1
|
Duy H, Srisongkram T. Comparative Analysis of Recurrent Neural Networks with Conjoint Fingerprints for Skin Corrosion Prediction. J Chem Inf Model 2025; 65:1305-1317. [PMID: 39835935 PMCID: PMC11815816 DOI: 10.1021/acs.jcim.4c02062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/28/2024] [Accepted: 01/03/2025] [Indexed: 01/22/2025]
Abstract
Skin corrosion assessment is an essential toxicity end point that addresses safety concerns for topical dosage forms and cosmetic products. Previously, skin corrosion assessments required animal testing; however, differences in skin architecture and ethical concerns regarding animal models have fostered the advancement of alternative methods such as in silico and in vitro models. This study aimed to develop deep learning (DL) models based on recurrent neural networks (RNNs) for classifying skin corrosion of chemical compounds based on chemical language notation, molecular substructure, physicochemical properties, and a combination of these three properties called conjoint fingerprints. Simple RNN, long short-term memory, bidirectional long short-term memory (BiLSTM), gated recurrent units, and bidirectional gated recurrent units models, along with 11 molecular features, were employed to generate 55 RNN-based models. Applicability domain and permutation importance analysis were exploited for additional trustable prediction and explanation ability of the models, respectively. Our findings indicate that BiLSTM with conjoint features of MACCS keys and physicochemical descriptors is the most effective model with 84.3% accuracy, 89.8% area under the curve, and 57.6% Matthews correlation coefficient for the external test performance. Furthermore, our model accurately predicted the skin corrosion toxicity of all new and unseen compounds beyond our test set, highlighting prominent classification performance compared to existing skin corrosion models. This finding will contribute to the utilization of DL and conjoint characteristics of molecular structure to enhance the model's predictive capability for skin toxicity assessment.
Collapse
Affiliation(s)
- Huynh
Anh Duy
- Graduate
School in the Program of Research and Development in Pharmaceuticals,
Faculty of Pharmaceutical Sciences, Khon
Kaen University, Khon Kaen 40002, Thailand
| | - Tarapong Srisongkram
- Division
of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
2
|
Olanrewaju JA, Arietarhire LO, Soremekun OE, Olugbogi EA, Aribisala PO, Alege PE, Adeleke SO, Afolabi TO, Sodipo AO. Reporting the anti-neuroinflammatory potential of selected spondias mombin flavonoids through network pharmacology and molecular dynamics simulations. In Silico Pharmacol 2024; 12:74. [PMID: 39155973 PMCID: PMC11324643 DOI: 10.1007/s40203-024-00243-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/14/2024] [Indexed: 08/20/2024] Open
Abstract
Neuroinflammation plays a pivotal role in the development and progression of neurodegenerative diseases, with a complex interplay between immune responses and brain activity. Understanding this interaction is crucial for identifying therapeutic targets and developing effective treatments. This study aimed to explore the neuroprotective properties of flavonoid compounds from Spondias mombin via the modulation of neuroinflammatory pathway using a comprehensive in-silico approach, including network pharmacology, molecular docking, and dynamic simulations. Active flavonoid ingredients from S. mombin were identified, and their potential protein targets were predicted through Network Pharmacology. Molecular docking was conducted to determine the binding affinities of these compounds against targets obtained from network pharmacology, prioritizing docking scores ≥ - 8.0 kcal/mol. Molecular dynamic simulations (MDS) assessed the stability and interaction profiles of these ligand-protein complexes. The docking study highlighted ≥ - 8.0 kcal/mol for the ligands (catechin and epicatechin) against FYN kinase as a significant target. However, these compounds failed the blood-brain barrier (BBB) permeability test. MDS confirmed the stability of catechin and the reference ligand at the FYN kinase active site, with notable interactions involving hydrogen bonds, hydrophobic contacts, and water bridges. GLU54 emerged as a key residue in the catechin-FYN complex stability due to its prolonged hydrogen bond interaction. The findings underscore the potential of S. mombin flavonoids as therapeutic agents against neuroinflammation, though optimization and nanotechnology-based delivery methods are suggested to enhance drug efficacy and overcome BBB limitations. Graphical abstract
