1
|
Clavería-Cabello A, Herranz JM, Latasa MU, Arechederra M, Uriarte I, Pineda-Lucena A, Prosper F, Berraondo P, Alonso C, Sangro B, García Marin JJ, Martinez-Chantar ML, Ciordia S, Corrales FJ, Francalanci P, Alaggio R, Zucman-Rossi J, Indersie E, Cairo S, Domingo-Sàbat M, Zanatto L, Sancho-Bru P, Armengol C, Berasain C, Fernandez-Barrena MG, Avila MA. Identification and experimental validation of druggable epigenetic targets in hepatoblastoma. J Hepatol 2023; 79:989-1005. [PMID: 37302584 DOI: 10.1016/j.jhep.2023.05.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/25/2023] [Accepted: 05/22/2023] [Indexed: 06/13/2023]
Abstract
BACKGROUND & AIMS Hepatoblastoma (HB) is the most frequent childhood liver cancer. Patients with aggressive tumors have limited therapeutic options; therefore, a better understanding of HB pathogenesis is needed to improve treatment. HBs have a very low mutational burden; however, epigenetic alterations are increasingly recognized. We aimed to identify epigenetic regulators consistently dysregulated in HB and to evaluate the therapeutic efficacy of their targeting in clinically relevant models. METHODS We performed a comprehensive transcriptomic analysis of 180 epigenetic genes. Data from fetal, pediatric, adult, peritumoral (n = 72) and tumoral (n = 91) tissues were integrated. Selected epigenetic drugs were tested in HB cells. The most relevant epigenetic target identified was validated in primary HB cells, HB organoids, a patient-derived xenograft model, and a genetic mouse model. Transcriptomic, proteomic and metabolomic mechanistic analyses were performed. RESULTS Altered expression of genes regulating DNA methylation and histone modifications was consistently observed in association with molecular and clinical features of poor prognosis. The histone methyltransferase G9a was markedly upregulated in tumors with epigenetic and transcriptomic traits of increased malignancy. Pharmacological targeting of G9a significantly inhibited growth of HB cells, organoids and patient-derived xenografts. Development of HB induced by oncogenic forms of β-catenin and YAP1 was ablated in mice with hepatocyte-specific deletion of G9a. We observed that HBs undergo significant transcriptional rewiring in genes involved in amino acid metabolism and ribosomal biogenesis. G9a inhibition counteracted these pro-tumorigenic adaptations. Mechanistically, G9a targeting potently repressed the expression of c-MYC and ATF4, master regulators of HB metabolic reprogramming. CONCLUSIONS HBs display a profound dysregulation of the epigenetic machinery. Pharmacological targeting of key epigenetic effectors exposes metabolic vulnerabilities that can be leveraged to improve the treatment of these patients. IMPACT AND IMPLICATIONS In spite of recent advances in the management of hepatoblastoma (HB), treatment resistance and drug toxicity are still major concerns. This systematic study reveals the remarkable dysregulation in the expression of epigenetic genes in HB tissues. Through pharmacological and genetic experimental approaches, we demonstrate that the histone-lysine-methyltransferase G9a is an excellent drug target in HB, which can also be harnessed to enhance the efficacy of chemotherapy. Furthermore, our study highlights the profound pro-tumorigenic metabolic rewiring of HB cells orchestrated by G9a in coordination with the c-MYC oncogene. From a broader perspective, our findings suggest that anti-G9a therapies may also be effective in other c-MYC-dependent tumors.
Collapse
Affiliation(s)
| | - Jose Maria Herranz
- Hepatology Program, CIMA, CCUN, University of Navarra, Pamplona, Spain; CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Maria Ujue Latasa
- Hepatology Program, CIMA, CCUN, University of Navarra, Pamplona, Spain; CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Maria Arechederra
- Hepatology Program, CIMA, CCUN, University of Navarra, Pamplona, Spain; CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - Iker Uriarte
- Hepatology Program, CIMA, CCUN, University of Navarra, Pamplona, Spain; CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Felipe Prosper
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain; Oncohematology Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
| | - Pedro Berraondo
- Immunology and Immunotherapy Program, CIMA, University of Navarra, Pamplona, Spain; CIBERonc, Madrid, Spain
| | | | - Bruno Sangro
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain; Hepatology Unit, CCUN, Navarra University Clinic, Pamplona, Spain
| | - Jose Juan García Marin
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Experimental Hepatology and Drug Targeting (HEVEFARM), University of Salamanca, IBSAL, Salamanca, Spain
| | - Maria Luz Martinez-Chantar
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CICbioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Sergio Ciordia
- Functional Proteomics Laboratory, CNB-CSIC, Madrid, Spain
| | - Fernando José Corrales
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Functional Proteomics Laboratory, CNB-CSIC, Madrid, Spain
| | - Paola Francalanci
- Pathology Unit, Children's Hospital Bambino Gesù, IRCCS, Rome, Italy
| | - Rita Alaggio
- Pathology Unit, Children's Hospital Bambino Gesù, IRCCS, Sapienza University, Rome, Italy
| | - Jessica Zucman-Rossi
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, Hôpital Européen Georges Pompidou, Paris, France
| | | | - Stefano Cairo
- XenTech, Evry-Courcouronnes, France; Champions Oncology, Rockville, MD, USA
| | - Montserrat Domingo-Sàbat
- Childhood Liver Oncology Group, Program of Predictive and Personalized Medicine of Cancer (PMPCC), Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| | - Laura Zanatto
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Pau Sancho-Bru
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Carolina Armengol
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Childhood Liver Oncology Group, Program of Predictive and Personalized Medicine of Cancer (PMPCC), Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| | - Carmen Berasain
- Hepatology Program, CIMA, CCUN, University of Navarra, Pamplona, Spain; CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - Maite García Fernandez-Barrena
- Hepatology Program, CIMA, CCUN, University of Navarra, Pamplona, Spain; CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain.
