1
|
Liu H, Liu Y, Xu N, Sun Y, Li Q, Yue L, Zhou Y, He M. Chrysanthemum × grandiflora leaf and root transcript profiling in response to salinity stress. BMC PLANT BIOLOGY 2022; 22:240. [PMID: 35549680 PMCID: PMC9097105 DOI: 10.1186/s12870-022-03612-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
As high soil salinity threatens the growth and development of plants, understanding the mechanism of plants' salt tolerance is critical. The Chrysanthemum × grandiflora is a newly developed species with a strong salt resistance that possesses multiple genes controlling its quantitative salt resistance. Because of this multigene control, we chose to investigate the plant stress genes overall responses at the transcriptome level. C. grandiflora were treated with a 200 mM NaCl solution for 12 h to study its effect on the roots and leaves via Illumina RNA sequencing. PAL, CYP73A, and 4CL in the phenylpropanoid biosynthesis pathway were upregulated in roots and leaves. In the salicylic acid signal transduction pathway, TGA7 was upregulated in the roots and leaves, while in the jasmonic acid signal transduction pathway, TIFY9 was upregulated in the roots and leaves. In the ion transporter gene, we identified HKT1 that showed identical expression patterns in the roots and leaves. The impact of NaCl imposition for 12 h was largely due to osmotic effect of salinity on C. grandiflora, and most likely the transcript abundance changes in this study were due to the osmotic effect. In order to verify the accuracy of the Illumina sequencing data, we selected 16 DEGs for transcription polymerase chain reaction (qRT-PCR) analysis. qRT-PCR and transcriptome sequencing analysis revealed that the transcriptome sequencing results were reliable.
Collapse
Affiliation(s)
- He Liu
- College of Landscape Architecture, Northeast Forestry University, No. 26 Hexing Road, Harbin, 150006, Heilongjiang, China
| | - Yu Liu
- College of Landscape Architecture, Northeast Forestry University, No. 26 Hexing Road, Harbin, 150006, Heilongjiang, China
| | - Ning Xu
- College of Landscape Architecture, Northeast Forestry University, No. 26 Hexing Road, Harbin, 150006, Heilongjiang, China
| | - Ying Sun
- College of Landscape Architecture, Northeast Forestry University, No. 26 Hexing Road, Harbin, 150006, Heilongjiang, China
| | - Qiang Li
- College of Landscape Architecture, Northeast Forestry University, No. 26 Hexing Road, Harbin, 150006, Heilongjiang, China
| | - Liran Yue
- College of Landscape Architecture, Northeast Forestry University, No. 26 Hexing Road, Harbin, 150006, Heilongjiang, China
| | - Yunwei Zhou
- College of Horticulture, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, Jilin, China.
| | - Miao He
- College of Landscape Architecture, Northeast Forestry University, No. 26 Hexing Road, Harbin, 150006, Heilongjiang, China.
| |
Collapse
|
2
|
Tanaka S, Yoshida K, Sato K, Takumi S. Diploid genome differentiation conferred by RNA sequencing-based survey of genome-wide polymorphisms throughout homoeologous loci in Triticum and Aegilops. BMC Genomics 2020; 21:246. [PMID: 32192452 PMCID: PMC7083043 DOI: 10.1186/s12864-020-6664-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 03/10/2020] [Indexed: 12/26/2022] Open
Abstract
Background Triticum and Aegilops diploid species have morphological and genetic diversity and are crucial genetic resources for wheat breeding. According to the chromosomal pairing-affinity of these species, their genome nomenclatures have been defined. However, evaluations of genome differentiation based on genome-wide nucleotide variations are still limited, especially in the three genomes of the genus Aegilops: Ae. caudata L. (CC genome), Ae. comosa Sibth. et Sm. (MM genome), and Ae. uniaristata Vis. (NN genome). To reveal the genome differentiation of these diploid species, we first performed RNA-seq-based polymorphic analyses for C, M, and N genomes, and then expanded the analysis to include the 12 diploid species of Triticum and Aegilops. Results Genetic divergence of the exon regions throughout the entire chromosomes in the M and N genomes was larger than that between A- and Am-genomes. Ae. caudata had the second highest genetic diversity following Ae. speltoides, the putative B genome donor of common wheat. In the phylogenetic trees derived from the nuclear and chloroplast genome-wide polymorphism data, the C, D, M, N, U, and S genome species were connected with short internal branches, suggesting that these diploid species emerged during a relatively short period in the evolutionary process. The highly consistent nuclear and chloroplast phylogenetic topologies indicated that nuclear and chloroplast genomes of the diploid Triticum and Aegilops species coevolved after their diversification into each genome, accounting for most of the genome differentiation among the diploid species. Conclusions RNA-sequencing-based analyses successfully evaluated genome differentiation among the diploid Triticum and Aegilops species and supported the chromosome-pairing-based genome nomenclature system, except for the position of Ae. speltoides. Phylogenomic and epigenetic analyses of intergenic and centromeric regions could be essential for clarifying the mechanisms behind this inconsistency.