Collapse
Affiliation(s)
- John A. Olanrewaju
- Department of Biocomputing, Eureka Research Laboratory, Faculty of Basic Medical Science, Benjamin Carson (Snr.) School of Medical Science, BABCOCK University, Ilishan-Remo, Ogun State Nigeria
| | - Leviticus O. Arietarhire
- Department of Biocomputing, Eureka Research Laboratory, Faculty of Basic Medical Science, Benjamin Carson (Snr.) School of Medical Science, BABCOCK University, Ilishan-Remo, Ogun State Nigeria
| | - Oladimeji E. Soremekun
- Department of Biocomputing, Eureka Research Laboratory, Faculty of Basic Medical Science, Benjamin Carson (Snr.) School of Medical Science, BABCOCK University, Ilishan-Remo, Ogun State Nigeria
| | - Ezekiel A. Olugbogi
- Department of Biocomputing, Eureka Research Laboratory, Faculty of Basic Medical Science, Benjamin Carson (Snr.) School of Medical Science, BABCOCK University, Ilishan-Remo, Ogun State Nigeria
| | - Precious O. Aribisala
- Department of Biocomputing, Eureka Research Laboratory, Faculty of Basic Medical Science, Benjamin Carson (Snr.) School of Medical Science, BABCOCK University, Ilishan-Remo, Ogun State Nigeria
| | - Pelumi E. Alege
- Department of Biocomputing, Eureka Research Laboratory, Faculty of Basic Medical Science, Benjamin Carson (Snr.) School of Medical Science, BABCOCK University, Ilishan-Remo, Ogun State Nigeria
| | - Stephen O. Adeleke
- Department of Biocomputing, Eureka Research Laboratory, Faculty of Basic Medical Science, Benjamin Carson (Snr.) School of Medical Science, BABCOCK University, Ilishan-Remo, Ogun State Nigeria
| | - Toluwanimi O. Afolabi
- Department of Biocomputing, Eureka Research Laboratory, Faculty of Basic Medical Science, Benjamin Carson (Snr.) School of Medical Science, BABCOCK University, Ilishan-Remo, Ogun State Nigeria
| | - Abayomi O. Sodipo
- Department of Biocomputing, Eureka Research Laboratory, Faculty of Basic Medical Science, Benjamin Carson (Snr.) School of Medical Science, BABCOCK University, Ilishan-Remo, Ogun State Nigeria
| |
Collapse
|
3
|
Chen Z, Zhang L, Sun J, Meng R, Yin S, Zhao Q. DCAMCP: A deep learning model based on capsule network and attention mechanism for molecular carcinogenicity prediction. J Cell Mol Med 2023; 27:3117-3126. [PMID: 37525507 PMCID: PMC10568665 DOI: 10.1111/jcmm.17889] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/11/2023] [Accepted: 07/22/2023] [Indexed: 08/02/2023] Open
Abstract
The carcinogenicity of drugs can have a serious impact on human health, so carcinogenicity testing of new compounds is very necessary before being put on the market. Currently, many methods have been used to predict the carcinogenicity of compounds. However, most methods have limited predictive power and there is still much room for improvement. In this study, we construct a deep learning model based on capsule network and attention mechanism named DCAMCP to discriminate between carcinogenic and non-carcinogenic compounds. We train the DCAMCP on a dataset containing 1564 different compounds through their molecular fingerprints and molecular graph features. The trained model is validated by fivefold cross-validation and external validation. DCAMCP achieves an average accuracy (ACC) of 0.718 ± 0.009, sensitivity (SE) of 0.721 ± 0.006, specificity (SP) of 0.715 ± 0.014 and area under the receiver-operating characteristic curve (AUC) of 0.793 ± 0.012. Meanwhile, comparable results can be achieved on an external validation dataset containing 100 compounds, with an ACC of 0.750, SE of 0.778, SP of 0.727 and AUC of 0.811, which demonstrate the reliability of DCAMCP. The results indicate that our model has made progress in cancer risk assessment and could be used as an efficient tool in drug design.