| | - Matias Antonio Avila
- Hepatology Program, CIMA, CCUN, University of Navarra, Pamplona, Spain; CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain.
| |
Collapse
|
2
|
Park H, Son H, Cha H, Song K, Bang S, Jee S, Kim H, Myung J, Shin SJ, Cha C, Chung MS, Paik S. ASAP1 Expression in Invasive Breast Cancer and Its Prognostic Role. Int J Mol Sci 2023; 24:14355. [PMID: 37762658 PMCID: PMC10532164 DOI: 10.3390/ijms241814355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Breast cancer is a major global health burden with high morbidity and mortality rates. Previous studies have reported that increased expression of ASAP1 is associated with poor prognosis in various types of cancer. This study was conducted on 452 breast cancer patients who underwent surgery at Hanyang University Hospital, Seoul, South Korea. Data on clinicopathological characteristics including molecular pathologic markers were collected. Immunohistochemical staining of ASAP1 expression level were used to classify patients into high and low groups. In total, 452 cases low ASAP1 expression group was associated with significantly worse recurrence-free survival (p = 0.029). In ER-positive cases (n = 280), the low ASAP1 expression group was associated with significantly worse overall survival (p = 0.039) and recurrence-free survival (p = 0.029). In multivariate cox analysis, low ASAP1 expression was an independent significant predictor of poor recurrence-free survival in the overall patient group (hazard ratio = 2.566, p = 0.002) and ER-positive cases (hazard ratio = 4.046, p = 0.002). In the analysis of the TCGA dataset, the low-expression group of ASAP1 protein demonstrated a significantly poorer progression-free survival (p = 0.005). This study reports that low ASAP1 expression was associated with worse recurrence-free survival in invasive breast cancer.
Collapse
Affiliation(s)
- Hosub Park
- Department of Pathology, Hanyang University Hospital, Hanyang University College of Medicine, Seoul 04763, Republic of Korea
| | - Hwangkyu Son
- Department of Pathology, Hanyang University Hospital, Hanyang University College of Medicine, Seoul 04763, Republic of Korea
| | - Hyebin Cha
- Department of Pathology, Hanyang University Hospital, Hanyang University College of Medicine, Seoul 04763, Republic of Korea
| | - Kihyuk Song
- Department of Pathology, Hanyang University Hospital, Hanyang University College of Medicine, Seoul 04763, Republic of Korea
| | - Seongsik Bang
- Department of Pathology, Hanyang University Hospital, Hanyang University College of Medicine, Seoul 04763, Republic of Korea
| | - Seungyun Jee
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 06273, Republic of Korea
| | - Hyunsung Kim
- Department of Pathology, Hanyang University Hospital, Hanyang University College of Medicine, Seoul 04763, Republic of Korea
| | - Jaekyung Myung
- Department of Pathology, Hanyang University Hospital, Hanyang University College of Medicine, Seoul 04763, Republic of Korea
| | - Su-Jin Shin
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
| | - Chihwan Cha
- Department of Surgery, Hanyang University Hospital, Hanyang University College of Medicine, Seoul 04763, Republic of Korea
| | - Min Sung Chung
- Department of Surgery, Hanyang University Hospital, Hanyang University College of Medicine, Seoul 04763, Republic of Korea
| | - Seungsam Paik
- Department of Pathology, Hanyang University Hospital, Hanyang University College of Medicine, Seoul 04763, Republic of Korea
| |
Collapse
|
3
|
Li Z, Zhang H, Li Q, Feng W, Jia X, Zhou R, Huang Y, Li Y, Hu Z, Hu X, Zhu X, Huang S. GepLiver: an integrative liver expression atlas spanning developmental stages and liver disease phases. Sci Data 2023; 10:376. [PMID: 37301898 PMCID: PMC10257690 DOI: 10.1038/s41597-023-02257-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Chronic liver diseases usually developed through stepwise pathological transitions under the persistent risk factors. The molecular changes during liver transitions are pivotal to improve liver diagnostics and therapeutics yet still remain elusive. Cumulative large-scale liver transcriptomic studies have been revealing molecular landscape of various liver conditions at bulk and single-cell resolution, however, neither single experiment nor databases enabled thorough investigations of transcriptomic dynamics along the progression of liver diseases. Here we establish GepLiver, a longitudinal and multidimensional liver expression atlas integrating expression profiles of 2469 human bulk tissues, 492 mouse samples, 409,775 single cells from 347 human samples and 27 liver cell lines spanning 16 liver phenotypes with uniformed processing and annotating methods. Using GepLiver, we have demonstrated dynamic changes of gene expression, cell abundance and crosstalk harboring meaningful biological associations. GepLiver can be applied to explore the evolving expression patterns and transcriptomic features for genes and cell types respectively among liver phenotypes, assisting the investigation of liver transcriptomic dynamics and informing biomarkers and targets for liver diseases.
