1
|
Yi L, Han N, Li Z, Jiang H, Cao Z. Relaxin-2 promotes osteoblastic differentiation mediated by epidermal growth factor and epidermal growth factor receptor signaling. Biotechnol Appl Biochem 2025; 72:260-267. [PMID: 39219221 DOI: 10.1002/bab.2661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Loss of osteogenic differentiation potential of osteoblasts has been associated with the pathogenesis of osteoporosis. Thus, stimulation of osteoblastic differentiation is a therapeutic strategy for osteoporosis. Relaxin-2 is a peptide hormone with potent biological functions. However, the effects of Relaxin-2 in osteoblastic differentiation and osteoporosis have not been reported before. Here, we report a novel physiological role of Relaxin-2 in promoting osteoblastic differentiation and mineralization of MC3T3-E1 cells. Our results indicate that exposure to Relaxin-2 upregulated the expression, and elevated the activity of alkaline phosphatase (ALP) when MC3T3-E1 cells were cultured in osteogenic differentiation medium (OM). Additionally, Relaxin-2 upregulated the mRNA levels of osteocalcin (ocn), osteopontin (opn), and collagen type I alpha 1 (Col1a1). The alizarin red S staining assay revealed that Relaxin-2 promoted the mineralization of MC3T3-E1 cells. We also found that Relaxin-2 increased the expression of Runx-2 as well as the epidermal growth factor (EGF) and epidermal growth factor receptor (EGFR). Importantly, silencing of EGF abolished the effects of Relaxin-2 in osteoblastic differentiation and related gene expression. These findings suggest that Relaxin-2 stimulates osteogenic differentiation through activating EGF/EGFR signaling.
Collapse
Affiliation(s)
- Lankai Yi
- Department of Hand, Foot, and Orthopedics Surgery, Weifang People's Hospital, Weifang, Shandong Province, China
| | - Ning Han
- Department of Hand, Foot, and Orthopedics Surgery, Weifang People's Hospital, Weifang, Shandong Province, China
| | - Zhong Li
- Department of Hand, Foot, and Orthopedics Surgery, Weifang People's Hospital, Weifang, Shandong Province, China
| | - Housen Jiang
- Department of Hand, Foot, and Orthopedics Surgery, Weifang People's Hospital, Weifang, Shandong Province, China
| | - Zhenhao Cao
- Department of Hand, Foot, and Orthopedics Surgery, Weifang People's Hospital, Weifang, Shandong Province, China
| |
Collapse
|
2
|
Tynior W, Hudy D, Gołąbek K, Raczkowska-Siostrzonek A, Strzelczyk JK. Expression of AMELX, AMBN, ENAM, TUFT1, FAM83H and MMP20 Genes in Buccal Epithelial Cells from Patients with Molar Incisor Hypomineralization (MIH)-A Pilot Study. Int J Mol Sci 2025; 26:766. [PMID: 39859478 PMCID: PMC11766068 DOI: 10.3390/ijms26020766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/30/2024] [Accepted: 01/14/2025] [Indexed: 01/30/2025] Open
Abstract
Molar incisor hypomineralization (MIH) is a developmental defect that affects the enamel tissue of permanent teeth. Clinicians may observe a range of opacities in the affected teeth, varying from white to creamy, yellow, and brown. Of particular interest is an etiology of MIH that has not been rigorously elucidated. Researchers believe that there are many potential etiological factors with strong genetic and/or epigenetic influence. The primary factors contributing to the risk of MIH development include specific medical conditions and circumstances. These encompass prematurity, cesarean delivery, perinatal hypoxia, and various health issues such as measles, urinary tract infections, otitis media, gastrointestinal disorders, bronchitis, kidney diseases, pneumonia, and asthma. Although genetic research in this area has received substantial attention, the investigation of epigenetic factors remains comparatively underexplored. Special attention is given to genes and their protein products involved in amelogenesis. Examples of such genes are AMELX, AMBN, ENAM, TUFT1, FAM83H, and MMP20. The median relative FAM83H gene expression in the control group was 0.038 (0.031-0.061) and 0.045 (0.032-0.087) in the study group in buccal swabs. The median relative TUFT1 gene expression in the control group was 0.328 (0.247-0.456) and 0.704 (0.334-1.183) in the study group in buccal swabs. Furthermore, children with MIH had significantly higher TUFT1 expression levels compared to the control group (p-value = 0.0043). Alterations in the expression of the TUFT1 and FAM83H genes could be contributing factors to MIH pathogenesis. Nonetheless, further investigation is essential to comprehensively elucidate the roles of all analyzed genes in the pathogenesis of MIH.
