1
|
Deshmukh SP, Couser NL. Facial and ocular manifestations of male patients affected by the HUWE1-related intellectual developmental disorder. INTERNATIONAL JOURNAL OF MOLECULAR EPIDEMIOLOGY AND GENETICS 2023; 14:34-41. [PMID: 38021253 PMCID: PMC10658174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023]
Abstract
Turner-type X-linked syndromic intellectual developmental disorder (MRXST) is a rare neurodevelopmental disorder. MRXST is caused by pathogenic variants in the HUWE1 gene on chromosome Xp11.22. The HUWE1 gene encodes a ubiquitin ligase, which has downstream effects on the n-MYC protein and DLL3 Notch ligand, ultimately affecting neuronal differentiation. In addition to intellectual disability and developmental delay, other clinical features such as absent or delayed speech, skeletal abnormalities, abnormalities in hands or feet, seizures, and hypotonia have been described in case reports. Facial dysmorphic features and eye manifestations have been reported in patients with MRXST, but have not been identified as distinctive to this condition. We report two cases of individuals affected by HUWE1-Related Intellectual Developmental Disorder and present a review of literature of male patients affected by this disorder. Based on the literature review and findings in our two patients, it is our observation that patients with MRXST present with distinctive features, which include broad nasal tip, root, or prominent nose (39%), blepharophimosis (27%), epicanthic folds (25%), ear abnormalities (25%), thin upper lip (23%), and deep set eyes (23%). Furthermore, we note that oculofacial abnormalities are seen more frequently in patients with missense variants than patients with duplications in the HUWE1 gene. The findings noted in this paper may help clinicians suspect a diagnosis of MRXST when presented with these distinctive ocular and facial features.
Collapse
Affiliation(s)
| | - Natario L Couser
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of MedicineRichmond, VA, USA
- Department of Ophthalmology, Virginia Commonwealth University School of MedicineRichmond, VA, USA
- Department of Pediatrics, Virginia Commonwealth University School of Medicine, Children’s Hospital of Richmond at VCURichmond, VA, USA
| |
Collapse
|
2
|
Qi L, Xu X, Qi X. The giant E3 ligase HUWE1 is linked to tumorigenesis, spermatogenesis, intellectual disability, and inflammatory diseases. Front Cell Infect Microbiol 2022; 12:905906. [PMID: 35937685 PMCID: PMC9355080 DOI: 10.3389/fcimb.2022.905906] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
E3 ubiquitin ligases determine the substrate specificity and catalyze the ubiquitination of lysine residues. HUWE1 is a catalytic HECT domain-containing giant E3 ligase that contains a substrate-binding ring structure, and mediates the ubiquitination of more than 40 diverse substrates. HUWE1 serves as a central node in cellular stress responses, cell growth and death, signal transduction, etc. The expanding atlas of HUWE1 substrates presents a major challenge for the potential therapeutic application of HUWE1 in a particular disease. In addition, HUWE1 has been demonstrated to play contradictory roles in certain aspects of tumor progression in either an oncogenic or a tumor-suppressive manner. We recently defined novel roles of HUWE1 in promoting the activation of multiple inflammasomes. Inflammasome activation-mediated immune responses might lead to multifunctional effects on tumor therapy, inflammation, and autoimmune diseases. In this review, we summarize the known substrates and pleiotropic functions of HUWE1 in different types of cells and models, including its involvement in development, cancer, neuronal disorder and infectious disease. We also discuss the advances in cryo-EM-structural analysis for a functional-mechanistic understanding of HUWE1 in modulating the multitudinous diverse substrates, and introduce the possibility of revisiting the comprehensive roles of HUWE1 in multiple aspects within one microenvironment, which will shed light on the potential therapeutic application of targeting giant E3 ligases like HUWE1.
