1
|
Mohammadi S, Jabbari F, Babaeipour V. Bacterial cellulose-based composites as vehicles for dermal and transdermal drug delivery: A review. Int J Biol Macromol 2023:124955. [PMID: 37245742 DOI: 10.1016/j.ijbiomac.2023.124955] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/05/2023] [Accepted: 05/16/2023] [Indexed: 05/30/2023]
Abstract
In recent years, a significant amount of drugs have been taken orally, which are not as effective as desired. To solve this problem, bacterial cellulose-based dermal/transdermal drug delivery systems (BC-DDSs) with unique properties such as cell compatibility, hemocompatibility, tunable mechanical properties, and the ability to encapsulate various therapeutic agents with the controlled release have been introduced. A BC-dermal/transdermal DDS reduces first-pass metabolism and systematic side effects while improving patient compliance and dosage effectiveness by controlling drug release through the skin. The barrier function of the skin, especially the stratum corneum, can interfere with drug delivery. Few drugs can pass through the skin to reach effective concentrations in the blood to treat diseases. Due to their unique physicochemical properties and high potential to reduce immunogenicity and improve bioavailability, BC-dermal/transdermal DDSs are widely used to deliver various types of drugs for disease treatment. In this review, we describe the different types of BC-dermal/ transdermal DDSs, along with a critical discussion of the advantages and disadvantages of these systems. After the general presentation, the review is focused on recent advances in the preparation and applications of BC-based dermal/transdermal DDSs in various types of disease treatment.
Collapse
Affiliation(s)
- Sajad Mohammadi
- 3D Microfluidic Biofabrication Lab, Center for Life Nano- & Neuro-science (CLN2S), Istituto Italiano di Tecnologia (IIT), Rome 00161, Italy; Department of Basic and Applied Science for Engineering, Sapienza University of Rome, 00161, Italy.
| | - Farzaneh Jabbari
- Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), Tehran 14155-4777, Iran
| | - Valiollah Babaeipour
- Faculty of Chemistry and Chemical Engineering, Malek-Ashtar University of Technology, Tehran 1774-15875, Iran.
| |
Collapse
|
2
|
Horue M, Silva JM, Berti IR, Brandão LR, Barud HDS, Castro GR. Bacterial Cellulose-Based Materials as Dressings for Wound Healing. Pharmaceutics 2023; 15:pharmaceutics15020424. [PMID: 36839745 PMCID: PMC9963514 DOI: 10.3390/pharmaceutics15020424] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/10/2022] [Accepted: 12/23/2022] [Indexed: 01/31/2023] Open
Abstract
Bacterial cellulose (BC) is produced by several microorganisms as extracellular structures and can be modified by various physicochemical and biological strategies to produce different cellulosic formats. The main advantages of BC for biomedical applications can be summarized thus: easy moldability, purification, and scalability; high biocompatibility; and straightforward tailoring. The presence of a high amount of free hydroxyl residues, linked with water and nanoporous morphology, makes BC polymer an ideal candidate for wound healing. In this frame, acute and chronic wounds, associated with prevalent pathologies, were addressed to find adequate therapeutic strategies. Hence, the main characteristics of different BC structures-such as membranes and films, fibrous and spheroidal, nanocrystals and nanofibers, and different BC blends, as well as recent advances in BC composites with alginate, collagen, chitosan, silk sericin, and some miscellaneous blends-are reported in detail. Moreover, the development of novel antimicrobial BC and drug delivery systems are discussed.
Collapse
Affiliation(s)
- Manuel Horue
- Laboratorio de Nanobiomateriales, CINDEFI, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP)-CONICET (CCT La Plata), Calle 47 y 115, La Plata B1900, Argentina
| | - Jhonatan Miguel Silva
- Biopolymers and Biomaterials Laboratory—BioPolMat, University of Araraquara—UNIARA, Araraquara 14801-320, SP, Brazil
| | - Ignacio Rivero Berti
- Laboratorio de Nanobiomateriales, CINDEFI, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP)-CONICET (CCT La Plata), Calle 47 y 115, La Plata B1900, Argentina
| | - Larissa Reis Brandão
- Biopolymers and Biomaterials Laboratory—BioPolMat, University of Araraquara—UNIARA, Araraquara 14801-320, SP, Brazil
| | - Hernane da Silva Barud
- Biopolymers and Biomaterials Laboratory—BioPolMat, University of Araraquara—UNIARA, Araraquara 14801-320, SP, Brazil
- Correspondence: (H.d.S.B.); (G.R.C.)
| | - Guillermo R. Castro
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC), Partner Laboratory of the Max Planck Institute for Biophysical Chemistry (MPIbpC, MPG), Centro de Estudios Interdisciplinarios (CEI), Universidad Nacional de Rosario, Maipú 1065, Rosario S2000, Argentina
- Nanomedicine Research Unit (Nanomed), Center for Natural and Human Sciences (CCNH), Universidade Federal do ABC (UFABC), Santo André 09210-580, SP, Brazil
- Correspondence: (H.d.S.B.); (G.R.C.)
| |
Collapse
|
3
|
Cutaneous/Mucocutaneous Leishmaniasis Treatment for Wound Healing: Classical versus New Treatment Approaches. MICROBIOLOGY RESEARCH 2022. [DOI: 10.3390/microbiolres13040059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cutaneous leishmaniasis (CL) and mucocutaneous leishmaniasis (ML) show clinical spectra that can range from a localized lesion (with a spontaneous healing process) to cases that progress to a generalized systemic disease with a risk of death. The treatment of leishmaniasis is complex since most of the available drugs show high toxicity. The development of an effective topical drug formulation for CL and ML treatment offers advantages as it will improve patient’s compliance to the therapy given the possibility for self-administration, as well as overcoming the first pass metabolism and the high costs of currently available alternatives. The most common dosage forms include solid formulations, such as membranes and semi-solid formulations (e.g., ointments, creams, gels, and pastes). Topical treatment has been used as a new route of administration for conventional drugs against leishmaniasis and its combinations, as well as to exploit new substances. In this review, we discuss the advantages and limitations of using topical drug delivery for the treatment of these two forms of leishmaniasis and the relevance of combining this approach with other pharmaceutical dosage forms. Emphasis will also be given to the use of nanomaterials for site-specific delivery.
Collapse
|
4
|
Kaul L, Abdo AI, Coenye T, Krom BP, Hoogenkamp MA, Zannettino ACW, Süss R, Richter K. The combination of diethyldithiocarbamate and copper ions is active against Staphylococcus aureus and Staphylococcus epidermidis biofilms in vitro and in vivo. Front Microbiol 2022; 13:999893. [PMID: 36160243 PMCID: PMC9500474 DOI: 10.3389/fmicb.2022.999893] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/18/2022] [Indexed: 12/13/2022] Open
Abstract
Staphylococcus aureus and Staphylococcus epidermidis are associated with life-threatening infections. Despite the best medical care, these infections frequently occur due to antibiotic resistance and the formation of biofilms of these two bacteria (i.e., clusters of bacteria embedded in a matrix). As a consequence, there is an urgent need for effective anti-biofilm treatments. Here, we describe the antibacterial properties of a combination treatment of diethyldithiocarbamate (DDC) and copper ions (Cu2+) and their low toxicity in vitro and in vivo. The antibacterial activity of DDC and Cu2+ was assessed in vitro against both planktonic and biofilm cultures of S. aureus and S. epidermidis using viability assays, microscopy, and attachment assays. Cytotoxicity of DDC and Cu2+ (DDC-Cu2+) was determined using a human fibroblast cell line. In vivo antimicrobial activity and toxicity were monitored in Galleria mellonella larvae. DDC-Cu2+ concentrations of 8 μg/ml DDC and 32 μg/ml Cu2+ resulted in over 80% MRSA and S. epidermidis biofilm killing, showed synergistic and additive effects in both planktonic and biofilm cultures of S. aureus and S. epidermidis, and synergized multiple antibiotics. DDC-Cu2+ inhibited MRSA and S. epidermidis attachment and biofilm formation in the xCELLigence and Bioflux systems. In vitro and in vivo toxicity of DDC, Cu2+ and DDC-Cu2+ resulted in > 70% fibroblast viability and > 90% G. mellonella survival. Treatment with DDC-Cu2+ significantly increased the survival of infected larvae (87% survival of infected, treated larvae vs. 47% survival of infected, untreated larvae, p < 0.001). Therefore, DDC-Cu2+ is a promising new antimicrobial with activity against planktonic and biofilm cultures of S. epidermidis and S. aureus and low cytotoxicity in vitro. This gives us high confidence to progress to mammalian animal studies, testing the antimicrobial efficacy and safety of DDC-Cu2+.
