1
|
Almaqwashi AA, McCauley MJ, Andersson J, Rouzina I, Westerlund F, Lincoln P, Williams MC. Binuclear ruthenium complex linker length tunes DNA threading intercalation kinetics. Biophys J 2025; 124:667-676. [PMID: 39797403 PMCID: PMC11900151 DOI: 10.1016/j.bpj.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/16/2024] [Accepted: 01/08/2025] [Indexed: 01/13/2025] Open
Abstract
Binuclear ruthenium complexes have been investigated for potential DNA-targeted therapeutic and diagnostic applications. Studies of DNA threading intercalation, in which DNA basepairs must be broken for intercalation, have revealed means of optimizing a model binuclear ruthenium complex to obtain reversible DNA-ligand assemblies with the desired properties of high affinity and slow kinetics. Here, we used single-molecule force spectroscopy to study a binuclear ruthenium complex with a longer semirigid linker relative to the model complex. Equilibrium results suggest a DNA affinity that is an order of magnitude higher than the parent binuclear ruthenium complex, likely due to a sterically relieved DNA threading intercalation mechanism. Notably, kinetics analysis shows that less DNA elongation is required for threading intercalation compared to the parent complex, and the association rate is two orders of magnitude faster. The ruthenium complex elongates the DNA duplex by ∼0.3 nm per bound ligand to reach the equilibrium intercalated state, with a significantly different energy landscape relative to the parent complex. Mechanical properties of the ligand-saturated DNA duplex show a higher persistence length, indicating that the longer semirigid linker provides enough molecular spacing to allow a single monomer to fully stack with basepairs, comparable to the monomeric parent ruthenium complex. The DNA basepairs in the equilibrium threading intercalated state are likely intact, and the ruthenium complex is shielded from the polar solution, providing measurable single-molecule confocal fluorescence signals. The obtained confocal fluorescence imaging of the bound dye confirms mostly uniform intercalation along the tethered DNA, consistent with other intercalators. The results of this study, along with previously examined ruthenium complex variants, illustrate tunable intercalation mechanisms guided by the rational design of therapeutic and diagnostic small molecules to target and modify the DNA duplex.
Collapse
Affiliation(s)
- Ali A Almaqwashi
- Physics Department, College of Science and Arts, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Micah J McCauley
- Department of Physics, Northeastern University, Boston, Massachusetts
| | - Johanna Andersson
- Department of Chemistry-BMC, Uppsala University, Uppsala, Sweden; Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Ioulia Rouzina
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio
| | - Fredrik Westerlund
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Per Lincoln
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Mark C Williams
- Department of Physics, Northeastern University, Boston, Massachusetts.
| |
Collapse
|
2
|
Gresh N, Ongaro A, Demange L, Zagotto G, Ribaudo G. Sequence-Selective Recognition of the d(GGCGCC) 2 DNA Palindrome by Oligopeptide Derivatives of Mitoxantrone. Enabling for Simultaneous Targeting of the Two Guanine Bases Upstream from the Central Intercalation Site in Both Grooves and along Both Strands. ACS OMEGA 2024; 9:42309-42328. [PMID: 39431064 PMCID: PMC11483377 DOI: 10.1021/acsomega.4c05099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/02/2024] [Accepted: 08/09/2024] [Indexed: 10/22/2024]
Abstract