Collapse
Affiliation(s)
- Lu Qi
- Department of Orthopedics, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaoqing Xu
- Department of Oncology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaopeng Qi
- Key Laboratory for Experimental Teratology of the Ministry of Education, Department of Clinical Laboratory/Qilu Hospital, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Xiaopeng Qi,
| |
Collapse
|
3
|
Yu Z, Li H, Zhu J, Wang H, Jin X. The roles of E3 ligases in Hepatocellular carcinoma. Am J Cancer Res 2022; 12:1179-1214. [PMID: 35411231 PMCID: PMC8984888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/15/2022] [Indexed: 06/14/2023] Open
Abstract
Hepatocarcinogenesis is a complex multistep biological process involving genetic and epigenetic alterations that are accompanied by activation of oncoproteins and inactivation of tumor suppressors, which in turn results in Hepatocellular carcinoma (HCC), one of the common tumors with high morbidity and mortality worldwide. The ubiquitin-proteasome system (UPS) is the key to protein degradation and regulation of physiological and pathological processes, and E3 ligases are key enzymes in the UPS that contain a variety of subfamily proteins involved in the regulation of some common signal pathways in HCC. There is growing evidence that many structural or functional dysfunctions of E3 are engaged in the development and progression of HCC. Herein, we review recent research advances in HCC-associated E3 ligases, describe their structure, classification, functional roles, and discuss some mechanisms of the abnormal activation or inactivation of the HCC-associated signal pathway due to the binding of E3 to known substrates. In addition, given the success of proteasome inhibitors in the treatment of malignant cancers, we characterize the current knowledge and future prospects for targeted therapies against aberrant E3 in HCC.
Collapse
Affiliation(s)
- Zongdong Yu
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo UniversityNingbo 315211, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of Lihuili Hospital, Ningbo UniversityNingbo 315040, Zhejiang, China
| | - Hong Li
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo UniversityNingbo 315211, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of Lihuili Hospital, Ningbo UniversityNingbo 315040, Zhejiang, China
| | - Jie Zhu
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo UniversityNingbo 315211, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of Lihuili Hospital, Ningbo UniversityNingbo 315040, Zhejiang, China
| | - Haibiao Wang
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of Lihuili Hospital, Ningbo UniversityNingbo 315040, Zhejiang, China
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo UniversityNingbo 315211, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of Lihuili Hospital, Ningbo UniversityNingbo 315040, Zhejiang, China
| |
Collapse
|
4
|
Uysal F, Cinar O, Can A. Knockdown of Dnmt1 and Dnmt3a gene expression disrupts preimplantation embryo development through global DNA methylation. J Assist Reprod Genet 2021; 38:3135-3144. [PMID: 34533678 DOI: 10.1007/s10815-021-02316-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 09/08/2021] [Indexed: 11/24/2022] Open
Abstract
PURPOSE DNA methylation is one of the epigenetic mechanisms that plays critical roles in preimplantation embryo development executed by DNA methyltransferase (Dnmt) enzymes. Dnmt1, responsible for the maintenance of methylation, and Dnmt3a, for de novo methylation, are gradually erased from the zygote in succeeding stages and then reestablished in the blastocyst. This study was designed to address the vital role of Dnmt1 and Dnmt3a enzymes by silencing their gene expressions in embryonic development in mice. METHODS Groups were (i) control, (ii) Dnmt1-siRNA, (iii) Dnmt3a-siRNA, and (iv) non-targeted (NT) siRNA. Knockdown of Dnmt genes using siRNAs was confirmed by measuring the targeted proteins using Western blot and immunofluorescence. Following knockdown of Dnmt1 and Dnmt3a in zygotes, the developmental competence and global DNA methylation levels were analyzed after 96 h in embryo cultures. RESULTS A significant number of embryos arrested at the 2-cell stage or had undergone degeneration in the Dnmt1 and Dnmt3a knocked-down groups. By 3D observations in super-resolution microscopy, we noted that Dnmt1 was exclusively found in juxtanuclear cytoplasm, while the Dnmt3a signal was preferentially localized in the nucleus, both in trophoblasts (TBs) and embryoblasts (EBs). Interestingly, the global DNA methylation level decreased in the Dnmt1 knockdown group, while it increased in the Dnmt3a knockdown group. CONCLUSION Precisely aligned expression of Dnmt genes is highly essential for the fate of an embryo in the early developmental period. Our data indicates that further analysis is mandatory to designate the specific targets of these methylation/demethylation processes in mouse and human preimplantation embryos.