Collapse
Affiliation(s)
- Zhe Chen
- School of Mathematics and StatisticsLiaoning UniversityShenyangChina
| | - Li Zhang
- School of Life ScienceLiaoning UniversityShenyangChina
| | - Jianqiang Sun
- School of Information Science and EngineeringLinyi UniversityLinyiChina
| | - Rui Meng
- School of Computer Science and Software EngineeringUniversity of Science and Technology LiaoningAnshanChina
| | - Shuaidong Yin
- School of Computer Science and Software EngineeringUniversity of Science and Technology LiaoningAnshanChina
| | - Qi Zhao
- School of Computer Science and Software EngineeringUniversity of Science and Technology LiaoningAnshanChina
| |
Collapse
|
4
|
Lim S, Lee S, Piao Y, Choi M, Bang D, Gu J, Kim S. On modeling and utilizing chemical compound information with deep learning technologies: A task-oriented approach. Comput Struct Biotechnol J 2022; 20:4288-4304. [PMID: 36051875 PMCID: PMC9399946 DOI: 10.1016/j.csbj.2022.07.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 11/22/2022] Open
Abstract
A large number of chemical compounds are available in databases such as PubChem and ZINC. However, currently known compounds, though large, represent only a fraction of possible compounds, which is known as chemical space. Many of these compounds in the databases are annotated with properties and assay data that can be used for drug discovery efforts. For this goal, a number of machine learning algorithms have been developed and recent deep learning technologies can be effectively used to navigate chemical space, especially for unknown chemical compounds, in terms of drug-related tasks. In this article, we survey how deep learning technologies can model and utilize chemical compound information in a task-oriented way by exploiting annotated properties and assay data in the chemical compounds databases. We first compile what kind of tasks are trying to be accomplished by machine learning methods. Then, we survey deep learning technologies to show their modeling power and current applications for accomplishing drug related tasks. Next, we survey deep learning techniques to address the insufficiency issue of annotated data for more effective navigation of chemical space. Chemical compound information alone may not be powerful enough for drug related tasks, thus we survey what kind of information, such as assay and gene expression data, can be used to improve the prediction power of deep learning models. Finally, we conclude this survey with four important newly developed technologies that are yet to be fully incorporated into computational analysis of chemical information.
Collapse
Affiliation(s)
- Sangsoo Lim
- Bioinformatics Institute, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, South Korea
| | - Sangseon Lee
- Institute of Computer Technology, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, South Korea
| | - Yinhua Piao
- Department of Computer Science and Engineering, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, South Korea
| | - MinGyu Choi
- Department of Chemistry, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, South Korea
- AIGENDRUG Co., Ltd., Gwanak-ro 1, Gwanak-gu, Seoul 08826, South Korea
| | - Dongmin Bang
- Interdisciplinary Program in Bioinformatics, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, South Korea
| | - Jeonghyeon Gu
- Interdisciplinary Program in Artificial Intelligence, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, South Korea
| | - Sun Kim
- Department of Computer Science and Engineering, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, South Korea
- Interdisciplinary Program in Artificial Intelligence, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, South Korea
- MOGAM Institute for Biomedical Research, Yong-in 16924, South Korea
- AIGENDRUG Co., Ltd., Gwanak-ro 1, Gwanak-gu, Seoul 08826, South Korea
| |
Collapse
|
5
|
Serra A, Cattelani L, Fratello M, Fortino V, Kinaret PAS, Greco D. Supervised Methods for Biomarker Detection from Microarray Experiments. Methods Mol Biol 2022; 2401:101-120. [PMID: 34902125 DOI: 10.1007/978-1-0716-1839-4_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Biomarkers are valuable indicators of the state of a biological system. Microarray technology has been extensively used to identify biomarkers and build computational predictive models for disease prognosis, drug sensitivity and toxicity evaluations. Activation biomarkers can be used to understand the underlying signaling cascades, mechanisms of action and biological cross talk. Biomarker detection from microarray data requires several considerations both from the biological and computational points of view. In this chapter, we describe the main methodology used in biomarkers discovery and predictive modeling and we address some of the related challenges. Moreover, we discuss biomarker validation and give some insights into multiomics strategies for biomarker detection.
Collapse
Affiliation(s)
- Angela Serra
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- BioMediTech Institute, Tampere University, Tampere, Finland
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), University of Tampere, Tampere, Finland
| | - Luca Cattelani
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- BioMediTech Institute, Tampere University, Tampere, Finland
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), University of Tampere, Tampere, Finland
| | - Michele Fratello
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- BioMediTech Institute, Tampere University, Tampere, Finland
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), University of Tampere, Tampere, Finland
| | - Vittorio Fortino
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Pia Anneli Sofia Kinaret
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- BioMediTech Institute, Tampere University, Tampere, Finland
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), University of Tampere, Tampere, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Dario Greco
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
- BioMediTech Institute, Tampere University, Tampere, Finland.
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), University of Tampere, Tampere, Finland.