The d(GGCGCC)2 palindrome is encountered in several oncogenic and retroviral sequences. In order to target it, we previously designed several oligopeptide derivatives of the mitoxantrone and ametantrone anticancer intercalators. These have two arms with a cationic side-chain in the major groove, each destined to bind along each strand O6/N7 of the two successive guanine bases (G1-G2/G1'-G2') upstream from the central anthraquinone intercalation site. We retained from a previous study (El Hage et al., 2022) a tris-intercalating molecule with two outer 9-aminoacridine (9-AA) intercalators, denoted as III. We sought enhancements in both affinity and selectivity by simultaneously targeting the minor groove of the extracyclic -NH2 groups of these bases and G4-G4' of the intercalation site. We considered derivatives of distamycin, having each pyrrole ring replaced by an imidazole to act as an in-register electron acceptor from the -NH2 group of a target guanine. We substituted the C6 and C7 carbons of anthraquinone, or the C8 and C9 ones of anthracycline, by an (imidazole-amide)3 chain. Four different derivatives of III were designed with different connectors to the anthraquinone/anthracycline and 9-AA. Polarizable molecular dynamics simulations of their complexes with a double-stranded DNA 18-mer with a central d(C GGGC GCCC G)2 palindrome sequence showed in-register minor groove binding to -NH2 of G1-G2/G1'-G2' to coexist with major groove recognition of O6/N7. Up to 12 H-bonds could be stabilized in the minor groove coexisting with four bidentate interactions of the alkyl diammonium moieties in the major groove. Since there is no mutual interference, the binding enthalpies, ΔH, contributed by each groove could add up and enable significant enhancements of the affinity constants. As was the case for their Lys precursor, these derivatives are amenable to chemical syntheses and in vitro and in vivo tests, for which the present results provide an incentive. The construction of derivatives III-A-III-D is modular. For in vitro experiments, this should enable unraveling the most important structural elements to further optimize both ΔH and TΔS and sequence selectivity and how this could translate to in vivo tests.
Collapse
Affiliation(s)
- Nohad Gresh
- Laboratoire
de Chimie Théorique, UMR 7616 CNRS
Sorbonne Universités, Paris 75005, France
| | - Alberto Ongaro
- Department
of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova 35131, Italy
| | - Luc Demange
- UMR
8038 CNRS CiTCoM, Team PNAS, Faculté de Pharmacie, Université Paris-Cité, 4 Avenue de l’Observatoire, Paris 75006, France
| | - Giuseppe Zagotto
- Department
of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova 35131, Italy
| | - Giovanni Ribaudo
- DMMT, University
of Brescia, Viale Europa 11, Brescia 25121, Italy
| |
Collapse
|
3
|
Ku H, Park G, Goo J, Lee J, Park TL, Shim H, Kim JH, Cho WK, Jeong C. Effects of Transcription-Dependent Physical Perturbations on the Chromosome Dynamics in Living Cells. Front Cell Dev Biol 2022; 10:822026. [PMID: 35874812 PMCID: PMC9302598 DOI: 10.3389/fcell.2022.822026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 05/23/2022] [Indexed: 11/30/2022] Open
Abstract
Recent studies with single-particle tracking in live cells have revealed that chromatin dynamics are directly affected by transcription. However, how transcription alters the chromatin movements followed by changes in the physical properties of chromatin has not been elucidated. Here, we measured diffusion characteristics of chromatin by targeting telomeric DNA repeats with CRISPR-labeling. We found that transcription inhibitors that directly block transcription factors globally increased the movements of chromatin, while the other inhibitor that blocks transcription by DNA intercalating showed an opposite effect. We hypothesized that the increased mobility of chromatin by transcription inhibition and the decreased chromatin movement by a DNA intercalating inhibitor is due to alterations in chromatin rigidity. We also tested how volume confinement of nuclear space affects chromatin movements. We observed decreased chromatin movements under osmotic pressure and with overexpressed chromatin architectural proteins that compact chromatin.