Collapse
Affiliation(s)
- Ziteng Li
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hena Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Qin Li
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Wanjing Feng
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiya Jia
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Runye Zhou
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi Huang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Yan Li
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhixiang Hu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xichun Hu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Xiaodong Zhu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Shenglin Huang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Zhan X, Liu Y, Jannu AJ, Huang S, Ye B, Wei W, Pandya PH, Ye X, Pollok KE, Renbarger JL, Huang K, Zhang J. Identify potential driver genes for PAX-FOXO1 fusion-negative rhabdomyosarcoma through frequent gene co-expression network mining. Front Oncol 2023; 13:1080989. [PMID: 36793601 PMCID: PMC9924292 DOI: 10.3389/fonc.2023.1080989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/12/2023] [Indexed: 02/03/2023] Open
Abstract
Background Rhabdomyosarcoma (RMS) is a soft tissue sarcoma usually originated from skeletal muscle. Currently, RMS classification based on PAX-FOXO1 fusion is widely adopted. However, compared to relatively clear understanding of the tumorigenesis in the fusion-positive RMS, little is known for that in fusion-negative RMS (FN-RMS). Methods We explored the molecular mechanisms and the driver genes of FN-RMS through frequent gene co-expression network mining (fGCN), differential copy number (CN) and differential expression analyses on multiple RMS transcriptomic datasets. Results We obtained 50 fGCN modules, among which five are differentially expressed between different fusion status. A closer look showed 23% of Module 2 genes are concentrated on several cytobands of chromosome 8. Upstream regulators such as MYC, YAP1, TWIST1 were identified for the fGCN modules. Using in a separate dataset we confirmed that, comparing to FP-RMS, 59 Module 2 genes show consistent CN amplification and mRNA overexpression, among which 28 are on the identified chr8 cytobands. Such CN amplification and nearby MYC (also resides on one of the above cytobands) and other upstream regulators (YAP1, TWIST1) may work together to drive FN-RMS tumorigenesis and progression. Up to 43.1% downstream targets of Yap1 and 45.8% of the targets of Myc are differentially expressed in FN-RMS vs. normal comparisons, which also confirmed the driving force of these regulators. Discussion We discovered that copy number amplification of specific cytobands on chr8 and the upstream regulators MYC, YAP1 and TWIST1 work together to affect the downstream gene co-expression and promote FN-RMS tumorigenesis and progression. Our findings provide new insights for FN-RMS tumorigenesis and offer promising targets for precision therapy. Experimental investigation about the functions of identified potential drivers in FN-RMS are in progress.
Collapse
Affiliation(s)
- Xiaohui Zhan
- Department of Bioinformatics, School of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Yusong Liu
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin, China
| | - Asha Jacob Jannu
- Department of Biostatistics and Health Data Science, Indiana University, School of Medicine, Indianapolis, IN, United States
| | | | - Bo Ye
- Department of Bioinformatics, School of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Wei Wei
- Department of Bioinformatics, School of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Pankita H Pandya
- Department of Pediatrics, Indiana University, School of Medicine, Indianapolis, IN, United States
| | - Xiufen Ye
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin, China
| | - Karen E Pollok
- Department of Pediatrics, Indiana University, School of Medicine, Indianapolis, IN, United States
| | - Jamie L Renbarger
- Department of Pediatrics, Indiana University, School of Medicine, Indianapolis, IN, United States
| | - Kun Huang
- Department of Biostatistics and Health Data Science, Indiana University, School of Medicine, Indianapolis, IN, United States
| | - Jie Zhang
- Department of Medical and Molecular Genetics, Indiana University, School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
5
|
Hurley EH, Tao J, Liu S, Krutsenko Y, Singh S, Monga SP. Inhibition of Heat Shock Factor 1 Signaling Decreases Hepatoblastoma Growth via Induction of Apoptosis. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:148-160. [PMID: 36336065 PMCID: PMC9887635 DOI: 10.1016/j.ajpath.2022.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/23/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
Although rare compared with adult liver cancers, hepatoblastoma (HB) is the most common pediatric liver malignancy, and its incidence is increasing. Currently, the treatment includes surgical resection with or without chemotherapy, and in severe cases, liver transplantation in children. The effort to develop more targeted, HB-specific therapies has been stymied by the lack of fundamental knowledge about HB biology. Heat shock factor 1 (HSF1), a transcription factor, is a canonical inducer of heat shock proteins, which act as chaperone proteins to prevent or undo protein misfolding. Recent work has shown a role for HSF1 in cancer beyond the canonical heat shock response. The current study found increased HSF1 signaling in HB versus normal liver. It showed that less differentiated, more embryonic tumors had higher levels of HSF1 than more differentiated, more fetal-appearing tumors. Most strikingly, HSF1 expression levels correlated with mortality. This study used a mouse model of HB to test the effect of inhibiting HSF1 early in tumor development on cancer growth. HSF1 inhibition resulted in fewer and smaller tumors, suggesting HSF1 is needed for aggressive tumor growth. Moreover, HSF1 inhibition also increased apoptosis in tumor foci. These data suggest that HSF1 may be a viable pharmacologic target for HB treatment.