Collapse
Affiliation(s)
- Laurine Kaul
- Richter Lab, Basil Hetzel Institute for Translational Health Research, Department of Surgery, University of Adelaide, Adelaide, SA, Australia
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany
- Faculty of Health and Medical Sciences, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Adrian I. Abdo
- Richter Lab, Basil Hetzel Institute for Translational Health Research, Department of Surgery, University of Adelaide, Adelaide, SA, Australia
- Faculty of Health and Medical Sciences, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Gent, Belgium
| | - Bastiaan P. Krom
- Department of Preventive Dentistry, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Michel A. Hoogenkamp
- Department of Preventive Dentistry, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Andrew C. W. Zannettino
- Faculty of Health and Medical Sciences, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
- Precision Medicine Theme, South Australian Health & Medical Research Institute, Adelaide, SA, Australia
- Central Adelaide Local Health Network, Adelaide, SA, Australia
| | - Regine Süss
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany
| | - Katharina Richter
- Richter Lab, Basil Hetzel Institute for Translational Health Research, Department of Surgery, University of Adelaide, Adelaide, SA, Australia
- Faculty of Health and Medical Sciences, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
- Institute for Photonics and Advanced Sensing, University of Adelaide, Adelaide, SA, Australia
- *Correspondence: Katharina Richter,
| |
Collapse
|
5
|
Moreno CJG, Farias HM, de Lima Medeiros R, de Brito Pinto TK, de Freitas Oliveira JW, de Sousa FL, de Medeiros MJC, Amorim-Carmo B, Santos-Gomes G, de Lima Pontes D, Rocha HAO, Frazão NF, Silva MS. Quantum Biochemistry Screening and In Vitro Evaluation of Leishmania Metalloproteinase Inhibitors. Int J Mol Sci 2022; 23:8553. [PMID: 35955687 PMCID: PMC9368959 DOI: 10.3390/ijms23158553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/16/2022] [Accepted: 07/17/2022] [Indexed: 12/04/2022] Open
Abstract
Leishmanolysin, also known as major promastigote protease (PSP) or gp63, is the most abundant surface glycoprotein of Leishmania spp., and has been extensively studied and recognized as the main parasite virulence factor. Characterized as a metalloprotease, gp63 can be powerfully inactivated in the presence of a metal chelator. In this study, we first used the structural parameters of a 7-hydroxycoumarin derivative, L1 compound, to evaluate the theoretical-computational experiments against gp63, comparing it with an available metal chelator already described. The methodology followed was (i) analysis of the three-dimensional structure of gp63 as well as its active site, and searching the literature and molecular databases for possible inhibitors; (ii) molecular docking simulations and investigation of the interactions in the generated protein-ligand complexes; and (iii) the individual energy of the gp63 amino acids that interacted most with the ligands of interest was quantified by ab initio calculations using Molecular Fraction with Conjugated Caps (MFCC). MFCC still allowed the final quantum balance calculations of the protein interaction to be obtained with each inhibitor candidate binder. L1 obtained the best energy quantum balance result with -2 eV, followed by DETC (-1.4 eV), doxycycline (-1.3 eV), and 4-terpineol (-0.6 eV), and showed evidence of covalent binding in the enzyme active site. In vitro experiments confirmed L1 as highly effective against L. amazonensis parasites. The compound also exhibited a low cytotoxicity profile against mammalian RAW and 3T3 cells lines, presenting a selective index of 149.19 and 380.64 µM, respectively. L1 induced promastigote forms' death by necrosis and the ultrastructural analysis revealed disruption in membrane integrity. Furthermore, leakage of the contents and destruction of the parasite were confirmed by Spectroscopy Dispersion analysis. These results together suggested L1 has a potential effect against L. amazonensis, the etiologic agent of diffuse leishmaniasis, and the only one that currently does not have a satisfactory treatment.
Collapse
Affiliation(s)
- Cláudia Jassica Gonçalves Moreno
- Laboratory of Immunoparasitology, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil; (C.J.G.M.); (J.W.d.F.O.)
- Postgraduate Program in Pharmaceutical Sciences, Health Sciences Center, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil;
- Postgraduate Program in Biochemistry, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil;
| | - Henriqueta Monalisa Farias
- Academic Unit of Physics, Mathematics of the Education and Health Center, Federal University of Campina Grande, Campina Grande 58428-830, Brazil; (H.M.F.); (R.d.L.M.); (N.F.F.)
| | - Rafael de Lima Medeiros
- Academic Unit of Physics, Mathematics of the Education and Health Center, Federal University of Campina Grande, Campina Grande 58428-830, Brazil; (H.M.F.); (R.d.L.M.); (N.F.F.)
| | - Talita Katiane de Brito Pinto
- Postgraduate Program in Health Sciences, Health Sciences Center, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil;
| | - Johny Wysllas de Freitas Oliveira
- Laboratory of Immunoparasitology, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil; (C.J.G.M.); (J.W.d.F.O.)
- Postgraduate Program in Biochemistry, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil;
| | - Francimar Lopes de Sousa
- Laboratory of Chemistry of Coordination and Polymers (LQCPol), Institute of Chemistry Chemistry Institute, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil; (F.L.d.S.J.); (M.J.C.d.M.); (D.d.L.P.)
| | - Mayara Jane Campos de Medeiros
- Laboratory of Chemistry of Coordination and Polymers (LQCPol), Institute of Chemistry Chemistry Institute, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil; (F.L.d.S.J.); (M.J.C.d.M.); (D.d.L.P.)
| | - Bruno Amorim-Carmo
- Postgraduate Program in Pharmaceutical Sciences, Health Sciences Center, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil;
| | - Gabriela Santos-Gomes
- Global Health and Tropical Medicine, GHTM, Institute of Hygiene and Tropical Medicine, IHMT, NOVA University of Lisbon—UNL, 1349-008 Lisbon, Portugal;
| | - Daniel de Lima Pontes
- Laboratory of Chemistry of Coordination and Polymers (LQCPol), Institute of Chemistry Chemistry Institute, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil; (F.L.d.S.J.); (M.J.C.d.M.); (D.d.L.P.)
| | - Hugo Alexandre Oliveira Rocha
- Postgraduate Program in Biochemistry, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil;
- Postgraduate Program in Health Sciences, Health Sciences Center, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil;
| | - Nilton Fereira Frazão
- Academic Unit of Physics, Mathematics of the Education and Health Center, Federal University of Campina Grande, Campina Grande 58428-830, Brazil; (H.M.F.); (R.d.L.M.); (N.F.F.)
| | - Marcelo Sousa Silva
- Laboratory of Immunoparasitology, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil; (C.J.G.M.); (J.W.d.F.O.)