Collapse
Affiliation(s)
- Hyeyeong Ku
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, South Korea
| | - Gunhee Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Jiyoung Goo
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, South Korea
| | - Jeongmin Lee
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Division of Life Sciences, Korea University, Seoul, South Korea
| | - Tae Lim Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Hwanyong Shim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Jeong Hee Kim
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, South Korea
- Department of Oral Biochemistry and Molecular Biology, Kyung Hee University, Seoul, South Korea
- *Correspondence: Jeong Hee Kim, ; Won-Ki Cho, ; Cherlhyun Jeong,
| | - Won-Ki Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
- *Correspondence: Jeong Hee Kim, ; Won-Ki Cho, ; Cherlhyun Jeong,
| | - Cherlhyun Jeong
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, South Korea
- *Correspondence: Jeong Hee Kim, ; Won-Ki Cho, ; Cherlhyun Jeong,
| |
Collapse
|
4
|
Newton MD, Fairbanks SD, Thomas JA, Rueda DS. A Minimal Load‐and‐Lock Ru
II
Luminescent DNA Probe. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Matthew D. Newton
- Department of Infectious Disease Faculty of Medicine Imperial College London London W12 0NN UK
- Single Molecule Imaging Group, MRC- London Institute of Medical Sciences London W12 0NN UK
| | - Simon D. Fairbanks
- Department of Chemistry University of Sheffield Sheffield S3 7HF UK
- Department of Molecular Biology and Biotechnology University of Sheffield Western Bank Sheffield S10 2TN UK
| | - Jim A. Thomas
- Department of Chemistry University of Sheffield Sheffield S3 7HF UK
| | - David S. Rueda
- Department of Infectious Disease Faculty of Medicine Imperial College London London W12 0NN UK
- Single Molecule Imaging Group, MRC- London Institute of Medical Sciences London W12 0NN UK
| |
Collapse
|
5
|
Newton MD, Fairbanks SD, Thomas JA, Rueda DS. A Minimal Load-and-Lock Ru II Luminescent DNA Probe. Angew Chem Int Ed Engl 2021; 60:20952-20959. [PMID: 34378843 PMCID: PMC8518596 DOI: 10.1002/anie.202108077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Indexed: 12/26/2022]
Abstract
Threading intercalators bind DNA with high affinities. Here, we describe single-molecule studies on a cell-permeant luminescent dinuclear ruthenium(II) complex that has been previously shown to thread only into short, unstable duplex structures. Using optical tweezers and confocal microscopy, we show that this complex threads and locks into force-extended duplex DNA in a two-step mechanism. Detailed kinetic studies reveal that an individual stereoisomer of the complex exhibits the highest binding affinity reported for such a mono-intercalator. This stereoisomer better preserves the biophysical properties of DNA than the widely used SYTOX Orange. Interestingly, threading into torsionally constrained DNA decreases dramatically, but is rescued on negatively supercoiled DNA. Given the "light-switch" properties of this complex on binding DNA, it can be readily used as a long-lived luminescent label for duplex or negatively supercoiled DNA through a unique "load-and-lock" protocol.
Collapse
Affiliation(s)
- Matthew D. Newton
- Department of Infectious DiseaseFaculty of MedicineImperial College LondonLondonW12 0NNUK
- Single Molecule Imaging Group, MRC-London Institute of Medical SciencesLondonW12 0NNUK
| | - Simon D. Fairbanks
- Department of ChemistryUniversity of SheffieldSheffieldS3 7HFUK
- Department of Molecular Biology and BiotechnologyUniversity of SheffieldWestern BankSheffieldS10 2TNUK
| | - Jim A. Thomas
- Department of ChemistryUniversity of SheffieldSheffieldS3 7HFUK
| | - David S. Rueda
- Department of Infectious DiseaseFaculty of MedicineImperial College LondonLondonW12 0NNUK
- Single Molecule Imaging Group, MRC-London Institute of Medical SciencesLondonW12 0NNUK
| |
Collapse
|
6
|
Moorthy H, Datta LP, Govindaraju T. Molecular Architectonics-guided Design of Biomaterials. Chem Asian J 2021; 16:423-442. [PMID: 33449445 DOI: 10.1002/asia.202001445] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/12/2021] [Indexed: 11/09/2022]
Abstract
The quest for mastering the controlled engineering of dynamic molecular assemblies is the basis of molecular architectonics. The rational use of noncovalent interactions to programme the molecular assemblies allow the construction of diverse molecular and material architectures with novel functional properties and applications. Understanding and controlling the assembly of molecular systems are daunting tasks owing to the complex factors that govern at the molecular level. Molecular architectures depend on the design of functional molecular modules through the judicious selection of functional core and auxiliary units to guide the precise molecular assembly and co-assembly patterns. Biomolecules with built-in information for molecular recognition are the ultimate examples of evolutionary guided molecular recognition systems that define the structure and functions of living organisms. Explicit use of biomolecules as auxiliary units to command the molecular assemblies of functional molecules is an intriguing exercise in the scheme of molecular architectonics. In this minireview, we discuss the implementation of the principles of molecular architectonics for the development of novel biomaterials with functional properties and applications ranging from sensing, drug delivery to neurogeneration and tissue engineering. We present the molecular designs pioneered by our group owing to the requirement and scope of the article while acknowledging the designs pursued by several research groups that befit the concept.