Collapse
Affiliation(s)
- Edward H Hurley
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.
| | - Junyan Tao
- Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Silvia Liu
- Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Yekaterina Krutsenko
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Sucha Singh
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Satdarshan P Monga
- Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|
6
|
Schreiber C, Gruber A, Roßwag S, Saraswati S, Harkins S, Thiele W, Foroushani ZH, Munding N, Schmaus A, Rothley M, Dimmler A, Tanaka M, Garvalov BK, Sleeman JP. Loss of ASAP1 in the MMTV-PyMT model of luminal breast cancer activates AKT, accelerates tumorigenesis, and promotes metastasis. Cancer Lett 2022; 533:215600. [PMID: 35181478 DOI: 10.1016/j.canlet.2022.215600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 12/31/2022]
Abstract
ASAP1 is a multi-domain adaptor protein that regulates cytoskeletal dynamics, receptor recycling and intracellular vesicle trafficking. Its expression is associated with poor prognosis in a variety of cancers, and can promote cell migration, invasion and metastasis. Although amplification and expression of ASAP1 has been associated with poor survival in breast cancer, we found that in the autochthonous MMTV-PyMT model of luminal breast cancer, ablation of ASAP1 resulted in an earlier onset of tumor initiation and increased metastasis. This was due to tumor cell-intrinsic effects of ASAP1 deletion, as ASAP1 deficiency in tumor, but not in stromal cells was sufficient to replicate the enhanced tumorigenicity and metastasis observed in the ASAP1-null MMTV-PyMT mice. Loss of ASAP1 in MMTV-PyMT mice had no effect on proliferation, apoptosis, angiogenesis or immune cell infiltration, but enhanced mammary gland hyperplasia and tumor cell invasion, indicating that ASAP1 can accelerate tumor initiation and promote dissemination. Mechanistically, these effects were associated with a potent activation of AKT. Importantly, lower ASAP1 levels correlated with poor prognosis and enhanced AKT activation in human ER+/luminal breast tumors, validating our findings in the MMTV-PyMT mouse model for this subtype of breast cancer. Taken together, our findings reveal that ASAP1 can have distinct functions in different tumor types and demonstrate a tumor suppressive activity for ASAP1 in luminal breast cancer.
Collapse
Affiliation(s)
- Caroline Schreiber
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Annette Gruber
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Sven Roßwag
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Supriya Saraswati
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Shannon Harkins
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Wilko Thiele
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany; Institute for Biological and Chemical Systems - Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT) Campus North, D-76344 Karlsruhe, Germany
| | - Zahra Hajian Foroushani
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, 69120, Heidelberg, Germany
| | - Natalie Munding
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, 69120, Heidelberg, Germany
| | - Anja Schmaus
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany; Institute for Biological and Chemical Systems - Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT) Campus North, D-76344 Karlsruhe, Germany
| | - Melanie Rothley
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany; Institute for Biological and Chemical Systems - Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT) Campus North, D-76344 Karlsruhe, Germany
| | - Arno Dimmler
- Vincentius-Diakonissen-Kliniken, 76135, Karlsruhe, Germany
| | - Motomu Tanaka
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, 69120, Heidelberg, Germany; Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, 606-8501, Kyoto, Japan
| | - Boyan K Garvalov
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany.
| | - Jonathan P Sleeman
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany; Institute for Biological and Chemical Systems - Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT) Campus North, D-76344 Karlsruhe, Germany.
| |
Collapse
|
7
|
Tsvetkova V, Magro G, Broggi G, Luchini C, Cappello F, Caporalini C, Buccoliero AM, Santoro L. New insights in gastrointestinal "pediatric" neoplasms in adult patients: pancreatoblastoma, hepatoblastoma and embryonal sarcoma of the liver. A practical approach by GIPPI-GIPAD Groups. Pathologica 2022; 114:64-78. [PMID: 35212317 PMCID: PMC9040550 DOI: 10.32074/1591-951x-559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 12/11/2022] Open
Abstract
Pediatric solid neoplasms are rare and very different from those observed in adults. The majority of them are referred to as embryonal because they arise as a result of alterations in the processes of organogenesis or normal growth and are characterized by proliferation of primitive cells, reproducing the corresponding tissue at various stages of embryonic development. This review will focus on embryonal gastrointestinal pediatric neoplasms in adult patients, including pancreatoblastoma, hepatoblastoma, and embryonal sarcoma of the liver. Although they are classically considered pediatric neoplasms, they may (rarely) occur in adult patients. Hepatoblastoma represents the most frequent liver neoplasm in the pediatric population, followed by hepatocellular carcinoma and embryonal sarcoma of the liver; while pancreatoblastoma is the most common malignant pancreatic tumor in childhood. Both in children and adults, the mainstay of treatment is complete surgical resection, either up front or following neoadjuvant chemotherapy. Unresectable and/or metastatic neoplasms may be amenable to complete delayed surgery after neoadjuvant chemotherapy. However, these neoplasms display a more aggressive behavior and overall poorer prognosis in adults than in children, probably because they are diagnosed in later stages of diseases.
Collapse
Affiliation(s)
- Vassilena Tsvetkova
- Department of Diagnostics and Public Health, Section of Pathology, Verona University and Hospital Trust; Verona, Italy
| | - Gaetano Magro
- Department of Medical and Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Anatomic Pathology, University of Catania, 95123 Catania, Italy
| | - Giuseppe Broggi
- Department of Medical and Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Anatomic Pathology, University of Catania, 95123 Catania, Italy
| | - Claudio Luchini
- Department of Diagnostics and Public Health, Section of Pathology, Verona University and Hospital Trust; Verona, Italy
| | - Filippo Cappello
- Department of Pathology, Azienda Ospedaliera Universitaria di Padova, Padova, Italy
| | | | | | - Luisa Santoro
- Department of Pathology, Azienda Ospedaliera Universitaria di Padova, Padova, Italy
| |
Collapse
|
8
|
Pfister SM, Reyes-Múgica M, Chan JKC, Hasle H, Lazar AJ, Rossi S, Ferrari A, Jarzembowski JA, Pritchard-Jones K, Hill DA, Jacques TS, Wesseling P, López Terrada DH, von Deimling A, Kratz CP, Cree IA, Alaggio R. A Summary of the Inaugural WHO Classification of Pediatric Tumors: Transitioning from the Optical into the Molecular Era. Cancer Discov 2022; 12:331-355. [PMID: 34921008 PMCID: PMC9401511 DOI: 10.1158/2159-8290.cd-21-1094] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/28/2021] [Accepted: 11/18/2021] [Indexed: 01/07/2023]
Abstract
Pediatric tumors are uncommon, yet are the leading cause of cancer-related death in childhood. Tumor types, molecular characteristics, and pathogenesis are unique, often originating from a single genetic driver event. The specific diagnostic challenges of childhood tumors led to the development of the first World Health Organization (WHO) Classification of Pediatric Tumors. The classification is rooted in a multilayered approach, incorporating morphology, IHC, and molecular characteristics. The volume is organized according to organ sites and provides a single, state-of-the-art compendium of pediatric tumor types. A special emphasis was placed on "blastomas," which variably recapitulate the morphologic maturation of organs from which they originate. SIGNIFICANCE: In this review, we briefly summarize the main features and updates of each chapter of the inaugural WHO Classification of Pediatric Tumors, including its rapid transition from a mostly microscopic into a molecularly driven classification systematically taking recent discoveries in pediatric tumor genomics into account.
