1
|
Lechtenberg T, Wynands B, Wierckx N. Engineering 5-hydroxymethylfurfural (HMF) oxidation in Pseudomonas boosts tolerance and accelerates 2,5-furandicarboxylic acid (FDCA) production. Metab Eng 2024; 81:262-272. [PMID: 38154655 DOI: 10.1016/j.ymben.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/12/2023] [Accepted: 12/21/2023] [Indexed: 12/30/2023]
Abstract
Due to its tolerance properties, Pseudomonas has gained particular interest as host for oxidative upgrading of the toxic aldehyde 5-hydroxymethylfurfural (HMF) into 2,5-furandicarboxylic acid (FDCA), a promising biobased alternative to terephthalate in polyesters. However, until now, the native enzymes responsible for aldehyde oxidation are unknown. Here, we report the identification of the primary HMF-converting enzymes of P. taiwanensis VLB120 and P. putida KT2440 by extended gene deletions. The key players in HMF oxidation are a molybdenum-dependent periplasmic oxidoreductase and a cytoplasmic dehydrogenase. Deletion of the corresponding genes almost completely abolished HMF oxidation, leading instead to aldehyde reduction. In this context, two HMF-reducing dehydrogenases were also revealed. These discoveries enabled enhancement of Pseudomonas' furanic aldehyde oxidation machinery by genomic overexpression of the respective genes. The resulting BOX strains (Boosted OXidation) represent superior hosts for biotechnological synthesis of FDCA from HMF. The increased oxidation rates provide greatly elevated HMF tolerance, thus tackling one of the major drawbacks of whole-cell catalysis with this aldehyde. Furthermore, the ROX (Reduced OXidation) and ROAR (Reduced Oxidation And Reduction) deletion mutants offer a solid foundation for future development of Pseudomonads as biotechnological chassis notably for scenarios where rapid HMF conversion is undesirable.
Collapse
Affiliation(s)
- Thorsten Lechtenberg
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany.
| | - Benedikt Wynands
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany.
| | - Nick Wierckx
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany.
| |
Collapse
|
2
|
Fernández-Remolar DC, Carrizo D, Harir M, Huang T, Amils R, Schmitt-Kopplin P, Sánchez-García L, Gomez-Ortiz D, Malmberg P. Unveiling microbial preservation under hyperacidic and oxidizing conditions in the Oligocene Rio Tinto deposit. Sci Rep 2021; 11:21543. [PMID: 34728655 PMCID: PMC8563943 DOI: 10.1038/s41598-021-00730-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 10/11/2021] [Indexed: 11/22/2022] Open
Abstract
The preservation of biosignatures on Mars is largely associated with extensive deposits of clays formed under mild early Noachian conditions (> 3.9 Ga). They were followed by widespread precipitation of acidic sulfates considered adverse for biomolecule preservation. In this paper, an exhaustive mass spectrometry investigation of ferric subsurface materials in the Rio Tinto gossan deposit (~ 25 Ma) provides evidence of well-preserved molecular biosignatures under oxidative and acidic conditions. Time of flight secondary ion mass spectrometry (ToF–SIMS) analysis shows a direct association between physical-templating biological structures and molecular biosignatures. This relation implies that the quality of molecular preservation is exceptional and provides information on microbial life formerly operating in the shallow regions of the Rio Tinto subsurface. Consequently, low-pH oxidative environments on Mars could also record molecular information about ancient life in the same way as the Noachian clay-rich deposits.
Collapse
Affiliation(s)
- David C Fernández-Remolar
- CEA, CNRS, IBS, Metalloproteins Unit, Université Grenoble Alpes, 38000, Grenoble, France. .,State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology, Macau, 999078, PR China. .,CNSA Macau Center for Space Exploration and Science, Macau, 999078, PR China.
| | | | - Mourad Harir
- Research Unit Analytical Biogeochemistry, Helmholtz Zentrum München, Neuherberg, Germany
| | - Ting Huang
- State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology, Macau, China
| | - Ricardo Amils
- Centro de Astrobiología (INTA-CSIC), Madrid, Spain.,Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Philippe Schmitt-Kopplin
- Research Unit Analytical Biogeochemistry, Helmholtz Zentrum München, Neuherberg, Germany.,Chair of Analytical Food Chemistry, Technical University Munich, 85354, Freising-Weihenstephan, Germany
| | | | - David Gomez-Ortiz
- ESCET-Área de Geología, Universidad Rey Juan Carlos, 28933, Móstoles, Madrid, Spain
| | - Per Malmberg
- Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, 412 96, Gothenburg, Sweden
| |
Collapse
|
3
|
Functional mononuclear molybdenum enzymes: challenges and triumphs in molecular cloning, expression, and isolation. J Biol Inorg Chem 2020; 25:547-569. [PMID: 32279136 DOI: 10.1007/s00775-020-01787-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/30/2020] [Indexed: 10/24/2022]
Abstract
Mononuclear molybdenum enzymes catalyze a variety of reactions that are essential in the cycling of nitrogen, carbon, arsenic, and sulfur. For decades, the structure and function of these crucial enzymes have been investigated to develop a fundamental knowledge for this vast family of enzymes and the chemistries they carry out. Therefore, obtaining abundant quantities of active enzyme is necessary for exploring this family's biochemical capability. This mini-review summarizes the methods for overexpressing mononuclear molybdenum enzymes in the context of the challenges encountered in the process. Effective methods for molybdenum cofactor synthesis and incorporation, optimization of expression conditions, improving isolation of active vs. inactive enzyme, incorporation of additional prosthetic groups, and inclusion of redox enzyme maturation protein chaperones are discussed in relation to the current molybdenum enzyme literature. This article summarizes the heterologous and homologous expression studies providing underlying patterns and potential future directions.