- Postgraduate Program in Pharmaceutical Sciences, Health Sciences Center, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil;
- Postgraduate Program in Biochemistry, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil;
- Global Health and Tropical Medicine, GHTM, Institute of Hygiene and Tropical Medicine, IHMT, NOVA University of Lisbon—UNL, 1349-008 Lisbon, Portugal;
| |
Collapse
|
6
|
Almeida-Silva J, Menezes DS, Fernandes JMP, Almeida MC, Vasco-Dos-Santos DR, Saraiva RM, Viçosa AL, Perez SAC, Andrade SG, Suarez-Fontes AM, Vannier-Santos MA. The repositioned drugs disulfiram/diethyldithiocarbamate combined to benznidazole: Searching for Chagas disease selective therapy, preventing toxicity and drug resistance. Front Cell Infect Microbiol 2022; 12:926699. [PMID: 35967878 PMCID: PMC9372510 DOI: 10.3389/fcimb.2022.926699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/27/2022] [Indexed: 12/20/2022] Open
Abstract
Chagas disease (CD) affects at least 6 million people in 21 South American countries besides several thousand in other nations all over the world. It is estimated that at least 14,000 people die every year of CD. Since vaccines are not available, chemotherapy remains of pivotal relevance. About 30% of the treated patients cannot complete the therapy because of severe adverse reactions. Thus, the search for novel drugs is required. Here we tested the benznidazole (BZ) combination with the repositioned drug disulfiram (DSF) and its derivative diethyldithiocarbamate (DETC) upon Trypanosoma cruzi in vitro and in vivo. DETC-BZ combination was synergistic diminishing epimastigote proliferation and enhancing selective indexes up to over 10-fold. DETC was effective upon amastigotes of the BZ- partially resistant Y and the BZ-resistant Colombiana strains. The combination reduced proliferation even using low concentrations (e.g., 2.5 µM). Scanning electron microscopy revealed membrane discontinuities and cell body volume reduction. Transmission electron microscopy revealed remarkable enlargement of endoplasmic reticulum cisternae besides, dilated mitochondria with decreased electron density and disorganized kinetoplast DNA. At advanced stages, the cytoplasm vacuolation apparently impaired compartmentation. The fluorescent probe H2-DCFDA indicates the increased production of reactive oxygen species associated with enhanced lipid peroxidation in parasites incubated with DETC. The biochemical measurement indicates the downmodulation of thiol expression. DETC inhibited superoxide dismutase activity on parasites was more pronounced than in infected mice. In order to approach the DETC effects on intracellular infection, peritoneal macrophages were infected with Colombiana trypomastigotes. DETC addition diminished parasite numbers and the DETC-BZ combination was effective, despite the low concentrations used. In the murine infection, the combination significantly enhanced animal survival, decreasing parasitemia over BZ. Histopathology revealed that low doses of BZ-treated animals presented myocardial amastigote, not observed in combination-treated animals. The picrosirius collagen staining showed reduced myocardial fibrosis. Aminotransferase de aspartate, Aminotransferase de alanine, Creatine kinase, and urea plasma levels demonstrated that the combination was non-toxic. As DSF and DETC can reduce the toxicity of other drugs and resistance phenotypes, such a combination may be safe and effective.
Collapse
Affiliation(s)
- Juliana Almeida-Silva
- Innovations in Therapies, Education and Bioproducts Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Diego Silva Menezes
- Parasite Biology Laboratory, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, BA, Brazil
| | - Juan Mateus Pereira Fernandes
- Innovations in Therapies, Education and Bioproducts Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Márcio Cerqueira Almeida
- Parasite Biology Laboratory, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, BA, Brazil
| | - Deyvison Rhuan Vasco-Dos-Santos
- Innovations in Therapies, Education and Bioproducts Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Roberto Magalhães Saraiva
- Laboratory of Clinical Research on Chagas Disease, Evandro Chagas Infectious Disease Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Alessandra Lifsitch Viçosa
- Experimental Pharmacotechnics Laboratory, Department of Galenic Innovation, Institute of Drug Technology - Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Sandra Aurora Chavez Perez
- Project Management Technical Assistance, Institute of Drug Technology - Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Sônia Gumes Andrade
- Experimental Chagas Disease Laboratory, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, BA, Brazil
| | - Ana Márcia Suarez-Fontes
- Innovations in Therapies, Education and Bioproducts Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Marcos André Vannier-Santos
- Innovations in Therapies, Education and Bioproducts Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
7
|
In Vitro Validation of Antiparasitic Activity of PLA-Nanoparticles of Sodium Diethyldithiocarbamate against Trypanosoma cruzi. Pharmaceutics 2022; 14:pharmaceutics14030497. [PMID: 35335875 PMCID: PMC8954078 DOI: 10.3390/pharmaceutics14030497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 12/19/2022] Open
Abstract
Trypanosoma cruzi is a protozoan parasite responsible for Chagas disease, which affects millions around the world and is not treatable in its chronic stage. Sodium diethyldithiocarbamate is a compound belonging to the carbamate class and, in a previous study, demonstrated high efficacy against T. cruzi, showing itself to be a promising compound for the treatment of Chagas disease. This study investigates the encapsulation of sodium diethyldithiocarbamate by poly-lactic acid in nanoparticles, a system of biodegradable nanoparticles that is capable of reducing the toxicity caused by free DETC against cells and maintaining the antiparasitic activity. The nanosystem PLA-DETC was fabricated using nanoprecipitation, and its physical characterization was measured via DLS, SEM, and AFM, demonstrating a small size around 168 nm and a zeta potential of around −19 mv. Furthermore, the toxicity was determined by MTT reduction against three cell lines (VERO, 3T3, and RAW), and when compared to free DETC, we observed a reduction in cell mortality, demonstrating the importance of DETC nanoencapsulation. In addition, the nanoparticles were stained with FITC and put in contact with cells for 24 h, followed by confirmation of whether the nanosystem was inside the cells. Lastly, the antiparasitic activity against different strains of T. cruzi in trypomastigote forms was determined by resazurin reduction and ROS production, which demonstrated high efficacy towards T. cruzi equal to that of free DETC.