Collapse
Affiliation(s)
- Stefan M Pfister
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Miguel Reyes-Múgica
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Division of Pediatric Pathology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - John K C Chan
- Department of Pathology, Queen Elizabeth Hospital, Kowloon, Hong Kong, SAR China
| | - Henrik Hasle
- Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Alexander J Lazar
- Departments of Pathology & Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sabrina Rossi
- Pathology Unit, Department of Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Andrea Ferrari
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milano, Italy
| | - Jason A Jarzembowski
- Department of Pathology, Children's Wisconsin and Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Kathy Pritchard-Jones
- Developmental Biology and Cancer Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - D Ashley Hill
- Department of Pathology, Children's National Hospital, Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Thomas S Jacques
- Developmental Biology and Cancer Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- Department of Histopathology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Pieter Wesseling
- Laboratory for Childhood Cancer Pathology, Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Department of Pathology, Amsterdam University Medical Centers/VUmc, Amsterdam, the Netherlands
| | - Dolores H López Terrada
- Department of Pathology, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas
| | - Andreas von Deimling
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Christian P Kratz
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Ian A Cree
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Rita Alaggio
- Pathology Unit, Department of Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| |
Collapse
|
9
|
Sahu B, Pihlajamaa P, Zhang K, Palin K, Ahonen S, Cervera A, Ristimäki A, Aaltonen LA, Hautaniemi S, Taipale J. Human cell transformation by combined lineage conversion and oncogene expression. Oncogene 2021; 40:5533-5547. [PMID: 34302118 PMCID: PMC8429043 DOI: 10.1038/s41388-021-01940-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/17/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023]
Abstract
Cancer is the most complex genetic disease known, with mutations implicated in more than 250 genes. However, it is still elusive which specific mutations found in human patients lead to tumorigenesis. Here we show that a combination of oncogenes that is characteristic of liver cancer (CTNNB1, TERT, MYC) induces senescence in human fibroblasts and primary hepatocytes. However, reprogramming fibroblasts to a liver progenitor fate, induced hepatocytes (iHeps), makes them sensitive to transformation by the same oncogenes. The transformed iHeps are highly proliferative, tumorigenic in nude mice, and bear gene expression signatures of liver cancer. These results show that tumorigenesis is triggered by a combination of three elements: the set of driver mutations, the cellular lineage, and the state of differentiation of the cells along the lineage. Our results provide direct support for the role of cell identity as a key determinant in transformation and establish a paradigm for studying the dynamic role of oncogenic drivers in human tumorigenesis.
Collapse
Affiliation(s)
- Biswajyoti Sahu
- Applied Tumor Genomics Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Päivi Pihlajamaa
- Applied Tumor Genomics Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Kaiyang Zhang
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Kimmo Palin
- Applied Tumor Genomics Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | - Saija Ahonen
- Applied Tumor Genomics Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Alejandra Cervera
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Instituto Nacional de Medicina Genómica, Mexico City, Mexico, Finland
| | - Ari Ristimäki
- Applied Tumor Genomics Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Pathology, HUSLAB and HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Lauri A Aaltonen
- Applied Tumor Genomics Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | - Sampsa Hautaniemi
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jussi Taipale
- Applied Tumor Genomics Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Department of Biochemistry, University of Cambridge, Cambridge, UK.