Collapse
Affiliation(s)
- Fatma Uysal
- Laboratory for Stem Cells and Reproductive Cell Biology, Department of Histology and Embryology, Ankara University School of Medicine, Ankara, Turkey
| | - Ozgur Cinar
- Laboratory for Stem Cells and Reproductive Cell Biology, Department of Histology and Embryology, Ankara University School of Medicine, Ankara, Turkey
| | - Alp Can
- Laboratory for Stem Cells and Reproductive Cell Biology, Department of Histology and Embryology, Ankara University School of Medicine, Ankara, Turkey.
| |
Collapse
|
5
|
Wang H, Zhao J, Yang J, Wan S, Fu Y, Wang X, Zhou T, Zhang Z, Shen J. PICT1 is critical for regulating the Rps27a-Mdm2-p53 pathway by microtubule polymerization inhibitor against cervical cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119084. [PMID: 34166715 DOI: 10.1016/j.bbamcr.2021.119084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 05/28/2021] [Accepted: 06/17/2021] [Indexed: 01/05/2023]
Abstract
In our previous study, it showed that P-3F, a podophyllotoxin derivative, causes the increased level of p53 expression by enhancing p53 stability, resulting from blockage of the Mdm2-p53 feedback loop via nucleolus-to-nucleoplasm translocation of Rps27a in human cervical cancer HeLa cell line. However, the mechanism of regulating Rps27a localization remains to be studied. In the current study, it has been demonstrated that the level of protein interacting with carboxyl terminus 1 (PICT1), originally identified as a tumor suppressor, was decreased in a concentration-dependent manner in response to P-3F, leading to inhibition of human cervical cancer cell lines proliferation. Also remarkably, reduction of serine phosphorylation of STMN1 at position 16 induced by P-3F was required in the downregulation of PICT1, in which p53 activity was likely to be directly involved. Note as well that, PICT1 also played an important role in p53 stability enhancement by inhibiting Mdm2-mediated p53 ubiquitination due to Rps27a translocation from the nucleolus to the nucleoplasm to interact with Mdm2 following treatment with P-3F. Collectively, these findings indicated that P-3F, a microtubule polymerization inhibitor, promotes the decreased level of PICT1 expression, which is critical for regulating the Rps27a-Mdm2-p53 pathway against cervical cancer.
Collapse
Affiliation(s)
- Huai Wang
- School of Public Health, Nanchang University, 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China
| | - Junjie Zhao
- School of Public Health, Nanchang University, 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China
| | - Jian Yang
- School of Public Health, Nanchang University, 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China
| | - Shukun Wan
- School of Public Health, Nanchang University, 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China
| | - Yihong Fu
- School of Public Health, Nanchang University, 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China
| | - Xinlu Wang
- School of Public Health, Nanchang University, 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China
| | - Tong Zhou
- School of Public Health, Nanchang University, 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China
| | - Zhongwei Zhang
- School of Public Health, Nanchang University, 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China
| | - Jiaomei Shen
- Department of Gynecology, Wuhan Fifth Hospital, 122 Xian Zheng Street, Wuhan, Hubei 430050, PR China.