Collapse
|
8
|
Zewdie KA, Hailu HG, Ayza MA, Tesfaye BA. Antileishmanial Activity of Tamoxifen by Targeting Sphingolipid Metabolism: A Review. Clin Pharmacol 2022; 14:11-17. [PMID: 35221731 PMCID: PMC8880078 DOI: 10.2147/cpaa.s344268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/27/2022] [Indexed: 01/21/2023] Open
Affiliation(s)
- Kaleab Alemayehu Zewdie
- Department of Pharmacology and Toxicology, School of Pharmacy, Mekelle University, Mekelle, Ethiopia
- Correspondence: Kaleab Alemayehu Zewdie, Department of Pharmacology and Toxicology, School of Pharmacy, Mekelle University, PO Box 1871, Mekelle, Ethiopia, Tel +251 921546562, Email
| | - Haftom Gebregergs Hailu
- Department of Pharmacology and Toxicology, School of Pharmacy, Mekelle University, Mekelle, Ethiopia
| | - Muluken Altaye Ayza
- Department of Pharmacology and Toxicology, School of Pharmacy, Mekelle University, Mekelle, Ethiopia
| | - Bekalu Amare Tesfaye
- Department of Pharmacology and Toxicology, School of Pharmacy, Mekelle University, Mekelle, Ethiopia
| |
Collapse
|
9
|
Bacterial Cellulose-A Remarkable Polymer as a Source for Biomaterials Tailoring. MATERIALS 2022; 15:ma15031054. [PMID: 35160997 PMCID: PMC8839122 DOI: 10.3390/ma15031054] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/19/2022] [Accepted: 01/27/2022] [Indexed: 12/11/2022]
Abstract
Nowadays, the development of new eco-friendly and biocompatible materials using ‘green’ technologies represents a significant challenge for the biomedical and pharmaceutical fields to reduce the destructive actions of scientific research on the human body and the environment. Thus, bacterial cellulose (BC) has a central place among these novel tailored biomaterials. BC is a non-pathogenic bacteria-produced polysaccharide with a 3D nanofibrous structure, chemically identical to plant cellulose, but exhibiting greater purity and crystallinity. Bacterial cellulose possesses excellent physicochemical and mechanical properties, adequate capacity to absorb a large quantity of water, non-toxicity, chemical inertness, biocompatibility, biodegradability, proper capacity to form films and to stabilize emulsions, high porosity, and a large surface area. Due to its suitable characteristics, this ecological material can combine with multiple polymers and diverse bioactive agents to develop new materials and composites. Bacterial cellulose alone, and with its mixtures, exhibits numerous applications, including in the food and electronic industries and in the biotechnological and biomedical areas (such as in wound dressing, tissue engineering, dental implants, drug delivery systems, and cell culture). This review presents an overview of the main properties and uses of bacterial cellulose and the latest promising future applications, such as in biological diagnosis, biosensors, personalized regenerative medicine, and nerve and ocular tissue engineering.
Collapse
|
10
|
A pilot and open trial to evaluate topical Bacterial Cellulose bio-curatives in the treatment of cutaneous leishmaniasis caused by L. braziliensis. Acta Trop 2022; 225:106192. [PMID: 34662548 DOI: 10.1016/j.actatropica.2021.106192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/27/2021] [Accepted: 10/04/2021] [Indexed: 01/16/2023]
Abstract
The treatment of cutaneous leishmaniasis (CL) in Brazil using pentavalent antimony (Sbv) is associated with a high failure rate and long time to heal. Moreover, standard Sbv treatment cures only 50-60% of the cases. In this pilot clinical trial, we evaluated the topical use of bacterial cellulose (BC) bio-curatives + Sbv in the treatment of CL caused by L. braziliensis, in Bahia, Brazil. A total of 20 patients were randomized in two groups assigned to receive either parenteral Sbv alone or parenteral Sbv plus topically applied BC bio-curatives. CL patients treated with Sbv + topical BC bio-curatives had a significantly higher cure rate at 60 days post initiation of treatment compared to CL patients treated with Sbv alone (P=0.01). At day 90 post initiation of treatment, cure rate was similar in the two groups as was overall healing time. Adverse effects or local reactions to topical BC application were not observed. This pilot trial shows that the potential use of a combined therapy consisting of topical BC bio-curatives and parenteral Sbv in favoring healing of CL lesions caused by L. braziliensis, at an early time point.
Collapse
|
11
|
The antimicrobial and immunomodulatory effects of Ionophores for the treatment of human infection. J Inorg Biochem 2021; 227:111661. [PMID: 34896767 DOI: 10.1016/j.jinorgbio.2021.111661] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 12/18/2022]
Abstract
Ionophores are a diverse class of synthetic and naturally occurring ion transporter compounds which demonstrate both direct and in-direct antimicrobial properties against a broad panel of bacterial, fungal, viral and parasitic pathogens. In addition, ionophores can regulate the host-immune response during communicable and non-communicable disease states. Although the clinical use of ionophores such as Amphotericin B, Bedaquiline and Ivermectin highlight the utility of ionophores in modern medicine, for many other ionophore compounds issues surrounding toxicity, bioavailability or lack of in vivo efficacy studies have hindered clinical development. The antimicrobial and immunomodulating properties of a range of compounds with characteristics of ionophores remain largely unexplored. As such, ionophores remain a latent therapeutic avenue to address both the global burden of antimicrobial resistance, and the unmet clinical need for new antimicrobial therapies. This review will provide an overview of the broad-spectrum antimicrobial and immunomodulatory properties of ionophores, and their potential uses in clinical medicine for combatting infection.
Collapse
|
12
|
Briones Nieva CA, Cid AG, Romero AI, García-Bustos MF, Villegas M, Bermúdez JM. An appraisal of the scientific current situation and new perspectives in the treatment of cutaneous leishmaniasis. Acta Trop 2021; 221:105988. [PMID: 34058160 DOI: 10.1016/j.actatropica.2021.105988] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 12/18/2022]
Abstract
Leishmaniasis is a Neglected Tropical Diseases caused by protozoan parasites of the genus Leishmania. It is a major health problem in many tropical and subtropical regions of the world and can produce three different clinical manifestations, among which cutaneous leishmaniasis has a higher incidence in the world than the other clinical forms. There are no recognized and reliable means of chemoprophylaxis or vaccination against infections with different forms of leishmaniasis. In addition, chemotherapy, unfortunately, remains, in many respects, unsatisfactory. Therefore, there is a continuing and urgent need for new therapies against leishmaniasis that are safe and effective in inducing a long-term cure. This review summarizes the latest advances in currently available treatments and improvements in the development of drug administration. In addition, an analysis of the in vivo assays was performed and the challenges facing promising strategies to treat CL are discussed. The treatment of leishmaniasis will most likely evolve into an approach that uses multiple therapies simultaneously to reduce the possibility of developing drug resistance. There is a continuous effort to discover new drugs to improve the treatment of leishmaniasis, but this is mainly at the level of individual researchers. Undoubtedly, more funding is needed in this area, as well as greater participation of the pharmaceutical industry to focus efforts on the development of chemotherapeutic agents and vaccines for this and other neglected tropical diseases.
Collapse
Affiliation(s)
- C A Briones Nieva
- Instituto de Investigaciones para la Industria Química, Universidad Nacional de Salta - Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Bolivia 5150, (4400) Salta, Argentina
| | - Alicia Graciela Cid
- Instituto de Investigaciones para la Industria Química, Universidad Nacional de Salta - Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Bolivia 5150, (4400) Salta, Argentina
| | - Analía Irma Romero
- Instituto de Investigaciones para la Industria Química, Universidad Nacional de Salta - Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Bolivia 5150, (4400) Salta, Argentina
| | - María Fernanda García-Bustos
- Instituto de Patología Experimental, Universidad Nacional de Salta - Consejo Nacional de Investigaciones Científicas y Técnicas, Salta, Argentina
| | - Mercedes Villegas
- Instituto de Investigaciones para la Industria Química, Universidad Nacional de Salta - Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Bolivia 5150, (4400) Salta, Argentina
| | - José María Bermúdez
- Instituto de Investigaciones para la Industria Química, Universidad Nacional de Salta - Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Bolivia 5150, (4400) Salta, Argentina.
| |
Collapse
|
13
|
Insights of antiparasitic activity of sodium diethyldithiocarbamate against different strains of Trypanosoma cruzi. Sci Rep 2021; 11:11200. [PMID: 34045624 PMCID: PMC8159965 DOI: 10.1038/s41598-021-90719-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 05/17/2021] [Indexed: 01/01/2023] Open
Abstract
Chagas disease is caused by Trypanosoma cruzi and affects thousands of people. Drugs currently used in therapy are toxic and have therapeutic limitations. In addition, the genetic diversity of T. cruzi represents an important variable and challenge in treatment. Sodium diethyldithiocarbamate (DETC) is a compound with pharmacological versatility acting as metal chelators and ROS generation. Thus, the objective was to characterize the antiparasitic action of DETC against different strains and forms of T. cruzi and their mechanism. The different strains of T. cruzi were grown in LIT medium. To evaluate the antiparasitic activity of DETC, epimastigote and trypomastigote forms of T. cruzi were used by resazurin reduction methods and by counting. Different response patterns were obtained between the strains and an IC50 of DETC ranging from 9.44 ± 3,181 to 60.49 ± 7.62 µM. Cell cytotoxicity against 3T3 and RAW cell lines and evaluated by MTT, demonstrated that DETC in high concentration (2222.00 µM) presents low toxicity. Yet, DETC causes mitochondrial damage in T. cruzi, as well as disruption in parasite membrane. DETC has antiparasitic activity against different genotypes and forms of T. cruzi, therefore, representing a promising molecule as a drug for the treatment of Chagas disease.