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
10
|
Grabski DF, Ratan A, Gray LR, Bekiranov S, Rekosh D, Hammarskjold ML, Rasmussen SK. Upregulation of human endogenous retrovirus-K (HML-2) mRNAs in hepatoblastoma: Identification of potential new immunotherapeutic targets and biomarkers. J Pediatr Surg 2021; 56:286-292. [PMID: 32682541 DOI: 10.1016/j.jpedsurg.2020.05.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/28/2020] [Accepted: 05/18/2020] [Indexed: 12/28/2022]
Abstract
PURPOSE Hepatoblastoma is the most common liver malignancy in children. In order to advance therapy against hepatoblastoma, novel immunologic targets and biomarkers are needed. Our purpose in this investigation is to examine hepatoblastoma transcriptomes for the expression of a class of genomic elements known as Human Endogenous Retrovirus (HERVs). HERVs are abundant in the human genome and are biologically active elements that have been associated with multiple malignancies and proposed as immunologic targets in a subset of tumors. A sub-family of HERVs, HERV-K(HML-2) (HERV-K), have been shown to be tightly regulated in fetal development, making investigation of these elements in pediatric tumors paramount. METHODS We first created a HERVK-FASTA file utilizing 91 previously described HML-2 proviruses. We then concatenated the file onto the GRCh38.95 cDNA library from Ensembl. We used this reference database to evaluate existing RNA-seq data from 10 hepatoblastoma tumors and 3 normal liver controls (GEO accession ID: GSE8977575). Quantification and differential proviral expression analysis between hepatoblastoma and normal liver controls was performed using the pseudo-alignment program Salmon and DESeq2, respectively. RESULTS HERV-K mRNA was expressed in hepatoblastoma from multiple proviral loci. All expressed HERV-K proviral loci were upregulated in hepatoblastoma compared to normal liver controls. Five HERV-K proviruses (1q21.3, 3q27.2, 7q22.2, 12q24.33 and 17p13.1) were significantly differentially expressed (p-adjusted value <0.05, |log2 fold change| > 1.5) across conditions. The provirus at 17p13.1 had an approximately 300-fold increased expression in hepatoblastoma as compared to normal liver. This was in part due to the near absence of HERV-K mRNA at the 17p13.1 locus in fully differentiated liver samples. CONCLUSIONS Our investigation demonstrates that HERV-K is expressed from multiple loci in hepatoblastoma and that the expression is increased for several proviruses compared to normal liver controls. Our results suggest that HERV-K mRNA expression may be useful as a biomarker in hepatoblastoma, given the large differential expression profiles in hepatoblastoma, with very low mRNA levels in liver control samples.
Collapse
Affiliation(s)
- David F Grabski
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, Virginia; Myles H. Thaler Center for AIDS and Human Retrovirus Research, University of Virginia, Charlottesville, Virginia
| | - Aakrosh Ratan
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Laurie R Gray
- Myles H. Thaler Center for AIDS and Human Retrovirus Research, University of Virginia, Charlottesville, Virginia; Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Stefan Bekiranov
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - David Rekosh
- Myles H. Thaler Center for AIDS and Human Retrovirus Research, University of Virginia, Charlottesville, Virginia; Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Marie-Louise Hammarskjold
- Myles H. Thaler Center for AIDS and Human Retrovirus Research, University of Virginia, Charlottesville, Virginia; Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Sara K Rasmussen
- Myles H. Thaler Center for AIDS and Human Retrovirus Research, University of Virginia, Charlottesville, Virginia; Seattle Children's Hospital, Division of Transplantation, University of Washington Department of Surgery, 4800 Sand Point Way, Seattle, WA 98105.
| |
Collapse
|
11
|
Li S, Zeng M, Yang L, Tan J, Yang J, Guan H, Kuang M, Li J. Hsa_circ_0008934 promotes the proliferation and migration of osteosarcoma cells by targeting miR-145-5p to enhance E2F3 expression. Int J Biochem Cell Biol 2020; 127:105826. [PMID: 32822848 DOI: 10.1016/j.biocel.2020.105826] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 08/04/2020] [Accepted: 08/13/2020] [Indexed: 01/10/2023]
Abstract
OBJECTIVE To investigate the role of hsa_circ_0008934 in osteosarcoma and the molecular mechanism involved in the regulation of the occurrence and development of osteosarcoma METHODS: Differentially expressed circRNAs in the osteosarcoma cell lines SaOS2 and MG63 and in the normal human osteoblast cell line hFOB1.19 were identified via next-generation RNA sequencing. The expression and circular morphology of hsa_circ_0008934 were analyzed via quantitative real-time polymerase chain reaction (qRT-PCR) and RT-PCR analysis, respectively. Proliferation, apoptosis, cell cycle progression, migration, and invasion of SaOS2 and MG63 cells with hsa_circ_0008934 silencing or overexpression were assessed using the MTS method, colony formation assay, flow cytometry, and the transwell system, respectively. The subcellular distribution of hsa_circ_0008934 was revealed via fluorescence in situ hybridization. The binding of hsa_circ_0008934 with microRNAs was confirmed using the dual-luciferase reporter assay. The oncogenic roles of hsa_circ_0008934 in osteosarcoma were determined using an in vivo tumorigenesis assay with nude mice. qRT-PCR, western blotting, TUNEL assay, and immunohistochemistry (IHC) were used to detect the tumorigenicity of hsa_circ_0008934 in osteosarcoma cells. RESULTS Many circRNAs were differentially expressed in SaOS2 and MG63 cells than in hFOB1.19 cells. Hsa_circ_0008934 expression was significantly elevated in SaOS2 and MG63 cells. Hsa_circ_0008934 silencing significantly reduced proliferation, enhanced apoptosis, blocked cell cycle progression, and impaired migration and invasion capacities of SaOS2 cells. Opposite cellular alterations were achieved by overexpressing hsa_circ_0008934 in MG63 cells. Hsa_circ_0008934 was mainly distributed in the cytosol and positively regulated E2F3 expression in osteosarcoma cells. In addition, it directly bound with miR-145-5p to repress E2F3 expression and enhanced the tumorigenesis of MG63 cells in nude mice. qRT-PCR revealed that the intracellular injection of hsa_circ_0008934 lentivirus resulted in hsa_circ_0008934 overexpression and miR-145-5p downregulation. Western blotting confirmed that E2F3 was upregulated. Moreover, the TUNEL assay showed that hsa_circ_0008934 overexpression inhibited the apoptosis of tumor cells. IHC detection revealed that the hsa_circ_0008934 overexpression could promote the expression of Ki67 and PCNA. CONCLUSION Elevated hsa_circ_0008934 expression promotes the proliferation and migration of osteosarcoma cells by sponging miR-145-5p to enhance E2F3 expression.