Collapse
|
4
|
Antibacterial Effect of Black Pepper Petroleum Ether Extract against Listeria monocytogenes and Salmonella typhimurium. J FOOD QUALITY 2019. [DOI: 10.1155/2019/2356161] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The aim of the present study was to evaluate the antibacterial effect of black pepper petroleum ether extract (BPPE) against Listeria monocytogenes ATCC 19115 and Salmonella typhimurium ATCC 14028. The results showed that the BPPE had a strong antimicrobial activity against L. monocytogenes and S. typhimurium, and 2-methylene-4,8,8-trimethyl-4-vinyl-bicyclo[5.2.0]nonane (9.36%) and caryophyllene oxide (4.85%) were identified as the two primary components of BPPE. The ability of cells to break down hyperoxide was decreased, and the activities of POD and CAT were inhibited. The activities of key metabolic enzymes shed some light on the biochemical mechanism of aglycon cell growth inhibition, indicating that the energetic metabolism of L. monocytogenes and S. typhimurium was markedly influenced by the BPPE. The contents of key organic acids varied significantly, resulting in remarkable abnormalities in the energetic metabolism of L. monocytogenes and S. typhimurium. Thus, the consecution of energetic metabolism was destroyed by the BPPE, which contributed to metabolic dysfunction, the suppression of gene transcription, and cell death.
Collapse
|
5
|
Hemoglobin catalyzes CoA degradation and thiol addition to flavonoids. Sci Rep 2018; 8:1282. [PMID: 29352172 PMCID: PMC5775311 DOI: 10.1038/s41598-018-19585-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 01/03/2018] [Indexed: 11/18/2022] Open
Abstract
In the presence of CoA, cell-free extracts prepared from porcine liver was found to convert 7,8-dihydroxyflavone (DHF) to a pantetheine conjugate, which was a novel flavonoid. We purified a 7,8-DHF-converting enzyme from the extracts, and identified it as hemoglobin (Hb). The purified Hb showed the following two activities: (i) degradation of CoA into pantetheine through hydrolytic cleavage to yield pantetheine and 3′-phospho-adenosine-5′-diphosphate (ADP) independently of heme, and (ii) addition of a thiol (e.g., pantetheine, glutathione and cysteine) to 7,8-DHF through C-S bond formation. Human Hb also exhibited the above flavonoid-converting activity. In addition, heme-containing enzymes such as peroxidase and catalase added each of pantetheine, glutathione and cysteine to the flavonoid, although no pantetheine conjugates were synthesized when CoA was used as a substrate. These findings indicated that the thiol-conjugating activity is widely observed in heme-containing proteins. On the other hand, only Hb catalyzed the hydrolysis of CoA, followed by the thiol conjugation to synthesize the pantetheine conjugate. To the best of our knowledge, this is the first report showing that Hb has the catalytic ability to convert naturally occurring bioactive compounds, such as dietary flavonoids, to the corresponding conjugates in the presence of thiol donors or CoA.
Collapse
|
6
|
Uchida H, Mikami B, Yamane-Tanabe A, Ito A, Hirano K, Oki M. Crystal structure of an aldehyde oxidase from Methylobacillus sp. KY4400. J Biochem 2018; 163:321-328. [DOI: 10.1093/jb/mvy004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 10/21/2017] [Indexed: 12/25/2022] Open
Affiliation(s)
- Hiroyuki Uchida
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 9-1, Bunkyo 3-Chome, Fukui 910-8507, Japan
| | - Bunzou Mikami
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Aiko Yamane-Tanabe
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Anna Ito
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 9-1, Bunkyo 3-Chome, Fukui 910-8507, Japan
| | - Kouzou Hirano
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 9-1, Bunkyo 3-Chome, Fukui 910-8507, Japan
| | - Masaya Oki
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 9-1, Bunkyo 3-Chome, Fukui 910-8507, Japan
| |
Collapse
|
7
|
Zhao M, Zheng P, Chen P, Liu S. Biosynthesis of Heliotropin by a Novel Strain of Serratia liquefaciens. Appl Biochem Biotechnol 2017; 183:1282-1294. [DOI: 10.1007/s12010-017-2497-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 04/26/2017] [Indexed: 11/29/2022]
|