Collapse
|
14
|
Kaul L, Süss R, Zannettino A, Richter K. The revival of dithiocarbamates: from pesticides to innovative medical treatments. iScience 2021; 24:102092. [PMID: 33598645 PMCID: PMC7868997 DOI: 10.1016/j.isci.2021.102092] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Dithiocarbamates (DTCs) have been used for various applications, including as hardening agents in rubber manufacturing, as fungicide in agriculture, and as medications to treat alcohol misuse disorder. The multi-faceted effects of DTCs rely mainly on metal binding abilities and a high reactivity with thiol groups. Therefore, the list of potential applications is still increasing, exemplified by the US Food and Drug Administration approval of disulfiram (Antabuse) and its metabolite diethyldithiocarbamate in clinical trials against cancer, human immunodeficiency virus, and Lyme disease, as well as new DTC-related compounds that have been synthesized to target diseases with unmet therapeutic needs. In this review, we will discuss the latest progress of DTCs as anti-cancer agents and provide a summary of the mechanisms of action. We will explain the expansion of DTCs' activity in the fields of microbiology, neurology, cardiology, and ophthalmology, thereby providing evidence for the important role and therapeutic potential of DTCs as innovative medical treatments.
Collapse
Affiliation(s)
- Laurine Kaul
- Richter Lab, Department of Surgery, Basil Hetzel Institute for Translational Health Research, University of Adelaide, Adelaide, SA 5011, Australia
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg 79104, Germany
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Regine Süss
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg 79104, Germany
| | - Andrew Zannettino
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
- Precision Medicine Theme, South Australian Health & Medical Research Institute, Adelaide, SA 5000, Australia
- Central Adelaide Local Health Network, Adelaide, SA 5011, Australia
| | - Katharina Richter
- Richter Lab, Department of Surgery, Basil Hetzel Institute for Translational Health Research, University of Adelaide, Adelaide, SA 5011, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
15
|
Rebouças-Silva J, Tadini MC, Devequi-Nunes D, Mansur AL, S Silveira-Mattos P, I de Oliveira C, R Formiga F, Berretta AA, Marquele-Oliveira F, Borges VM. Evaluation of in vitro and in vivo Efficacy of a Novel Amphotericin B-Loaded Nanostructured Lipid Carrier in the Treatment of Leishmania braziliensis Infection. Int J Nanomedicine 2020; 15:8659-8672. [PMID: 33177824 PMCID: PMC7652360 DOI: 10.2147/ijn.s262642] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/27/2020] [Indexed: 12/03/2022] Open
Abstract
Background Leishmaniasis is a neglected disease, and the current therapeutic arsenal for its treatment is seriously limited by high cost and toxicity. Nanostructured lipid carriers (NLCs) represent a promising approach due to high drug loading capacity, controlled drug release profiles and superior stability. Here, we explore the efficacy of a unique pH-sensitive amphotericin B-loaded NLC (AmB-NLC) in Leishmania braziliensis infection in vitro and in vivo. Methods and Results AmB-NLC was assessed by dynamic light scattering and atomic force microscopy assays. The carrier showed a spherical shape with a nanometric size of 242.0 ± 18.3 nm. Zeta potential was suggestive of high carrier stability (−42.5 ± 1.5 mV), and the NLC showed ~99% drug encapsulation efficiency (EE%). In biological assays, AmB-NLC presented a similar IC50 as free AmB and conventional AmB deoxycholate (AmB-D) (11.7 ± 1.73; 5.3 ± 0.55 and 13 ± 0.57 ng/mL, respectively), while also presenting higher selectivity index and lower toxicity to host cells, with no observed production of nitric oxide or TNF-α by in vitro assay. Confocal microscopy revealed the rapid uptake of AmB-NLC by infected macrophages after 1h, which, in association with more rapid disruption of AmB-NLC at acidic pH levels, may directly affect intracellular parasites. Leishmanicidal effects were evaluated in vivo in BALB/c mice infected in the ear dermis with L. braziliensis and treated with a pentavalent antimonial (Sb5+), liposomal AmB (AmB-L) or AmB-NLC. After 6 weeks of infection, AmB-NLC treatment resulted in smaller ear lesion size in all treated mice, indicating the efficacy of the novel formulation. Conclusion Here, we preliminarily demonstrate the effectiveness of an innovative and cost-effective AmB-NLC formulation in promoting the killing of intracellular L. braziliensis. This novel carrier system could be a promising alternative for the future treatment of cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Jéssica Rebouças-Silva
- Laboratory of Inflammation and Biomarkers, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Bahia, Brazil.,Postgraduate Program in Pathology, Faculty of Medicine of Bahia, Federal University of Bahia (UFBA), Salvador, Bahia, Brazil
| | - Maraine Catarina Tadini
- Eleve Science Research and Development, Ribeirão Preto, São Paulo, Brazil.,Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Danielle Devequi-Nunes
- Laboratory of Inflammation and Biomarkers, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Bahia, Brazil.,Laboratory of Pharmaceutical Formulations, SENAI Institute of Innovation in Advanced Health Systems, Salvador, Bahia, Brazil
| | - Ana Luíza Mansur
- Eleve Science Research and Development, Ribeirão Preto, São Paulo, Brazil
| | - Paulo S Silveira-Mattos
- Laboratory of Inflammation and Biomarkers, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Bahia, Brazil.,Postgraduate Program in Pathology, Faculty of Medicine of Bahia, Federal University of Bahia (UFBA), Salvador, Bahia, Brazil
| | - Camila I de Oliveira
- Postgraduate Program in Pathology, Faculty of Medicine of Bahia, Federal University of Bahia (UFBA), Salvador, Bahia, Brazil.,Laboratory of Vector-Borne Infectious Diseases, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Bahia, Brazil
| | - Fábio R Formiga
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation (FIOCRUZ), Recife, Pernambuco, Brazil.,Postgraduate Program in Applied Cellular and Molecular Biology, University of Pernambuco (UPE), Recife, Pernambuco, Brazil
| | - Andresa A Berretta
- Laboratory of Research, Development and Innovation, Apis Flora Industrial e Comercial Ltda, Ribeirão Preto, São Paulo, Brazil
| | | | - Valéria M Borges
- Laboratory of Inflammation and Biomarkers, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Bahia, Brazil.,Postgraduate Program in Pathology, Faculty of Medicine of Bahia, Federal University of Bahia (UFBA), Salvador, Bahia, Brazil
| |
Collapse
|
16
|
Co-encapsulation of sodium diethyldithiocarbamate (DETC) and zinc phthalocyanine (ZnPc) in liposomes promotes increases phototoxic activity against (MDA-MB 231) human breast cancer cells. Colloids Surf B Biointerfaces 2020; 197:111434. [PMID: 33166932 DOI: 10.1016/j.colsurfb.2020.111434] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/21/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023]
Abstract
There has been considerable interest in the development of novel photosensitisers for photodynamic therapy (PDT). The use of liposomes as drug delivery systems containing simultaneously two or more drugs is an attractive idea to create a new platform for PDT application. Therefore, the aim of this study was to evaluate the synergistic effect of diethyldithiocarbamate (DETC) and zinc phthalocyanine (PDT) co-encapsulated in liposomes. The reverse-phase evaporation method resulted in the successful encapsulation of DETC and ZnPc in liposomes, with encapsulation efficiencies above 85 %, mean size of 308 nm, and zeta potential of - 36 mV. The co-encapsulation decreased the cytotoxic effects in mouse embryo fibroblast (NIH3T3) cells and inhibited damage to human erythrocytes compared to free DETC + ZnPc. In addition, both the free drugs and co-encapsulated ones promoted more pronounced phototoxic effects on human breast cancer cells (MDA-MB231) compared to treatment with ZnPc alone. This synergistic effect was determined by DETC-induced decreases in the antioxidant enzyme activity of superoxide dismutase (SOD) and glutathione (GSH).