Collapse
Affiliation(s)
- Sayaka Tanaka
- Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Nada-ku, Kobe, 657-8501, Japan
| | - Kentaro Yoshida
- Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Nada-ku, Kobe, 657-8501, Japan.
| | - Kazuhiro Sato
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| | - Shigeo Takumi
- Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Nada-ku, Kobe, 657-8501, Japan
| |
Collapse
|
3
|
Li J, Liu M. Biological features and regulatory mechanisms of salt tolerance in plants. J Cell Biochem 2019; 120:10914-10920. [PMID: 30784118 DOI: 10.1002/jcb.28474] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 01/11/2019] [Indexed: 01/24/2023]
Abstract
Halophytes play a vital role in saline agriculture because these plants are necessary to increase the food supply to meet the demands of the growing world population. In addition, the transfer of salt-resistance genes from halophytes using genetic technologies has the potential to increase the salt tolerance of xerophytes. Characterization of some particularly promising halophyte model organisms has revealed the important new insights into the salt tolerance mechanisms used by plants. Numerous advances using these model systems have improved our understanding of salt tolerance regulation and salt tolerance-associated changes in gene expression, and these mechanisms have important implications for saline agriculture. Recent findings provide a basis for future studies of salt tolerance in plants, as well as the development of improved strategies for saline agriculture to increase yields of food, feed, and fuel crops.
Collapse
Affiliation(s)
- Jingrui Li
- Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Min Liu
- Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
4
|
Suneja Y, Gupta AK, Bains NS. Stress Adaptive Plasticity: Aegilops tauschii and Triticum dicoccoides as Potential Donors of Drought Associated Morpho-Physiological Traits in Wheat. FRONTIERS IN PLANT SCIENCE 2019; 10:211. [PMID: 30858862 PMCID: PMC6397871 DOI: 10.3389/fpls.2019.00211] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 02/07/2019] [Indexed: 05/05/2023]
Abstract
The inconsistent prevalence of abiotic stress in most of the agroecosystems can be addressed through deployment of plant material with stress adaptive plasticity. The present study explores water stress induced plasticity for early root-shoot development, proline induction and cell membrane injury in 57 accessions of Aegilops tauschii (DD-genome) and 26 accessions of Triticum dicoccoides (AABB-genome) along with durum and bread wheat cultivars. Thirty three Ae. tauschii accessions and 18 T. dicoccoides accessions showed an increase in root dry weight (ranging from 1.8 to 294.75%) under water stress. Shoot parameters- length and biomass, by and large were suppressed by water stress, but genotypes with stress adaptive plasticity leading to improvement of shoot traits (e.g., Ae tauschii accession 14191 and T. dicoccoides accession 7130) could be identified. Water stress induced active responses, rather than passive repartitioning of biomass was indicated by better shoot growth in seedlings of genotypes with enhanced root growth under stress. Membrane injury seemed to work as a trigger to activate water stress adaptive cellular machinery and was found positively correlated with several root-shoot based adaptive responses in seedlings. Stress induced proline accumulation in leaf tissue showed marked inter- and intra-specific genetic variation but hardly any association with stress adaptive plasticity. Genotypic variation for early stage plasticity traits viz., change in root dry weight, shoot length, shoot fresh weight, shoot dry weight and membrane injury positively correlated with grain weight based stress tolerance index (r = 0.267, r = 0.404, r = 0.299, r = 0.526, and r = 0.359, respectively). In another such trend, adaptive seedling plasticity correlated positively with resistance to early flowering under stress (r = 0.372 with membrane injury, r = 0.286 with change in root length, r = 0.352 with change in shoot length, r = 0.268 with change in shoot dry weight). Overall, Ae. tauschii accessions 9816, 14109, 14128, and T. dicoccoides accessions 5259 and 7130 were identified as potential donors of stress adaptive plasticity. The prospect of the study for molecular marker tagging, cloning of plasticity genes and creation of elite synthetic hexaploid donors is discussed.