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
6
|
Computer-aided identification of potential inhibitors against Necator americanus glutathione S-transferase 3. INFORMATICS IN MEDICINE UNLOCKED 2022; 30:100957. [PMID: 36570094 PMCID: PMC9784411 DOI: 10.1016/j.imu.2022.100957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Hookworm infection is caused by the blood-feeding hookworm gastrointestinal nematodes. Its harmful effects include anemia and retarded growth and are common in the tropics. A current control method involves the mass drug administration of synthetic drugs, mainly albendazole and mebendazole. There are however concerns of low efficacy and drug resistance due to their repeated and excessive use. Although, Necator americanus glutathione S-transferase 3 (Na-GST-3) is a notable target, using natural product libraries for computational elucidation of promising leads is underexploited. This study sought to use pharmacoinformatics techniques to identify compounds of natural origins with the potential to be further optimized as promising inhibitors. A compendium of 3182 African natural products together with five known helminth GST inhibitors including Cibacron blue was screened against the active sites of the Na-GST-3 structure (PDB ID: 3W8S). The hit compounds were profiled to ascertain the mechanisms of binding, anthelmintic bioactivity, physicochemical and pharmacokinetic properties. The AutoDock Vina docking protocol was validated by obtaining 0.731 as the area under the curve calculated via the receiver operating characteristics curve. Four compounds comprising ZINC85999636, ZINC35418176, ZINC14825190, and Dammarane Triterpene13 were identified as potential lead compounds with binding energies less than -9.0 kcal/mol. Furthermore, the selected compounds formed key intermolecular interactions with critical residues Tyr95, Gly13 and Ala14. Notably, ZINC85999636, ZINC14825190, and dammarane triterpene13 were predicted as anthelmintics, whilst all the four molecules shared structural similarities with known inhibitors. Molecular modelling showed that the compounds had reasonably good binding free energies. More so, they had high binding affinities when screened against other variants of the Na-GST, namely Na-GST-1 and Na-GST-2. Ligand quality assessment using ligand efficiency dependent lipophilicity, ligand efficiency, ligand efficiency scale and fit quality scale showed the molecules are worthy candidates for further optimization. The inhibitory potentials of the molecules warrant in vitro studies to evaluate their effect on the heme regulation mechanisms.
Collapse
|
7
|
Early Detection of Freeze Damage in Navel Orange Fruit Using Nondestructive Low Intensity Ultrasound Coupled with Machine Learning. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-020-01942-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Multi-target QSAR modelling of chemo-genomic data analysis based on Extreme Learning Machine. Knowl Based Syst 2020. [DOI: 10.1016/j.knosys.2019.104977] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
9
|
Yang X, Wang Y, Byrne R, Schneider G, Yang S. Concepts of Artificial Intelligence for Computer-Assisted Drug Discovery. Chem Rev 2019; 119:10520-10594. [PMID: 31294972 DOI: 10.1021/acs.chemrev.8b00728] [Citation(s) in RCA: 422] [Impact Index Per Article: 70.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Artificial intelligence (AI), and, in particular, deep learning as a subcategory of AI, provides opportunities for the discovery and development of innovative drugs. Various machine learning approaches have recently (re)emerged, some of which may be considered instances of domain-specific AI which have been successfully employed for drug discovery and design. This review provides a comprehensive portrayal of these machine learning techniques and of their applications in medicinal chemistry. After introducing the basic principles, alongside some application notes, of the various machine learning algorithms, the current state-of-the art of AI-assisted pharmaceutical discovery is discussed, including applications in structure- and ligand-based virtual screening, de novo drug design, physicochemical and pharmacokinetic property prediction, drug repurposing, and related aspects. Finally, several challenges and limitations of the current methods are summarized, with a view to potential future directions for AI-assisted drug discovery and design.