Collapse
Affiliation(s)
- Shiyuan Li
- Department of Spinal Surgery, the First People's Hospital of Foshan, Foshan 528000, Guangdong, China.
| | - Ming Zeng
- Department of Spinal Surgery, the First People's Hospital of Foshan, Foshan 528000, Guangdong, China
| | - Lin Yang
- Department of Spinal Surgery, the First People's Hospital of Foshan, Foshan 528000, Guangdong, China
| | - Jianshao Tan
- Department of Spinal Surgery, the First People's Hospital of Foshan, Foshan 528000, Guangdong, China
| | - Jianqi Yang
- Department of Spinal Surgery, the First People's Hospital of Foshan, Foshan 528000, Guangdong, China
| | - Hongye Guan
- Department of Spinal Surgery, the First People's Hospital of Foshan, Foshan 528000, Guangdong, China
| | - Manyuan Kuang
- Department of Spinal Surgery, the First People's Hospital of Foshan, Foshan 528000, Guangdong, China
| | - Jiaying Li
- Department of Spinal Surgery, the First People's Hospital of Foshan, Foshan 528000, Guangdong, China
| |
Collapse
|
12
|
Grabski DF, Ratan A, Gray LR, Bekiranov S, Rekosh D, Hammarskjold ML, Rasmussen SK. Human endogenous retrovirus-K mRNA expression and genomic alignment data in hepatoblastoma. Data Brief 2020; 31:105895. [PMID: 32637500 PMCID: PMC7330144 DOI: 10.1016/j.dib.2020.105895] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 06/12/2020] [Indexed: 01/01/2023] Open
Abstract
Human Endogenous Retroviruses are a class of genomic elements that are the result of ancient retroviral infection of the human germline. Many are biologically active elements that have been implicated in multiple diseases including cancer. The most recent class to invade the human genome is the HERV-K(HML-2) (HERV-K) family. Approximately 90 HERV-K proviruses and many smaller elements have been identified to date in the human genome. Additional proviruses are continually being discovered with the rapid advancement of deep-sequencing and long-read sequencing technologies. HERV-K proviruses are poorly annotated in human transcriptome databases making their analysis in RNA-seq data difficult. To enable analysis, we compiled the sequences of 91 HERV-K proviruses identified in NCBI GenBank (ID JN675007-JN675097) and created a proviral alignment tool for visualizing RNA-seq reads aligned across individual proviruses. This allowed us to analyse publicly available RNA-seq data from 10 hepatoblastoma samples and 3 normal liver controls (GEO Accession ID: GSE89775). This data report includes the raw FASTA sequence files of the HERV-K proviruses from NCBI, a differential gene expression list between hepatoblastoma samples, and genomic alignment figures from 5 HERV-K proviruses identified as differentially expressed in the companion research article "Upregulation of Human Endogenous Retrovirus-K (HML-2) mRNAs in hepatoblastoma: Identification of potential new immunotherapeutic targets and biomarkers [1]. The data provided here are available for other research groups interested in evaluating individual HERV-K proviral expression using RNA-seq data. Furthermore, the data analysis is highly flexible and will accommodate the addition of other HERV-K proviruses.
Collapse
Affiliation(s)
- David F Grabski
- Department of Surgery, University of Virginia School of Medicine, United States
- Myles H. Thaler Center for AIDS and Human Retrovirus Research, University of Virginia, United States
| | - Aakrosh Ratan
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia School of Medicine, United States
| | - Laurie R Gray
- Myles H. Thaler Center for AIDS and Human Retrovirus Research, University of Virginia, United States
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, United States
| | - Stefan Bekiranov
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, United States
| | - David Rekosh
- Myles H. Thaler Center for AIDS and Human Retrovirus Research, University of Virginia, United States
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, United States
| | - Marie-Louise Hammarskjold
- Myles H. Thaler Center for AIDS and Human Retrovirus Research, University of Virginia, United States
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, United States
| | - Sara K Rasmussen
- Myles H. Thaler Center for AIDS and Human Retrovirus Research, University of Virginia, United States
- Division of Transplant Surgery, Department of Surgery, University of Washington, United States
| |
Collapse
|
13
|
Volasertib preclinical activity in high-risk hepatoblastoma. Oncotarget 2019; 10:6403-6417. [PMID: 31741706 PMCID: PMC6849653 DOI: 10.18632/oncotarget.27237] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 08/12/2019] [Indexed: 12/17/2022] Open
Abstract
Relapsed and metastatic hepatoblastoma represents an unmet clinical need with limited chemotherapy treatment options. In a chemical screen, we identified volasertib as an agent with in vitro activity, inhibiting hepatoblastoma cell growth while sparing normal hepatocytes. Volasertib targets PLK1 and prevents the progression of mitosis, resulting in eventual cell death. PLK1 is overexpressed in hepatoblastoma biopsies relative to normal liver tissue. As a potential therapeutic strategy, we tested the combination of volasertib and the relapse-related hepatoblastoma chemotherapeutic irinotecan. We found both in vitro and in vivo efficacy of this combination, which may merit further preclinical investigation and exploration for a clinical trial concept.