Collapse
Affiliation(s)
- Hariharan Moorthy
- Bioorganic Chemistry Laboratory, New Chemistry Unit and the School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P. O., Bengaluru, 560064, Karnataka, India
| | - Lakshmi Priya Datta
- Bioorganic Chemistry Laboratory, New Chemistry Unit and the School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P. O., Bengaluru, 560064, Karnataka, India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit and the School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P. O., Bengaluru, 560064, Karnataka, India
| |
Collapse
|
7
|
Walunj D, Egarmina K, Tuchinsky H, Shpilberg O, Hershkovitz-Rokah O, Grynszpan F, Gellerman G. Expedient synthesis and anticancer evaluation of dual-action 9-anilinoacridine methyl triazene chimeras. Chem Biol Drug Des 2020; 97:237-252. [PMID: 32772433 DOI: 10.1111/cbdd.13776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/20/2020] [Accepted: 08/01/2020] [Indexed: 12/20/2022]
Abstract
The efficient synthesis of molecular hybrids including a DNA-intercalating 9-anilinoacridine (9-AnA) core and a methyl triazene DNA-methylating moiety is described. Nucleophilic aromatic substitution (SN Ar) and electrophilic aromatic substitution (EAS) reactions using readily accessible starting materials provide a quick entry to novel bifunctional anticancer molecules. The chimeras were evaluated for their anticancer activity. Chimera 7b presented the highest antitumor activity at low micromolar IC50 values in antiproliferative assays performed with various cancer cell lines. In comparison, compound 7b outperformed DNA-intercalating drugs like amsacrine and AHMA. Mechanistic studies of chimera 7b suggest a dual mechanism of action: methylation of the DNA-repairing protein MGMT associated with the triazene structural portion and Topo II inhibition by intercalation of the acridine core.
Collapse
Affiliation(s)
- Dipak Walunj
- Department of Chemical Sciences, Ariel University, Ariel, Israel
| | - Katarina Egarmina
- Institute of Hematology, Assuta Medical Centers, Tel Aviv, Israel.,Translational Research Lab, Assuta Medical Centers, Tel Aviv, Israel.,Department of Molecular Biology, Ariel University, Ariel, Israel
| | - Helena Tuchinsky
- Department of Molecular Biology, Ariel University, Ariel, Israel
| | - Ofer Shpilberg
- Institute of Hematology, Assuta Medical Centers, Tel Aviv, Israel.,Translational Research Lab, Assuta Medical Centers, Tel Aviv, Israel
| | - Oshrat Hershkovitz-Rokah
- Institute of Hematology, Assuta Medical Centers, Tel Aviv, Israel.,Translational Research Lab, Assuta Medical Centers, Tel Aviv, Israel.,Department of Molecular Biology, Ariel University, Ariel, Israel
| | - Flavio Grynszpan
- Department of Chemical Sciences, Ariel University, Ariel, Israel
| | - Gary Gellerman
- Department of Chemical Sciences, Ariel University, Ariel, Israel
| |
Collapse
|
8
|
Jia F, Schröder HV, Yang LP, von Essen C, Sobottka S, Sarkar B, Rissanen K, Jiang W, Schalley CA. Redox-Responsive Host-Guest Chemistry of a Flexible Cage with Naphthalene Walls. J Am Chem Soc 2020; 142:3306-3310. [PMID: 32013425 DOI: 10.1021/jacs.9b11685] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
"Naphthocage", a naphthalene-based organic cage, reveals very strong binding (up to 1010 M-1) to aromatic (di)cationic guests, i.e., the tetrathiafulvalene mono- and dication and methyl viologen. Intercalation of the guests between two naphthalene walls is mediated by C-H···O, C-H···π, and cation···π interactions. The guests can be switched into and out of the cage by redox processes with high binding selectivity. Oxidation of the flexible cage itself in the absence of a guest leads to a stable radical cation with the oxidized naphthalene intercalated between and stabilized by the other two. Encapsulated guest cations are released from the cavity upon cage oxidation, paving the way to future applications in redox-controlled guest release or novel stimuli-responsive materials.