Collapse
|
17
|
Assolini JP, Tomiotto-Pellissier F, da Silva Bortoleti BT, Gonçalves MD, Sahd CS, Carloto ACM, Feuser PE, Cordeiro AP, Borghi SM, Verri WA, Sayer C, Hermes de Araújo PH, Costa IN, Conchon-Costa I, Miranda-Sapla MM, Pavanelli WR. Diethyldithiocarbamate encapsulation reduces toxicity and promotes leishmanicidal effect through apoptosis-like mechanism in promastigote and ROS production by macrophage. J Drug Target 2020; 28:1110-1123. [DOI: 10.1080/1061186x.2020.1783669] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- João Paulo Assolini
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Fernanda Tomiotto-Pellissier
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil
- Biosciences and Biotechnology Postgraduate Program, Carlos Chagas Institute (ICC), Curitiba, PR, Brazil
| | - Bruna Taciane da Silva Bortoleti
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil
- Biosciences and Biotechnology Postgraduate Program, Carlos Chagas Institute (ICC), Curitiba, PR, Brazil
| | - Manoela Daiele Gonçalves
- Department of Chemical, Center of Exact Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Claudia Stoeglehner Sahd
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil
| | | | - Paulo Emilio Feuser
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Arthur Poester Cordeiro
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Sergio Marques Borghi
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Waldiceu Aparecido Verri
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Claudia Sayer
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | | | - Idessania Nazareth Costa
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Ivete Conchon-Costa
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil
| | | | - Wander Rogério Pavanelli
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil
- Biosciences and Biotechnology Postgraduate Program, Carlos Chagas Institute (ICC), Curitiba, PR, Brazil
| |
Collapse
|
18
|
Sharma R, Silveira-Mattos PS, Ferreira VC, Rangel FA, Oliveira LB, Celes FS, Viana SM, Wilson ME, de Oliveira CI. Generation and Characterization of a Dual-Reporter Transgenic Leishmania braziliensis Line Expressing eGFP and Luciferase. Front Cell Infect Microbiol 2020; 9:468. [PMID: 32039047 PMCID: PMC6987073 DOI: 10.3389/fcimb.2019.00468] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/19/2019] [Indexed: 12/22/2022] Open
Abstract
In this study, we generated a transgenic strain of Leishmania braziliensis, an etiological agent associated with a diversity of clinical manifestations of leishmaniasis ranging from localized cutaneous to mucocutaneous to disseminated disease. Transgenic parasites expressing reporter proteins are valuable tools for studies of parasite biology, host-pathogen interactions, and anti-parasitic drug development. To this end, we constructed an L. braziliensis line stably expressing the reporters eGFP and luciferase (eGFP-LUC L. braziliensis). The integration cassette co-expressing the two reporters was targeted to the ribosomal locus (SSU) of the parasite genome. Transgenic parasites were characterized for their infectivity and stability both in vitro and in vivo. Parasite maintenance in axenic long-term culture in the absence of selective drugs did not alter expression of the two reporters or infection of BALB/c mice, indicating stability of the integrated cassette. Infectivity of eGFP-LUC, L. braziliensis, both in vivo and in vitro was similar to that obtained with the parental wild type strain. The possibility of L. braziliensis tracking and quantification using fluorescence and luminescence broadens the scope of research involving this neglected species, despite its importance in terms of public health concerning the leishmaniasis burden.
Collapse
Affiliation(s)
- Rohit Sharma
- Instituto Gonçalo Moniz, FIOCRUZ, Salvador, Brazil
| | | | | | | | | | | | | | - Mary E Wilson
- Departments of Microbiology and Immunology and Internal Medicine, University of Iowa, and the Veterans' Affairs Medical Center, Iowa City, IA, United States
| | - Camila I de Oliveira
- Instituto Gonçalo Moniz, FIOCRUZ, Salvador, Brazil.,INCT-Instituto de Investigação em Imunologia, São Paulo, Brazil
| |
Collapse
|
19
|
Marestoni LD, Barud HDS, Gomes RJ, Catarino RPF, Hata NNY, Ressutte JB, Spinosa WA. Commercial and potential applications of bacterial cellulose in Brazil: ten years review. POLIMEROS 2020. [DOI: 10.1590/0104-1428.09420] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Pang M, Huang Y, Meng F, Zhuang Y, Liu H, Du M, Ma Q, Wang Q, Chen Z, Chen L, Cai T, Cai Y. Application of bacterial cellulose in skin and bone tissue engineering. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2019.109365] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
21
|
Drug-containing hydrophobic dressings as a topical experimental therapy for cutaneous leishmaniasis. J Parasit Dis 2019; 44:79-87. [PMID: 32174708 DOI: 10.1007/s12639-019-01162-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 09/17/2019] [Indexed: 10/26/2022] Open
Abstract
Cutaneous leishmaniasis (CL), a clinical condition caused mainly by Leishmania amazonensis in Brazil, is characterized by topical, painless ulcers. The current treatment, based on intravenous administration of pentavalent antimonials, presents low adherence by patients and may cause serious adverse effects, leading to the need for searching new therapeutic options. Thus, this study aimed at evaluating a topical administration of "intelligent dressings" as an alternative treatment for CL. BALB/c mice were infected with L. amazonensis promastigotes. Afterward, lesions were treated with hydrophobic dressings incorporated with clinically used drugs. After lesion development, the following analyses were carried out: measurement of lesion diameters, biochemical analyses of serum, evaluation of the recovery of amastigote forms and histological analyses. No significant clinical changes in serum parameters were observed. The group that was treated with dressings impregnated with Glucantime® displayed the lowest number of amastigotes recovered from tissues (parasite load). Conventional treatment with Glucantime® (i.p.) was also able to reduce parasite load. After 6 weeks from the measurement of the lesions mice treated with dressings impregnated with Pentamidine displayed the smallest values. Representative histological aspects of the lesions showed the absence or few amastigotes inside the macrophages when mice were treated with dressings impregnated with Glucantime® and Pentamidine, respectively. The findings presented here indicate that the topical treatments may constitute an alternative treatment option for CL.