| |
Collapse
|
6
|
Eisa AA, Bang S, Crawford KJ, Murphy EM, Feng WW, Dey S, Wells W, Kon N, Gu W, Mehlmann LM, Vijayaraghavan S, Kurokawa M. X-Linked Huwe1 Is Essential for Oocyte Maturation and Preimplantation Embryo Development. iScience 2020; 23:101523. [PMID: 32927266 PMCID: PMC7495106 DOI: 10.1016/j.isci.2020.101523] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/03/2020] [Accepted: 08/28/2020] [Indexed: 12/04/2022] Open
Abstract
HUWE1 is a HECT-domain ubiquitin E3 ligase expressed in various tissues. Although HUWE1 is known to promote degradation of the tumor suppressor p53, given a growing list of its substrates, in vivo functions of HUWE1 remain elusive. Here, we investigated the role of HUWE1 in the female reproductive system. Homozygous deletion of Huwe1 in mouse oocytes of primary follicles caused oocyte death and female infertility, whereas acute depletion of HUWE1 protein by Trim-Away technology did not impact oocytes from antral follicles. Interestingly, oocytes from Huwe1 heterozygous females matured and fertilized normally, but the majority of embryos that lacked maternal Huwe1 were arrested at the morula stage after fertilization. Consequently, Huwe1 heterozygous females only produced wild-type pups. Concomitant knockout of p53 did not recover fertility of the Huwe1 knockout females. These findings make HUWE1 a unique and critical maternal factor indispensable for maintaining the quality of oocytes and embryos.
Collapse
Affiliation(s)
- Alaa A. Eisa
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Taibah University, Medina, Saudi Arabia
| | - Scott Bang
- Department of Biological Sciences, Kent State University, Cunningham Annex, Room A322, Kent, OH 44242, USA
| | - Katherine J. Crawford
- Department of Biological Sciences, Kent State University, Cunningham Annex, Room A322, Kent, OH 44242, USA
| | - Emily M. Murphy
- Department of Biological Sciences, Kent State University, Cunningham Annex, Room A322, Kent, OH 44242, USA
| | - William W. Feng
- Department of Biological Sciences, Kent State University, Cunningham Annex, Room A322, Kent, OH 44242, USA
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Souvik Dey
- Department of Biological Sciences, Kent State University, Cunningham Annex, Room A322, Kent, OH 44242, USA
| | - Wendy Wells
- Department of Pathology, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
| | - Ning Kon
- Department of Pathology and Cell Biology, Columbia University, NY 10032, USA
| | - Wei Gu
- Department of Pathology and Cell Biology, Columbia University, NY 10032, USA
| | - Lisa M. Mehlmann
- Department of Cell Biology, UConn Health, Farmington, CT 06030, USA
| | - Srinivasan Vijayaraghavan
- Department of Biological Sciences, Kent State University, Cunningham Annex, Room A322, Kent, OH 44242, USA
| | - Manabu Kurokawa
- Department of Biological Sciences, Kent State University, Cunningham Annex, Room A322, Kent, OH 44242, USA
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| |
Collapse
|
7
|
The structure and regulation of the E3 ubiquitin ligase HUWE1 and its biological functions in cancer. Invest New Drugs 2020; 38:515-524. [PMID: 32008177 DOI: 10.1007/s10637-020-00894-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 01/10/2020] [Indexed: 12/21/2022]
Abstract
E3 ligases are a class of critical enzymes that can catalyse the transfer of ubiquitin (Ub) from an E2 enzyme to the substrate and are essential to cellular processes. The E3 ligase HUWE1 (also known as ARF-BP1, HECTH9, HSPC272, Ib772, LASU1, MULE, URE-B1, UREB1, and HECT, UBA and WWE domain-containing E3 ubiquitin protein ligase 1) is encoded by the huwe1 gene. HUWE1 is a key regulator of the DNA damage response, transcription, autophagy, apoptosis and metabolism in a variety of cancers. Due to its pivotal role in conferring substrate specificity, HUWE1 has attracted enormous attention as a promising anticancer drug target. In this review, we indicate the specific molecular structure of HUWE1 and its role in various cellular signalling pathways and highlight new insights into HUWE1 in cancer. Finally, we discuss outstanding questions regarding HUWE1 in oncology and highlight its limitations in drug development and clinical guidance to better define the role of HUWE1 in multiple cancers.