Collapse
Affiliation(s)
- Xin Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital , Sichuan University , Chengdu , Sichuan 610041 , China
| | - Yifei Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital , Sichuan University , Chengdu , Sichuan 610041 , China
| | - Ryan Byrne
- ETH Zurich , Department of Chemistry and Applied Biosciences , Vladimir-Prelog-Weg 4 , CH-8093 Zurich , Switzerland
| | - Gisbert Schneider
- ETH Zurich , Department of Chemistry and Applied Biosciences , Vladimir-Prelog-Weg 4 , CH-8093 Zurich , Switzerland
| | - Shengyong Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital , Sichuan University , Chengdu , Sichuan 610041 , China
| |
Collapse
|
10
|
Abstract
Classification problems from different domains vary in complexity, size, and imbalance of the number of samples from different classes. Although several classification models have been proposed, selecting the right model and parameters for a given classification task to achieve good performance is not trivial. Therefore, there is a constant interest in developing novel robust and efficient models suitable for a great variety of data. Here, we propose OmniGA, a framework for the optimization of omnivariate decision trees based on a parallel genetic algorithm, coupled with deep learning structure and ensemble learning methods. The performance of the OmniGA framework is evaluated on 12 different datasets taken mainly from biomedical problems and compared with the results obtained by several robust and commonly used machine-learning models with optimized parameters. The results show that OmniGA systematically outperformed these models for all the considered datasets, reducing the F1 score error in the range from 100% to 2.25%, compared to the best performing model. This demonstrates that OmniGA produces robust models with improved performance. OmniGA code and datasets are available at www.cbrc.kaust.edu.sa/omniga/.
Collapse
Affiliation(s)
- Arturo Magana-Mora
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center, Thuwal, 23955-6900, Saudi Arabia
| | - Vladimir B Bajic
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center, Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
11
|
Zhang L, Ai H, Chen W, Yin Z, Hu H, Zhu J, Zhao J, Zhao Q, Liu H. CarcinoPred-EL: Novel models for predicting the carcinogenicity of chemicals using molecular fingerprints and ensemble learning methods. Sci Rep 2017; 7:2118. [PMID: 28522849 PMCID: PMC5437031 DOI: 10.1038/s41598-017-02365-0] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 04/10/2017] [Indexed: 01/11/2023] Open
Abstract
Carcinogenicity refers to a highly toxic end point of certain chemicals, and has become an important issue in the drug development process. In this study, three novel ensemble classification models, namely Ensemble SVM, Ensemble RF, and Ensemble XGBoost, were developed to predict carcinogenicity of chemicals using seven types of molecular fingerprints and three machine learning methods based on a dataset containing 1003 diverse compounds with rat carcinogenicity. Among these three models, Ensemble XGBoost is found to be the best, giving an average accuracy of 70.1 ± 2.9%, sensitivity of 67.0 ± 5.0%, and specificity of 73.1 ± 4.4% in five-fold cross-validation and an accuracy of 70.0%, sensitivity of 65.2%, and specificity of 76.5% in external validation. In comparison with some recent methods, the ensemble models outperform some machine learning-based approaches and yield equal accuracy and higher specificity but lower sensitivity than rule-based expert systems. It is also found that the ensemble models could be further improved if more data were available. As an application, the ensemble models are employed to discover potential carcinogens in the DrugBank database. The results indicate that the proposed models are helpful in predicting the carcinogenicity of chemicals. A web server called CarcinoPred-EL has been built for these models (http://ccsipb.lnu.edu.cn/toxicity/CarcinoPred-EL/).
Collapse
Affiliation(s)
- Li Zhang
- School of Life Science, Liaoning University, Shenyang, 110036, China.,Research Center for Computer Simulating and Information Processing of Bio-macromolecules of Liaoning Province, Shenyang, 110036, China
| | - Haixin Ai
- School of Life Science, Liaoning University, Shenyang, 110036, China.,Research Center for Computer Simulating and Information Processing of Bio-macromolecules of Liaoning Province, Shenyang, 110036, China.,Engineering Laboratory for Molecular Simulation and Designing of Drug Molecules of Liaoning, Shenyang, 110036, China
| | - Wen Chen
- School of Information, Liaoning University, Shenyang, 110036, China
| | - Zimo Yin
- School of Information, Liaoning University, Shenyang, 110036, China
| | - Huan Hu
- School of Life Science, Liaoning University, Shenyang, 110036, China
| | - Junfeng Zhu
- School of Life Science, Liaoning University, Shenyang, 110036, China
| | - Jian Zhao
- School of Life Science, Liaoning University, Shenyang, 110036, China
| | - Qi Zhao
- Research Center for Computer Simulating and Information Processing of Bio-macromolecules of Liaoning Province, Shenyang, 110036, China.,School of Mathematics, Liaoning University, Shenyang, 110036, China
| | - Hongsheng Liu
- School of Life Science, Liaoning University, Shenyang, 110036, China. .,Research Center for Computer Simulating and Information Processing of Bio-macromolecules of Liaoning Province, Shenyang, 110036, China. .,Engineering Laboratory for Molecular Simulation and Designing of Drug Molecules of Liaoning, Shenyang, 110036, China.
| |
Collapse
|