Collapse
Affiliation(s)
- Yadhu Suneja
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, India
| | - Anil Kumar Gupta
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, India
| | - Navtej Singh Bains
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| |
Collapse
|
5
|
The role of reproductive isolation in allopolyploid speciation patterns: empirical insights from the progenitors of common wheat. Sci Rep 2017; 7:16004. [PMID: 29167543 PMCID: PMC5700127 DOI: 10.1038/s41598-017-15919-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 11/03/2017] [Indexed: 11/15/2022] Open
Abstract
The ability to cause reproductive isolation often varies among individuals within a plant species. We addressed whether such polymorphism influenced speciation of the allopolyploid common wheat (Triticum aestivum L., AABBDD genome) by evaluating the expression of pre-pollination (outcrossing potential) and post-pollination (crossability) barriers in Aegilops tauschii Coss. (the D genome progenitor). In total, 201 Ae. tauschii accessions representing the entire natural habitat range of the species were used for anther length measurement and artificial crosses with a Triticum turgidum L. (the AB genome progenitor) tester. Intraspecific comparisons showed that both barriers were more strongly expressed in the TauL1 lineage than in the TauL2 lineage. The ability of Ae. tauschii to cause reproductive isolation in the hybridisation with T. turgidum might have markedly influenced common wheat’s speciation by inducing lineage-associated patterns of gene flow. The TauL2 accessions with high potential for natural hybridisation with T. turgidum clustered in the southern coastal Caspian region. This provided phenotypic support for the derivation of the D genome of common wheat from southern Caspian populations. The present study underscored the importance of approaches that incorporate the genealogical and geographic structure of the parental species’ reproductive isolation in understanding the mechanism of plant allopolyploid speciation.
Collapse
|
6
|
Nishijima R, Okamoto Y, Hatano H, Takumi S. Quantitative trait locus analysis for spikelet shape-related traits in wild wheat progenitor Aegilops tauschii: Implications for intraspecific diversification and subspecies differentiation. PLoS One 2017; 12:e0173210. [PMID: 28264068 PMCID: PMC5338802 DOI: 10.1371/journal.pone.0173210] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/16/2017] [Indexed: 11/19/2022] Open
Abstract
Wild diploid wheat Aegilops tauschii, the D-genome progenitor of common wheat, carries large genetic variation in spikelet and grain morphology. Two differentiated subspecies of Ae. tauschii, subspecies tauschii and strangulata, have been traditionally defined based on differences in spikelet morphology. Here, we first assessed six spikelet shape-related traits among 199 Ae. tauschii accessions, and found that the accessions belonging to TauL1major lineage produced significantly longer spikes, higher spikelet density, and shorter, narrower spikelets than another major lineage, TauL2, in which the strangulata accessions are included. Next, we performed quantitative trait locus (QTL) analysis of the spikelet and grain shape using three mapping populations derived from interlineage crosses between TauL1 and TauL2 to identify the genetic loci for the morphological variations of the spikelet and grain shape in Ae. tauschii. Three major QTL regions for the examined traits were detected on chromosomes 3D, 4D and 7D. The 3D and 4D QTL regions for several spikelet shape-related traits were conserved in the three mapping populations, which indicated that the 3D and 4D QTLs contribute to divergence of the two major lineages. The 7D QTLs were found only in a mapping population from a cross of the two subspecies, suggesting that these 7D QTLs may be closely related to subspecies differentiation in Ae. tauschii. Thus, QTL analysis for spikelet and grain morphology may provide useful information to elucidate the evolutionary processes of intraspecific differentiation.
Collapse
Affiliation(s)
- Ryo Nishijima
- Laboratory of Plant Genetics, Graduate School of Agricultural Science, Kobe University, Nada, Kobe, Japan
| | - Yuki Okamoto
- Laboratory of Plant Genetics, Graduate School of Agricultural Science, Kobe University, Nada, Kobe, Japan
| | - Hitoshi Hatano
- Laboratory of Plant Genetics, Graduate School of Agricultural Science, Kobe University, Nada, Kobe, Japan
| | - Shigeo Takumi
- Laboratory of Plant Genetics, Graduate School of Agricultural Science, Kobe University, Nada, Kobe, Japan
| |
Collapse
|