Collapse
Affiliation(s)
- Fei Jia
- Institut für Chemie und Biochemie , Freie Universität Berlin , Takustraße 3 , 14195 Berlin , Germany.,Department of Chemistry and Shenzhen Grubbs Institute , Southern University of Science and Technology , Xueyuan Boulevard 1088 , Shenzhen 518055 , China
| | - Hendrik V Schröder
- Institut für Chemie und Biochemie , Freie Universität Berlin , Takustraße 3 , 14195 Berlin , Germany
| | - Liu-Pan Yang
- Department of Chemistry and Shenzhen Grubbs Institute , Southern University of Science and Technology , Xueyuan Boulevard 1088 , Shenzhen 518055 , China
| | - Carolina von Essen
- Department of Chemistry , University of Jyvaskyla , P.O. Box 35, 40014 Jyväskylä , Finland
| | - Sebastian Sobottka
- Institut für Chemie und Biochemie , Freie Universität Berlin , Fabeckstraße 34/36 , 14195 Berlin , Germany
| | - Biprajit Sarkar
- Institut für Chemie und Biochemie , Freie Universität Berlin , Fabeckstraße 34/36 , 14195 Berlin , Germany
| | - Kari Rissanen
- Department of Chemistry , University of Jyvaskyla , P.O. Box 35, 40014 Jyväskylä , Finland
| | - Wei Jiang
- Department of Chemistry and Shenzhen Grubbs Institute , Southern University of Science and Technology , Xueyuan Boulevard 1088 , Shenzhen 518055 , China
| | - Christoph A Schalley
- Institut für Chemie und Biochemie , Freie Universität Berlin , Takustraße 3 , 14195 Berlin , Germany
| |
Collapse
|
9
|
General Synthesis of 1-Aryl-6-azaisocytosines and Their Utilization for the Preparation of Related Condensed 1,2,4-Triazines. Molecules 2019; 24:molecules24193558. [PMID: 31581428 PMCID: PMC6804241 DOI: 10.3390/molecules24193558] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 09/27/2019] [Accepted: 09/30/2019] [Indexed: 11/16/2022] Open
Abstract
A simple general synthesis of 1-aryl-6-azaisocytosine-5-carbonitriles 4 is described. This method is based on coupling diazonium salts with cyanoacetylcyanamide 2 and then cyclization of the formed 2-arylhydrazono-2-cyanoacetylcyanamides 3. The 6-azaisocytosines 4 were studied with respect to tautomeric equilibrium and the transformation of functional groups, and used in the synthesis of the condensed heterocyclic compounds: Purine isosteric imidazo[2,1-c]-[1,2,4]triazine 8 and the 1,2,4-triazino[2,3-a]quinazolines 9–12.