Collapse
|
22
|
Oliveira JWDF, Rocha HAO, de Medeiros WMTQ, Silva MS. Application of Dithiocarbamates as Potential New Antitrypanosomatids-Drugs: Approach Chemistry, Functional and Biological. Molecules 2019; 24:E2806. [PMID: 31374887 PMCID: PMC6695843 DOI: 10.3390/molecules24152806] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 12/18/2022] Open
Abstract
Dithiocarbamates represent a class of compounds that were evaluated in different biomedical applications because of their chemical versatility. For this reason, several pharmacological activities have already been attributed to these compounds, such as antiparasitic, antiviral, antifungal activities, among others. Therefore, compounds that are based on dithiocarbamates have been evaluated in different in vivo and in vitro models as potential new antimicrobials. Thus, the purpose of this review is to present the possibilities of using dithiocarbamate compounds as potential new antitrypanosomatids-drugs, which could be used for the pharmacological control of Chagas disease, leishmaniasis, and African trypanosomiasis.
Collapse
Affiliation(s)
- Johny Wysllas de Freitas Oliveira
- Laboratório de Imunoparasitologia, Departamento de Análises Clínicas e Toxicológicas, Centro de Ciências da Saúde, Universidade Federal do Rio Grande do Norte, Natal 59012-570, Brazil
- Programa de Pós-graduação em Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal 59012-570, Brazil
| | - Hugo Alexandre Oliveira Rocha
- Programa de Pós-graduação em Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal 59012-570, Brazil
| | - Wendy Marina Toscano Queiroz de Medeiros
- Laboratório de Imunoparasitologia, Departamento de Análises Clínicas e Toxicológicas, Centro de Ciências da Saúde, Universidade Federal do Rio Grande do Norte, Natal 59012-570, Brazil
- Programa de Pós-graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal do Rio Grande do Norte, Natal 59012-570, Brazil
| | - Marcelo Sousa Silva
- Laboratório de Imunoparasitologia, Departamento de Análises Clínicas e Toxicológicas, Centro de Ciências da Saúde, Universidade Federal do Rio Grande do Norte, Natal 59012-570, Brazil.
- Programa de Pós-graduação em Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal 59012-570, Brazil.
- Programa de Pós-graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal do Rio Grande do Norte, Natal 59012-570, Brazil.
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, 1800-166 Lisbon, Portugal.
| |
Collapse
|
23
|
Oliveira LB, Celes FS, Paiva CN, de Oliveira CI. The Paradoxical Leishmanicidal Effects of Superoxide Dismutase (SOD)-Mimetic Tempol in Leishmania braziliensis Infection in vitro. Front Cell Infect Microbiol 2019; 9:237. [PMID: 31297344 PMCID: PMC6607107 DOI: 10.3389/fcimb.2019.00237] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 06/14/2019] [Indexed: 12/19/2022] Open
Abstract
Leishmaniasis is an infectious disease caused by protozoans of the genus Leishmania. The macrophage is the resident cell in which the parasite replicates and it is important to identify new compounds that can aid in parasite elimination since the drugs used to treat leishmaniasis are toxic and present side effects. We have previously shown that treatment of Leishmania braziliensis-infected macrophages with DETC (Diethyldithiocarbamate) induces parasite killing, in vivo. Thus, the objective of this study was to further evaluate the effect of oxidants and antioxidants in L. braziliensis-infected macrophages, following treatment with either oxidizing Hydrogen Peroxide, Menadione, DETC, or antioxidant [NAC (N-Acetyl-Cyteine), Apocynin, and Tempol] compounds. We determined the percentage of infected macrophages and number of amastigotes. Promastigote survival was also evaluated. Both DETC (SOD-inhibitor) and Tempol (SOD-mimetic) decreased the percentage of infected cells and parasite load. Hydrogen peroxide did not interfere with parasite burden, while superoxide-generator Menadione had a reducing effect. On the other hand, NAC (GSH-replenisher) and Apocynin (NADPH-oxidase inhibitor) increased parasite burden. Tempol surfaces as an interesting candidate for the chemotherapy of CL with an IC50 of 0.66 ± 0.08 mM and selectivity index of 151. While it remains obscure how a SOD-mimetic may induce leishmanicidal effects, we suggest the possibility of developing Tempol-based topical applications for the treatment of cutaneous leishmaniasis caused by L. braziliensis.
Collapse
Affiliation(s)
| | | | - Claudia N Paiva
- Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Camila I de Oliveira
- Instituto Gonçalo Moniz-IGM/FIOCRUZ, Salvador, Brazil.,Instituto de Investigação em Imunologia, São Paulo, Brazil
| |
Collapse
|
24
|
Bacterial cellulose membrane associated with red propolis as phytomodulator: Improved healing effects in experimental models of diabetes mellitus. Biomed Pharmacother 2019; 112:108640. [PMID: 30784929 DOI: 10.1016/j.biopha.2019.108640] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 12/21/2022] Open
Abstract
Since early times, propolis has been used in folk medicine. The red propolis, collected in the northeast region of Brazil has been highlighted due to its popular use as an antimicrobial, with anti-inflammatory and healing properties, which are associated with its chemical composition. Here, we combine a bacterial membrane with red propolis to treat wounds of diabetic mice. This work aims to evaluate a biocurative from bacterial cellulose associated with red propolis in diabetic mice as wound healing model. Biocuratives from bacterial cellulose membrane and different extracts of red propolis were produced. The qualification and quantification of the presence of propolis chemical compounds in the membrane were investigated through high-resolution mass spectrometry (HRMS). Tests in vivo with biocuratives were performed on Swiss male diabetic mice induced by estroptozotocin. The animals were submitted to a surgical procedure and a single lesion was produced in the dorsal region, which was treated with the biocuratives. Macroscopic assessments were performed at 2, 7 and 14 postoperative days, and biopsies were collected on days 0, 7 and 14 for histological analysis, myeloperoxidase enzyme activity (MPO) and cytokines (TNF-α, IL-1β, and TGF-β). Altogether, ten compounds were identified in membranes and five were further quantified. The ethyl acetate extract showed more red propolis markers, and the most prevalent compound was Formononetin with 4423.00-2907.00 μg.g-1. Macroscopic analyses demonstrated that the two groups treated with red propolis (GMEBT and GMEAE) showed significantly greater healing capabilities compared to the control groups (GS and GMS). An increase in leukocyte recruitment was observed, confirmed by the activity of the enzyme myeloperoxidase (MPO) in GMEBT and GMEAE groups. The levels of TNF-α were significantly higher in wounds stimulated with red propolis, as well as in TGF-β (GMEBT and GMEAE) on day 7. This was different from the IL-1β levels that were higher in the control groups (GS and GMS). In summary, the biocuratives produced in this work were able to accelerate the wound healing process in a diabetic mouse model. In this way, the traditional knowledge of red propolis activity helped to create a biotechnological product, which can be used for diabetic wound healing purpose.