Collapse
|
8
|
Bang S, Kaur S, Kurokawa M. Regulation of the p53 Family Proteins by the Ubiquitin Proteasomal Pathway. Int J Mol Sci 2019; 21:E261. [PMID: 31905981 PMCID: PMC6981958 DOI: 10.3390/ijms21010261] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 12/24/2019] [Indexed: 12/25/2022] Open
Abstract
The tumor suppressor p53 and its homologues, p63 and p73, play a pivotal role in the regulation of the DNA damage response, cellular homeostasis, development, aging, and metabolism. A number of mouse studies have shown that a genetic defect in the p53 family could lead to spontaneous tumor development, embryonic lethality, or severe tissue abnormality, indicating that the activity of the p53 family must be tightly regulated to maintain normal cellular functions. While the p53 family members are regulated at the level of gene expression as well as post-translational modification, they are also controlled at the level of protein stability through the ubiquitin proteasomal pathway. Over the last 20 years, many ubiquitin E3 ligases have been discovered that directly promote protein degradation of p53, p63, and p73 in vitro and in vivo. Here, we provide an overview of such E3 ligases and discuss their roles and functions.
Collapse
Affiliation(s)
| | | | - Manabu Kurokawa
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA; (S.B.); (S.K.)
| |
Collapse
|
9
|
FoxO transcription factors 1 regulate mouse preimplantation embryo development. J Assist Reprod Genet 2019; 36:2121-2133. [PMID: 31396850 DOI: 10.1007/s10815-019-01555-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/01/2019] [Indexed: 12/26/2022] Open
Abstract
PURPOSE The aim of the present study is to investigate role of FoxO transcription factors in preimplantation embryo development by knocking down FoxO1, FoxO3, and FoxO4 genes and also to assess cell cycle arrest related proteins, p53 and p21, and apoptosis-related proteins, fas ligand (FASL), and cleaved caspase 3. METHODS Knockdown of FoxOs using siRNA was confirmed utilizing RT-PCR and qRT-PCR in gene level and using immunofluorescence in protein level. Following knockdown of FoxO1, FoxO3, and FoxO4 in two-cell mouse embryos with or without resveratrol treatment; developmental competence of embryos and expression patterns of SIRT1, p53, p21, FASL, and CLEAVED CASPASE 3 proteins in embryos by immunofluorescence were assessed after 48 h. ROS levels were measured in knockdown embryos. Terminal deoxynucleotidyl transferase dUTP nick end labeling assay was used to determine resveratrol dose. RESULTS Successful knockdown of FoxO genes in mouse embryos utilizing a non-invasive siRNA method was achieved. Significantly, knockdown of FoxO genes impaired preimplantation embryo development which cannot be prevented by resveratrol treatment. Immunofluorescence results showed that resveratrol could protect embryos from cell cycle arrest and apoptosis. FOXO proteins regulate apoptosis and cell cycle related proteins in mouse preimplantation embryos. Moreover, there might be an autofeedback mechanism where FOXO1, FOXO3, and FOXO4 regulate SIRT1 protein expression. CONCLUSIONS These results suggest that FOXO transcription factors could contribute to mouse preimplantation embryo development, and it remains to investigate whether they have crucial roles in human preimplantation embryo and infertility.