Collapse
|
14
|
Neurokinin-1 Receptor Antagonists against Hepatoblastoma. Cancers (Basel) 2019; 11:cancers11091258. [PMID: 31466222 PMCID: PMC6770178 DOI: 10.3390/cancers11091258] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/03/2019] [Accepted: 08/21/2019] [Indexed: 12/30/2022] Open
Abstract
Hepatoblastoma (HB) is the most common malignant liver tumor that occurs during childhood. The prognosis of children with HB is favorable when a complete surgical resection of the tumor is possible, but for high-risk patients, the prognosis is much worse. New anti-HB strategies must be urgently developed. The undecapeptide substance P (SP) after binding to the neurokinin-1 receptor (NK-1R), regulates cancer cell proliferation, exerts an antiapoptotic effect, induces cell migration for invasion/metastasis, and triggers endothelial cell proliferation for neoangiogenesis. HB samples and cell lines overexpress NK-1R (the truncated form) and SP elicits HB cell proliferation. One of these strategies could be the use of non-peptide NK-1R antagonists. These antagonists exert, in a concentration-dependent manner, an antiproliferative action against HB cells (inhibit cell proliferation and induce the death of HB cells by apoptosis). NK-1R antagonists exerted a dual effect in HB: Decreased both tumor volume and angiogenic activity. Thus, the SP/NK-1R system is an important target in the HB treatment and NK-1R antagonists could act as specific drugs against HB cells. In this review, we update and discuss the use of NK-1R antagonists in the treatment of HB.
Collapse
|
15
|
The presence of PIM3 increases hepatoblastoma tumorigenesis and tumor initiating cell phenotype and is associated with decreased patient survival. J Pediatr Surg 2019; 54:1206-1213. [PMID: 30898394 PMCID: PMC6545248 DOI: 10.1016/j.jpedsurg.2019.02.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 02/21/2019] [Indexed: 02/06/2023]
Abstract
PURPOSE Hepatoblastoma is the most common primary liver cancer of childhood and has few prognostic indicators. We have previously shown that Proviral Integration site for Moloney murine leukemia virus (PIM3) kinase decreased hepatoblastoma tumorigenicity. We sought to determine the effect of PIM3 overexpression on hepatoblastoma cells and whether expression of PIM3 correlated with patient/tumor characteristics or survival. METHODS The hepatoblastoma cell line, HuH6, and patient-derived xenograft, COA67, were utilized. Viability, proliferation, migration, sphere formation, and tumor growth in mice were assessed in PIM3-overexpressing cells. Immunohistochemistry was performed for PIM3 on patient samples. Correlation between stain score and clinical/pathologic characteristics was assessed. RESULTS PIM3 overexpression rescued the anti-proliferative effect observed with PIM3 knockdown. Sphere formation was increased in PIM3 overexpressing cells. Cells with PIM3 overexpression yielded larger tumors than those with empty vector. Seventy-four percent of samples expressed PIM3. There was no statistical difference in patient characteristics between subjects with strong versus weak PIM3 staining, but patients with strong PIM3 staining had decreased survival. CONCLUSIONS PIM3 expression plays a role in hepatoblastoma tumorigenesis. PIM3 was present in the majority of hepatoblastomas and higher PIM3 expression correlated with decreased survival. PIM3 warrants investigation as a therapeutic target and prognostic marker for hepatoblastoma.
Collapse
|
16
|
Liu S, Xie F, Xiang X, Liu S, Dong S, Qu K, Lin T. Identification of differentially expressed genes, lncRNAs and miRNAs which are associated with tumor malignant phenotypes in hepatoblastoma patients. Oncotarget 2017; 8:97554-97564. [PMID: 29228631 PMCID: PMC5722583 DOI: 10.18632/oncotarget.22181] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 08/24/2017] [Indexed: 12/04/2022] Open
Abstract
Hepatoblastoma (HB) is one of the most common hepatic malignancies in the pediatric population. HB are composed of a variety of tumors, which derived from different origins and had varying clinical outcomes. However, the unclear underlying mechanisms of HB limited exploring novel biomarkers and effective therapeutic targets. We searched microarray datasets on Gene Expression Omnibus (GEO) database and selected GSE75271 and GSE75283 datasets for comprehensive analysis. Weighted gene correlation network analysis (WGCNA) was employed to identify genes which were associated with tumor malignant phenotypes, including HB subtypes, Cairo classification and tumor stage. Coexpression analysis of identified genes was also performed and lncRNA-miRNA-mRNA network was finally conducted. Our results showed that a total of 22 lncRNAs, 13 miRNAs and 66 mRNAs were identified to be associated with tumor malignant phenotypes. Mechanistically, these molecules might promote the malignant phenotypes via regulating metabolic pathways. Among of them, 6 miRNAs (hsa-miR-106b, hsa-miR-130b, hsa-miR-19a, hsa-miR-19b, hsa-miR-20a and hsa-miR-301a), 8 lncRNAs (NR_102317, XR_245338, XR_428373, XR_924945, XR_929728, XR_931611, XR_935074 and XR_946696), and 6 mRNAs (EGFR, GAREM, INSIG1, KRT81, SAR1B and SDC1) were selected to conduct a lncRNA-miRNA-mRNA network. Taken together, our findings provide evidence for exploring molecular mechanisms of HB. Those identified malignant phenotype-associated molecules might be potential biomarkers and anti-cancer therapeutic targets in future.
Collapse
Affiliation(s)
- Sida Liu
- Department of The Second General Surgery, Shaanxi Provincial People's Hospital, Xi'an 710068, China
| | - Fujing Xie
- Department of Pediatrics, Liaocheng People's Hospital, Taishan Medical College, Liaocheng 252000, China
| | - Xiaohong Xiang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Sinan Liu
- Department of Surgical Intensive Care Units, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.,Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Shunbin Dong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Kai Qu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Ting Lin
- Department of Surgical Intensive Care Units, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.,Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|