Collapse
|
25
|
Mazur KL, Feuser PE, Valério A, Poester Cordeiro A, de Oliveira CI, Assolini JP, Pavanelli WR, Sayer C, Araújo PHH. Diethyldithiocarbamate loaded in beeswax-copaiba oil nanoparticles obtained by solventless double emulsion technique promote promastigote death in vitro. Colloids Surf B Biointerfaces 2018; 176:507-512. [PMID: 30711703 DOI: 10.1016/j.colsurfb.2018.12.048] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/28/2018] [Accepted: 12/18/2018] [Indexed: 01/10/2023]
Abstract
Leishmaniasis is considered a neglected tropical disease that represents a Public Health problem due to its high incidence. In the search of new alternatives for Leishmaniasis treatment diethyldithiocarbamate (DETC) has shown an excellent leishmanicidal activity and the incorporation into drug carrier systems, such as solid lipid nanoparticles (SLNs), is very promising. In the present work DETC loaded in beeswax nanoparticles containing copaiba oil were obtained by the double emulsion/melt technique. The nanoparticles were characterized and leishmanicidal activity against L. amazonensis promastigotes forms and cytotoxicity in murine macrophages were evaluated. SLNs presented size below 200 nm, spherical morphology, negative charge surface, high encapsulation efficiency, above 80%, and excellent stability. Moreover, Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) analyses were performed to evaluate the chemical structure and possible interactions between DETC and SLNs. SLNs provided a protection for DETC, decreasing its cytotoxic effects in macrophages, which led to an improvement in the selectivity against the parasites, which almost doubled from free DETC (11.4) to DETC incorporated in SLNs (18.2). These results demonstrated that SLNs had a direct effect on L. amazonensis promastigotes without affect the viability of macrophage cell, can be a promising alternative therapy for the cutaneous treatment of L. amazonensis.
Collapse
Affiliation(s)
- Karin Luize Mazur
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Brazil
| | - Paulo Emílio Feuser
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Brazil
| | - Alexsandra Valério
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Brazil
| | - Arthur Poester Cordeiro
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Brazil
| | | | - João Paulo Assolini
- Laboratory of Experimental Protozoology, Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, PR, Brazil
| | - Wander Rogério Pavanelli
- Laboratory of Experimental Protozoology, Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, PR, Brazil
| | - Claudia Sayer
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Brazil
| | - Pedro H H Araújo
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Brazil.
| |
Collapse
|
26
|
Abu-Serie MM. Evaluation of the selective toxic effect of the charge switchable diethyldithiocarbamate-loaded nanoparticles between hepatic normal and cancerous cells. Sci Rep 2018; 8:4617. [PMID: 29545617 PMCID: PMC5854699 DOI: 10.1038/s41598-018-22915-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 03/02/2018] [Indexed: 01/05/2023] Open
Abstract
Liver cancer is mainly originated by cancer stem cells (CSCs). Due to difference in pH between normal and tumor cell microenvironments, targeting hepatic CSCs exploiting pH-dependent charge switchable nanoparticles (NPs) is extremely required to limit nonselective toxicity to normal hepatocytes (NHCs) and to completely eliminate the root of cancer origin. In this study, NPs were prepared from cationic chitosan and then coated with anionic albumin namely uncoated and coated NPs, respectively. Both NPs were loaded with diethyldithiocarbamate (DDC) which is an inhibitor of the critical enzyme, aldehyde dehydrogenase (ALDH) 1A1, for CSCs survival. The charge switchable of coated DDC-loaded NPs in neutral and acidic pH (−19 and +28.5 mv, respectively) was illustrated. This special privilege of coated NPs mediated DDC releasing in a slightly acidic pH (tumor microenvironment) rather than a neutral pH (microenvironment of normal cells). Thence, these coated NPs showed the highest selective apoptosis-mediated toxicity only in murine hepatoma cells (Hepa) that may attribute to suppression of NF-κB expression and ALDH1A1 activity, subsequently collapsing 89.7% CD133+CSCs. These new findings declare that coated NPs could be promising safe selective anticancer drug for targeting hepatic CSCs and that requires additional future investigations using animal models of liver cancer.
Collapse
Affiliation(s)
- Marwa M Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications (SRTA-City), New Borg EL-Arab, 21934, Alexandria, Egypt.
| |
Collapse
|
27
|
Quintela-Carvalho G, Luz NF, Celes FS, Zanette DL, Andrade D, Menezes D, Tavares NM, Brodskyn CI, Prates DB, Gonçalves MS, de Oliveira CI, Almeida RP, Bozza MT, Andrade BB, Borges VM. Heme Drives Oxidative Stress-Associated Cell Death in Human Neutrophils Infected with Leishmania infantum. Front Immunol 2017; 8:1620. [PMID: 29218050 PMCID: PMC5703736 DOI: 10.3389/fimmu.2017.01620] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/08/2017] [Indexed: 11/25/2022] Open
Abstract
Free heme is an inflammatory molecule capable of inducing migration and activation of neutrophils. Here, we examine the heme-driven oxidative stress-associated cell death mechanisms in human neutrophils infected with Leishmania infantum, an etiologic agent of visceral leishmaniasis (VL). We first performed exploratory analyses in a population of well characterized treatment-naïve VL patients as well as uninfected controls, who were part of previously reported studies. We noted a positive correlation between serum concentrations of heme with heme oxygenase-1 (HO-1) and lactate deydrogenase, as well as, a negative correlation between heme values and peripheral blood neutrophils counts. Moreover, in vitro infection with L. infantum in the presence of heme enhanced parasite burden in neutrophils, while increasing the production of reactive oxygen species and release of neutrophilic enzymes. Additional experiments demonstrated that treatment of infected neutrophils with ferrous iron (Fe+2), a key component of the heme molecule, resulted in increased parasite survival without affecting neutrophil activation status. Furthermore, stimulation of infected neutrophils with heme triggered substantial increases in HO-1 mRNA expression as well as in superoxide dismutase-1 enzymatic activity. Heme, but not Fe+2, induced oxidative stress-associated cell death. These findings indicate that heme promotes intracellular L. infantum survival via activation of neutrophil function and oxidative stress. This study opens new perspectives for the understanding of immunopathogenic mechanisms involving neutrophils in VL.
Collapse
Affiliation(s)
- Graziele Quintela-Carvalho
- Instituto Gonçalo Moniz (IGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil.,Faculdade de Medicina, Universidade Federal da Bahia (UFBA), Salvador, Brazil.,Instituto Federal de Educação, Ciência e Tecnologia Baiano (IFBaiano), Santa Inês, Brazil
| | - Nívea F Luz
- Instituto Gonçalo Moniz (IGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
| | - Fabiana S Celes
- Instituto Gonçalo Moniz (IGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil.,Faculdade de Medicina, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| | - Dalila L Zanette
- Instituto Gonçalo Moniz (IGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
| | - Daniela Andrade
- Instituto Gonçalo Moniz (IGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
| | - Diego Menezes
- Instituto de Tecnologia e Pesquisa (ITP), Aracaju, Brazil
| | - Natália M Tavares
- Instituto Gonçalo Moniz (IGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil.,Faculdade de Medicina, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| | - Claudia I Brodskyn
- Instituto Gonçalo Moniz (IGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil.,Faculdade de Medicina, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| | - Deboraci B Prates
- Departamento de Biomorfologia, Instituto de Ciências da Saúde, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| | - Marilda S Gonçalves
- Instituto Gonçalo Moniz (IGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil.,Faculdade de Medicina, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| | - Camila I de Oliveira
- Instituto Gonçalo Moniz (IGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil.,Faculdade de Medicina, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| | - Roque P Almeida
- Departamento de Medicina, Hospital Universitário, Universidade Federal de Sergipe (UFS), Aracaju, Brazil
| | - Marcelo T Bozza
- Departamento de Imunologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Bruno B Andrade
- Instituto Gonçalo Moniz (IGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil.,Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil.,Universidade Salvador (UNIFACS), Laureate Universities, Salvador, Brazil.,Escola Bahiana de Medicina e Saúde Pública, Salvador, Brazil
| | - Valeria M Borges
- Instituto Gonçalo Moniz (IGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil.,Faculdade de Medicina, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| |
Collapse
|