5040049. [PMID: 31661777 PMCID: PMC6958438 DOI: 10.3390/ncrna5040049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/23/2019] [Accepted: 10/25/2019] [Indexed: 11/16/2022] Open
Abstract
A necessary pre-processing data analysis step is the removal of adapter sequences from the raw reads. While most adapter trimming tools require adapter sequence as an essential input, adapter information is often incomplete or missing. This can impact quantification of features, reproducibility of the study and might even lead to erroneous conclusions. Here, we provide examples to highlight the importance of specifying the adapter sequence by demonstrating the effect of using similar but different adapter sequences and identify additional potential sources of errors in the adapter trimming step. Finally, we propose solutions by which users can ensure their small RNA-seq data is fully annotated with adapter information.
Collapse
Affiliation(s)
- Xiangfu Zhong
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway.
| | - Fatima Heinicke
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway.
| | - Benedicte A Lie
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway.
| | - Simon Rayner
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway.
- Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway.
| |
Collapse
|
9
|
Zeka F, Decock A, Van Goethem A, Vanderheyden K, Demuynck F, Lammens T, Helsmoortel HH, Vermeulen J, Noguera R, Berbegall AP, Combaret V, Schleiermacher G, Laureys G, Schramm A, Schulte JH, Rahmann S, Bienertová-Vašků J, Mazánek P, Jeison M, Ash S, Hogarty MD, Moreno-Smith M, Barbieri E, Shohet J, Berthold F, Van Maerken T, Speleman F, Fischer M, De Preter K, Mestdagh P, Vandesompele J. Circulating microRNA biomarkers for metastatic disease in neuroblastoma patients. JCI Insight 2018; 3:97021. [PMID: 30518699 DOI: 10.1172/jci.insight.97021] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 10/31/2018] [Indexed: 12/17/2022] Open
Abstract
In this study, the circulating miRNome from diagnostic neuroblastoma serum was assessed for identification of noninvasive biomarkers with potential in monitoring metastatic disease. After determining the circulating neuroblastoma miRNome, 743 miRNAs were screened in 2 independent cohorts of 131 and 54 patients. Evaluation of serum miRNA variance in a model testing for tumor stage, MYCN status, age at diagnosis, and overall survival revealed tumor stage as the most significant factor impacting miRNA abundance in neuroblastoma serum. Differential abundance analysis between patients with metastatic and localized disease revealed 9 miRNAs strongly associated with metastatic stage 4 disease in both patient cohorts. Increasing levels of these miRNAs were also observed in serum from xenografted mice bearing human neuroblastoma tumors. Moreover, murine serum miRNA levels were strongly associated with tumor volume. These findings were validated in longitudinal serum samples from metastatic neuroblastoma patients, where the 9 miRNAs were associated with disease burden and treatment response.
Collapse
Affiliation(s)
- Fjoralba Zeka
- Center for Medical Genetics, Department of Biomolecular Medicine, and.,Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Anneleen Decock
- Center for Medical Genetics, Department of Biomolecular Medicine, and.,Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Alan Van Goethem
- Center for Medical Genetics, Department of Biomolecular Medicine, and.,Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Katrien Vanderheyden
- Center for Medical Genetics, Department of Biomolecular Medicine, and.,Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Fleur Demuynck
- Center for Medical Genetics, Department of Biomolecular Medicine, and
| | - Tim Lammens
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium.,Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
| | - Hetty H Helsmoortel
- Center for Medical Genetics, Department of Biomolecular Medicine, and.,Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | | | - Rosa Noguera
- Department of Pathology, Medical School, University of Valencia/CIBERONC Madrid, Spain
| | - Ana P Berbegall
- Department of Pathology, Medical School, University of Valencia/CIBERONC Madrid, Spain.,INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Valérie Combaret
- Laboratoire de Recherche Translationnelle, Centre Léon-Bérard, Lyon, France
| | | | - Geneviève Laureys
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium.,Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
| | - Alexander Schramm
- Molecular Oncology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Johannes H Schulte
- Molecular Oncology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Pediatric Oncology and Hematology, Charité University Medicine, Berlin, Germany.,German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Sven Rahmann
- Genome Informatics, Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | | | - Pavel Mazánek
- Department of Pediatric Oncology, University Hospital Brno, Brno, Czech Republic
| | - Marta Jeison
- Pediatric Hematology Oncology, Schneider Children's Medical Center of Israel, Tel Aviv, Israel
| | - Shifra Ash
- Pediatric Hematology Oncology, Schneider Children's Medical Center of Israel, Tel Aviv, Israel
| | - Michael D Hogarty
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Mirthala Moreno-Smith
- Department of Pediatrics, Section of Hematology-Oncology, Texas Children's Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Eveline Barbieri
- Department of Pediatrics, Section of Hematology-Oncology, Texas Children's Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Jason Shohet