Collapse
|
10
|
Almaqwashi AA, Zhou W, Naufer MN, Riddell IA, Yilmaz ÖH, Lippard SJ, Williams MC. DNA Intercalation Facilitates Efficient DNA-Targeted Covalent Binding of Phenanthriplatin. J Am Chem Soc 2019; 141:1537-1545. [PMID: 30599508 DOI: 10.1021/jacs.8b10252] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Phenanthriplatin, a monofunctional anticancer agent derived from cisplatin, shows significantly more rapid DNA covalent-binding activity compared to its parent complex. To understand the underlying molecular mechanism, we used single-molecule studies with optical tweezers to probe the kinetics of DNA-phenanthriplatin binding as well as DNA binding to several control complexes. The time-dependent extensions of single λ-DNA molecules were monitored at constant applied forces and compound concentrations, followed by rinsing with a compound-free solution. DNA-phenanthriplatin association consisted of fast and reversible DNA lengthening with time constant τ ≈ 10 s, followed by slow and irreversible DNA elongation that reached equilibrium in ∼30 min. In contrast, only reversible fast DNA elongation occured for its stereoisomer trans-phenanthriplatin, suggesting that the distinct two-rate kinetics of phenanthriplatin is sensitive to the geometric conformation of the complex. Furthermore, no DNA unwinding was observed for pyriplatin, in which the phenanthridine ligand of phenanthriplatin is replaced by the smaller pyridine molecule, indicating that the size of the aromatic group is responsible for the rapid DNA elongation. These findings suggest that the mechanism of binding of phenanthriplatin to DNA involves rapid, partial intercalation of the phenanthridine ring followed by slower substitution of the adjacent chloride ligand by, most likely, the N7 atom of a purine base. The cis isomer affords the proper stereochemistry at the metal center to facilitate essentially irreversible DNA covalent binding, a geometric advantage not afforded by trans-phenanthriplatin. This study demonstrates that reversible DNA intercalation provides a robust transition state that is efficiently converted to an irreversible DNA-Pt bound state.
Collapse
Affiliation(s)
- Ali A Almaqwashi
- Physics Department , King Abdulaziz University , Rabigh 21911 , Saudi Arabia
| | - Wen Zhou
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States.,David H. Koch Institute for Integrative Cancer Research , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - M Nabuan Naufer
- Department of Physics , Northeastern University , Boston , Massachusetts 02115 , United States
| | - Imogen A Riddell
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States.,Department of Chemistry , The University of Manchester , Manchester M13 9PL , United Kingdom
| | - Ömer H Yilmaz
- David H. Koch Institute for Integrative Cancer Research , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Stephen J Lippard
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States.,David H. Koch Institute for Integrative Cancer Research , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Mark C Williams
- Department of Physics , Northeastern University , Boston , Massachusetts 02115 , United States
| |
Collapse
|
11
|
Clark AG, Naufer MN, Westerlund F, Lincoln P, Rouzina I, Paramanathan T, Williams MC. Reshaping the Energy Landscape Transforms the Mechanism and Binding Kinetics of DNA Threading Intercalation. Biochemistry 2018; 57:614-619. [PMID: 29243480 DOI: 10.1021/acs.biochem.7b01036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecules that bind DNA via threading intercalation show high binding affinity as well as slow dissociation kinetics, properties ideal for the development of anticancer drugs. To this end, it is critical to identify the specific molecular characteristics of threading intercalators that result in optimal DNA interactions. Using single-molecule techniques, we quantify the binding of a small metal-organic ruthenium threading intercalator (Δ,Δ-B) and compare its binding characteristics to a similar molecule with significantly larger threading moieties (Δ,Δ-P). The binding affinities of the two molecules are the same, while comparison of the binding kinetics reveals significantly faster kinetics for Δ,Δ-B. However, the kinetics is still much slower than that observed for conventional intercalators. Comparison of the two threading intercalators shows that the binding affinity is modulated independently by the intercalating section and the binding kinetics is modulated by the threading moiety. In order to thread DNA, Δ,Δ-P requires a "lock mechanism", in which a large length increase of the DNA duplex is required for both association and dissociation. In contrast, measurements of the force-dependent binding kinetics show that Δ,Δ-B requires a large DNA length increase for association but no length increase for dissociation from DNA. This contrasts strongly with conventional intercalators, for which almost no DNA length change is required for association but a large DNA length change must occur for dissociation. This result illustrates the fundamentally different mechanism of threading intercalation compared with conventional intercalation and will pave the way for the rational design of therapeutic drugs based on DNA threading intercalation.