Collapse
|
10
|
Zhao Y, Lu X, Cheng Z, Tian M, Qiangba Y, Fu Q, Ren Z. Comparative proteomic analysis of Tibetan pig spermatozoa at high and low altitudes. BMC Genomics 2019; 20:569. [PMID: 31291894 PMCID: PMC6617692 DOI: 10.1186/s12864-019-5873-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/31/2019] [Indexed: 02/07/2023] Open
Abstract
Background To illuminate the mechanisms underlying the high-altitude tolerance of Tibetan pig spermatozoa, proteomes of spermatozoa from Tibetan pigs raised in high and low altitudes were compared using a tandem mass tag (TMT)-labeled quantitative proteomics approach. Results A total of 77 differentially expressed proteins (DEPs) were identified. Gene Ontology (GO) analysis revealed DEPs that were predominantly associated with the actin cytoskeleton, the tricarboxylic acid (TCA) cycle, and adenosine triphosphate (ATP) metabolism, and were from 12 enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Three subnetworks were significantly enriched and 10 centric proteins were identified by protein-protein interaction (PPI) network analysis. Relative expression levels of the proteins (ATP5H, CYCS, MYH9 and FN1) were confirmed using Western blotting. Conclusions Our study is the first to use a tandem mass tag (TMT) approach to analyze Tibetan pig spermatozoa, and provides a foundation to understand the mechanisms underlying the reproductive adaptations of Tibetan pigs to high-altitude environments. Electronic supplementary material The online version of this article (10.1186/s12864-019-5873-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yanling Zhao
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, Tibet, 860000, People's Republic of China
| | - Xiaoli Lu
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, Tibet, 860000, People's Republic of China
| | - Zhipeng Cheng
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, Tibet, 860000, People's Republic of China
| | - Mengfang Tian
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, Tibet, 860000, People's Republic of China
| | - Yangzong Qiangba
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, Tibet, 860000, People's Republic of China.
| | - Qiang Fu
- State Key Laboratory of Subtropical Agro-Bioresource Conservation and Utilization, Guangxi University, Nanning, Guangxi Province, 530004, People's Republic of China.
| | - Zili Ren
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, Tibet, 860000, People's Republic of China.
| |
Collapse
|
11
|
Barrachina F, Anastasiadi D, Jodar M, Castillo J, Estanyol JM, Piferrer F, Oliva R. Identification of a complex population of chromatin-associated proteins in the European sea bass (Dicentrarchus labrax) sperm. Syst Biol Reprod Med 2018; 64:502-517. [PMID: 29939100 DOI: 10.1080/19396368.2018.1482383] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A very common conception about the function of the spermatozoon is that its unique role is to transmit the paternal genome to the next generation. Most of the sperm genome is known to be condensed in many species by protamines, which are small and extremely positively charged proteins (50-70% arginine) with the functions of streamlining the sperm cell and protecting its DNA. However, more recently, it has been shown in mammals that 2-10% of its mature sperm chromatin is also associated to a complex population of histones and chromatin-associated proteins differentially distributed in the genome. These proteins are transferred to the oocyte upon fertilization and may be involved in the epigenetic marking of the paternal genome. However, little information is so far available on the additional potential sperm chromatin proteins present in other protamine-containing non-mammalian vertebrates detected through high-throughput mass spectrometry. Thus, we started the present work with the goal of characterizing the mature sperm proteome of the European sea bass, with a particular focus on the sperm chromatin, chosen as a representative of non-mammalian vertebrate protamine-containing species. Proteins were isolated by acidic extraction from purified sperm cells and from purified sperm nuclei, digested with trypsin, and subsequently the peptides were separated using liquid chromatography and identified through tandem mass spectrometry. A total of 296 proteins were identified. Of interest, the presence of 94 histones and other chromatin-associated proteins was detected, in addition to the protamines. These results provide phylogenetically strategic information, indicating that the coexistence of histones, additional chromatin proteins, and protamines in sperm is not exclusive of mammals, but is also present in other protamine-containing vertebrates. Thus, it indicates that the epigenetic marking of the sperm chromatin, first demonstrated in mammals, could be more fundamental and conserved than previously thought. Abbreviations: AU-PAGE: acetic acid-urea polyacrylamide gel electrophoresis; CPC: chromosomal passenger complex; DTT: dithiothreitol; EGA: embryonic genome activation; FDR: false discovery rate; GO: Gene Ontology; IAA: iodoacetamide; LC: liquid chromatography; LC-MS/MS: liquid chromatography coupled to tandem mass spectrometry; MS: mass spectrometry; MS/MS: tandem mass spectrometry; MW: molecular weight; PAGE: polyacrylamide gel electrophoresis; PBS: phosphate buffered saline; SDS: sodium dodecyl sulfate; SDS-PAGE: sodium dodecyl sulfate polyacrylamide gel electrophoresis; TCA: trichloroacetic acid.