- Department of Pediatrics, Section of Hematology-Oncology, Texas Children's Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Frank Berthold
- Pediatric Oncology and Hematology, University Children's Hospital of Cologne, Medical Faculty, and
| | - Tom Van Maerken
- Center for Medical Genetics, Department of Biomolecular Medicine, and.,Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Frank Speleman
- Center for Medical Genetics, Department of Biomolecular Medicine, and.,Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Matthias Fischer
- Pediatric Oncology and Hematology, University Children's Hospital of Cologne, Medical Faculty, and.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Katleen De Preter
- Center for Medical Genetics, Department of Biomolecular Medicine, and.,Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Pieter Mestdagh
- Center for Medical Genetics, Department of Biomolecular Medicine, and.,Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Jo Vandesompele
- Center for Medical Genetics, Department of Biomolecular Medicine, and.,Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| |
Collapse
|
10
|
Matamala JM, Arias-Carrasco R, Sanchez C, Uhrig M, Bargsted L, Matus S, Maracaja-Coutinho V, Abarzua S, van Zundert B, Verdugo R, Manque P, Hetz C. Genome-wide circulating microRNA expression profiling reveals potential biomarkers for amyotrophic lateral sclerosis. Neurobiol Aging 2018; 64:123-138. [DOI: 10.1016/j.neurobiolaging.2017.12.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 12/18/2017] [Accepted: 12/21/2017] [Indexed: 12/17/2022]
|
11
|
Dhahbi JM, Atamna H, Selth LA. Data Mining of Small RNA-Seq Suggests an Association Between Prostate Cancer and Altered Abundance of 5' Transfer RNA Halves in Seminal Fluid and Prostatic Tissues. BIOMARKERS IN CANCER 2018; 10:1179299X18759545. [PMID: 29497340 PMCID: PMC5824904 DOI: 10.1177/1179299x18759545] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/23/2018] [Indexed: 01/04/2023]
Abstract
Extracellular RNAs are gaining clinical interest as biofluid-based noninvasive markers for diseases, especially cancer. In particular, derivatives of transfer RNA (tRNA) are emerging as a new class of small-noncoding RNAs with high biomarker potential. We and others previously reported alterations in serum levels of specific tRNA halves in disease states including cancer. Here, we explored seminal fluid for tRNA halves as potential markers of prostate cancer. We found that 5′ tRNA halves are abundant in seminal fluid and are elevated in prostate cancer relative to noncancer patients. Importantly, most of these tRNA halves are also detectable in prostatic tissues, and a subset were increased in malignant relative to adjacent normal tissue. These findings emphasize the potential of 5′ tRNA halves as noninvasive markers for prostate cancer screening and diagnosis and provide leads for future work to elucidate a putative role of the 5′ tRNA halves in carcinogenesis.
Collapse
Affiliation(s)
- Joseph M Dhahbi
- College of Medicine, California University of Science and Medicine, San Bernardino, CA, USA
| | - Hani Atamna
- College of Medicine, California University of Science and Medicine, San Bernardino, CA, USA
| | - Luke A Selth
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
12
|
Brandão BB, Guerra BA, Mori MA. Shortcuts to a functional adipose tissue: The role of small non-coding RNAs. Redox Biol 2017; 12:82-102. [PMID: 28214707 PMCID: PMC5312655 DOI: 10.1016/j.redox.2017.01.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 01/30/2017] [Indexed: 12/20/2022] Open
Abstract
Metabolic diseases such as type 2 diabetes are a major public health issue worldwide. These diseases are often linked to a dysfunctional adipose tissue. Fat is a large, heterogenic, pleiotropic and rather complex tissue. It is found in virtually all cavities of the human body, shows unique plasticity among tissues, and harbors many cell types in addition to its main functional unit - the adipocyte. Adipose tissue function varies depending on the localization of the fat depot, the cell composition of the tissue and the energy status of the organism. While the white adipose tissue (WAT) serves as the main site for triglyceride storage and acts as an important endocrine organ, the brown adipose tissue (BAT) is responsible for thermogenesis. Beige adipocytes can also appear in WAT depots to sustain heat production upon certain conditions, and it is becoming clear that adipose tissue depots can switch phenotypes depending on cell autonomous and non-autonomous stimuli. To maintain such degree of plasticity and respond adequately to changes in the energy balance, three basic processes need to be properly functioning in the adipose tissue: i) adipogenesis and adipocyte turnover, ii) metabolism, and iii) signaling. Here we review the fundamental role of small non-coding RNAs (sncRNAs) in these processes, with focus on microRNAs, and demonstrate their importance in adipose tissue function and whole body metabolic control in mammals.
Collapse
Affiliation(s)
- Bruna B Brandão
- Program in Molecular Biology, Universidade Federal de São Paulo, São Paulo, Brazil; Department of Biochemistry and Tissue Biology, Universidade Estadual de Campinas, Campinas, Brazil
| | - Beatriz A Guerra
- Program in Molecular Biology, Universidade Federal de São Paulo, São Paulo, Brazil; Department of Biochemistry and Tissue Biology, Universidade Estadual de Campinas, Campinas, Brazil
| | - Marcelo A Mori
- Program in Molecular Biology, Universidade Federal de São Paulo, São Paulo, Brazil; Department of Biochemistry and Tissue Biology, Universidade Estadual de Campinas, Campinas, Brazil; Program in Genetics and Molecular Biology, Universidade Estadual de Campinas, Campinas, Brazil.
| |
Collapse
|