Collapse
Affiliation(s)
- Andrew G Clark
- Department of Physics, Northeastern University , Boston, Massachusetts 02115, United States
| | - M Nabuan Naufer
- Department of Physics, Northeastern University , Boston, Massachusetts 02115, United States
| | - Fredrik Westerlund
- Department of Biology and Biological Engineering, Chalmers University of Technology , SE-412 96 Gothenburg, Sweden
| | - Per Lincoln
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology , SE-412 96 Gothenburg, Sweden
| | - Ioulia Rouzina
- Department of Chemistry and Biochemistry, The Ohio State University , Columbus, Ohio 43210, United States
| | - Thayaparan Paramanathan
- Department of Physics, Bridgewater State University , Bridgewater, Massachusetts 02325, United States
| | - Mark C Williams
- Department of Physics, Northeastern University , Boston, Massachusetts 02115, United States
| |
Collapse
|
12
|
Derrat HS, Robertson CC, Meijer AJHM, Thomas JA. Turning intercalators into groove binders: synthesis, photophysics and DNA binding properties of tetracationic mononuclear ruthenium(ii)-based chromophore–quencher complexes. Dalton Trans 2018; 47:12300-12307. [DOI: 10.1039/c8dt02633e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Despite incorporating an extended planar polyaromatic ligand two newly synthesized RuII complexes are not DNA intercalators but groove binders.
Collapse
Affiliation(s)
- Hanan S. Derrat
- Department of Chemistry
- University of Sheffield
- Sheffield
- UK
- Department of Chemistry
| | | | | | - Jim A. Thomas
- Department of Chemistry
- University of Sheffield
- Sheffield
- UK
| |
Collapse
|
13
|
Kovalska V, Kuperman M, Varzatskii O, Kryvorotenko D, Kinski E, Schikora M, Janko C, Alexiou C, Yarmoluk S, Mokhir A. [1,10]Phenanthroline based cyanine dyes as fluorescent probes for ribonucleic acids in live cells. Methods Appl Fluoresc 2017; 5:045002. [DOI: 10.1088/2050-6120/aa8510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
14
|
Zadegan RM, Lindau EG, Klein WP, Green C, Graugnard E, Yurke B, Kuang W, Hughes WL. Twisting of DNA Origami from Intercalators. Sci Rep 2017; 7:7382. [PMID: 28785065 PMCID: PMC5547094 DOI: 10.1038/s41598-017-07796-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 07/10/2017] [Indexed: 02/07/2023] Open
Abstract
DNA nanostructures represent the confluence of materials science, computer science, biology, and engineering. As functional assemblies, they are capable of performing mechanical and chemical work. In this study, we demonstrate global twisting of DNA nanorails made from two DNA origami six-helix bundles. Twisting was controlled using ethidium bromide or SYBR Green I as model intercalators. Our findings demonstrate that DNA nanorails: (i) twist when subjected to intercalators and the amount of twisting is concentration dependent, and (ii) twisting saturates at elevated concentrations. This study provides insight into how complex DNA structures undergo conformational changes when exposed to intercalators and may be of relevance when exploring how intercalating drugs interact with condensed biological structures such as chromatin and chromosomes, as well as chromatin analogous gene expression devices.
Collapse
Affiliation(s)
- Reza M Zadegan
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho, 83725, United States
| | - Elias G Lindau
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho, 83725, United States
| | - William P Klein
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho, 83725, United States
| | - Christopher Green
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho, 83725, United States
| | - Elton Graugnard
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho, 83725, United States
| | - Bernard Yurke
- Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho, 83725, United States
| | - Wan Kuang
- Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho, 83725, United States
| | - William L Hughes
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho, 83725, United States.
| |
Collapse
|