Collapse
Affiliation(s)
- Ferran Barrachina
- a Molecular Biology of Reproduction and Development Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine and Health Sciences , University of Barcelona , Barcelona , Spain.,b Biochemistry and Molecular Genetics Service , Hospital Clínic , Barcelona , Spain
| | - Dafni Anastasiadi
- c Institut de Ciències del Mar , Consejo Superior de Investigaciones Científicas , Barcelona , Spain
| | - Meritxell Jodar
- a Molecular Biology of Reproduction and Development Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine and Health Sciences , University of Barcelona , Barcelona , Spain.,b Biochemistry and Molecular Genetics Service , Hospital Clínic , Barcelona , Spain
| | - Judit Castillo
- a Molecular Biology of Reproduction and Development Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine and Health Sciences , University of Barcelona , Barcelona , Spain.,b Biochemistry and Molecular Genetics Service , Hospital Clínic , Barcelona , Spain
| | - Josep Maria Estanyol
- d Proteomics Unit, Scientific and Technological Centers from the University of Barcelona , University of Barcelona , Barcelona , Spain
| | - Francesc Piferrer
- c Institut de Ciències del Mar , Consejo Superior de Investigaciones Científicas , Barcelona , Spain
| | - Rafael Oliva
- a Molecular Biology of Reproduction and Development Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine and Health Sciences , University of Barcelona , Barcelona , Spain.,b Biochemistry and Molecular Genetics Service , Hospital Clínic , Barcelona , Spain
| |
Collapse
|
12
|
Sander B, Xu W, Eilers M, Popov N, Lorenz S. A conformational switch regulates the ubiquitin ligase HUWE1. eLife 2017; 6:e21036. [PMID: 28193319 PMCID: PMC5308896 DOI: 10.7554/elife.21036] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 01/27/2017] [Indexed: 12/27/2022] Open
Abstract
The human ubiquitin ligase HUWE1 has key roles in tumorigenesis, yet it is unkown how its activity is regulated. We present the crystal structure of a C-terminal part of HUWE1, including the catalytic domain, and reveal an asymmetric auto-inhibited dimer. We show that HUWE1 dimerizes in solution and self-associates in cells, and that both occurs through the crystallographic dimer interface. We demonstrate that HUWE1 is inhibited in cells and that it can be activated by disruption of the dimer interface. We identify a conserved segment in HUWE1 that counteracts dimer formation by associating with the dimerization region intramolecularly. Our studies reveal, intriguingly, that the tumor suppressor p14ARF binds to this segment and may thus shift the conformational equilibrium of HUWE1 toward the inactive state. We propose a model, in which the activity of HUWE1 underlies conformational control in response to physiological cues-a mechanism that may be exploited for cancer therapy.
Collapse
Affiliation(s)
- Bodo Sander
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Wenshan Xu
- Comprehensive Cancer Center Mainfranken, Würzburg, Germany
- Department of Radiation Oncology, University Hospital Würzburg, Würzburg, Germany
| | - Martin Eilers
- Comprehensive Cancer Center Mainfranken, Würzburg, Germany
- Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Nikita Popov
- Comprehensive Cancer Center Mainfranken, Würzburg, Germany
- Department of Radiation Oncology, University Hospital Würzburg, Würzburg, Germany
| | - Sonja Lorenz
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| |
Collapse
|