Collapse
Affiliation(s)
- Wojciech Tynior
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 19 Jordana St., 41-808 Zabrze, Poland
| | - Dorota Hudy
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 19 Jordana St., 41-808 Zabrze, Poland
| | - Karolina Gołąbek
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 19 Jordana St., 41-808 Zabrze, Poland
| | - Agnieszka Raczkowska-Siostrzonek
- Department of Dental Surgery, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 17 Plac Akademicki, 41-902 Bytom, Poland
| | - Joanna Katarzyna Strzelczyk
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 19 Jordana St., 41-808 Zabrze, Poland
| |
Collapse
|
3
|
Zhu S, Chen W, Masson A, Li YP. Cell signaling and transcriptional regulation of osteoblast lineage commitment, differentiation, bone formation, and homeostasis. Cell Discov 2024; 10:71. [PMID: 38956429 PMCID: PMC11219878 DOI: 10.1038/s41421-024-00689-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 05/04/2024] [Indexed: 07/04/2024] Open
Abstract
The initiation of osteogenesis primarily occurs as mesenchymal stem cells undergo differentiation into osteoblasts. This differentiation process plays a crucial role in bone formation and homeostasis and is regulated by two intricate processes: cell signal transduction and transcriptional gene expression. Various essential cell signaling pathways, including Wnt, BMP, TGF-β, Hedgehog, PTH, FGF, Ephrin, Notch, Hippo, and Piezo1/2, play a critical role in facilitating osteoblast differentiation, bone formation, and bone homeostasis. Key transcriptional factors in this differentiation process include Runx2, Cbfβ, Runx1, Osterix, ATF4, SATB2, and TAZ/YAP. Furthermore, a diverse array of epigenetic factors also plays critical roles in osteoblast differentiation, bone formation, and homeostasis at the transcriptional level. This review provides an overview of the latest developments and current comprehension concerning the pathways of cell signaling, regulation of hormones, and transcriptional regulation of genes involved in the commitment and differentiation of osteoblast lineage, as well as in bone formation and maintenance of homeostasis. The paper also reviews epigenetic regulation of osteoblast differentiation via mechanisms, such as histone and DNA modifications. Additionally, we summarize the latest developments in osteoblast biology spurred by recent advancements in various modern technologies and bioinformatics. By synthesizing these insights into a comprehensive understanding of osteoblast differentiation, this review provides further clarification of the mechanisms underlying osteoblast lineage commitment, differentiation, and bone formation, and highlights potential new therapeutic applications for the treatment of bone diseases.
Collapse
Affiliation(s)
- Siyu Zhu
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA
| | - Wei Chen
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA.
| | - Alasdair Masson
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA
| | - Yi-Ping Li
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
4
|
Lee DJ, Kim P, Kim HY, Park J, Lee SJ, An H, Heo JS, Lee MJ, Ohshima H, Mizuno S, Takahashi S, Jung HS, Kim SJ. MAST4 regulates stem cell maintenance with DLX3 for epithelial development and amelogenesis. Exp Mol Med 2024; 56:1606-1619. [PMID: 38945953 PMCID: PMC11297042 DOI: 10.1038/s12276-024-01264-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 01/29/2024] [Accepted: 03/19/2024] [Indexed: 07/02/2024] Open
Abstract
The asymmetric division of stem cells permits the maintenance of the cell population and differentiation for harmonious progress. Developing mouse incisors allows inspection of the role of the stem cell niche to provide specific insights into essential developmental phases. Microtubule-associated serine/threonine kinase family member 4 (Mast4) knockout (KO) mice showed abnormal incisor development with low hardness, as the size of the apical bud was decreased and preameloblasts were shifted to the apical side, resulting in amelogenesis imperfecta. In addition, Mast4 KO incisors showed abnormal enamel maturation, and stem cell maintenance was inhibited as amelogenesis was accelerated with Wnt signal downregulation. Distal-Less Homeobox 3 (DLX3), a critical factor in tooth amelogenesis, is considered to be responsible for the development of amelogenesis imperfecta in humans. MAST4 directly binds to DLX3 and induces phosphorylation at three residues within the nuclear localization site (NLS) that promotes the nuclear translocation of DLX3. MAST4-mediated phosphorylation of DLX3 ultimately controls the transcription of DLX3 target genes, which are carbonic anhydrase and ion transporter genes involved in the pH regulation process during ameloblast maturation. Taken together, our data reveal a novel role for MAST4 as a critical regulator of the entire amelogenesis process through its control of Wnt signaling and DLX3 transcriptional activity.
Collapse
Affiliation(s)
- Dong-Joon Lee
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, 03722, Korea
- Department of Oral Histology, Dankook University College of Dentistry, Cheonan, 31116, Korea
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Korea
| | - Pyunggang Kim
- GILO Institute, GILO Foundation, Seoul, 06668, Korea
| | - Hyun-Yi Kim
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, 03722, Korea
- NGeneS Inc., Ansan-si, Gyeonggi-do, 15495, Korea
| | - Jinah Park
- GILO Institute, GILO Foundation, Seoul, 06668, Korea
| | - Seung-Jun Lee
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, 03722, Korea
| | - Haein An
- GILO Institute, GILO Foundation, Seoul, 06668, Korea
| | - Jin Sun Heo
- GILO Institute, GILO Foundation, Seoul, 06668, Korea
| | - Min-Jung Lee
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, 03722, Korea
| | - Hayato Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8514, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Han-Sung Jung
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, 03722, Korea.
| | - Seong-Jin Kim
- GILO Institute, GILO Foundation, Seoul, 06668, Korea.
- Medpacto Inc., Seoul, 06668, Korea.
| |
Collapse
|
5
|
Faria-Teixeira MC, Tordera C, Salvado E Silva F, Vaz-Carneiro A, Iglesias-Linares A. Craniofacial syndromes and class III phenotype: common genotype fingerprints? A scoping review and meta-analysis. Pediatr Res 2024; 95:1455-1475. [PMID: 38347173 PMCID: PMC11126392 DOI: 10.1038/s41390-023-02907-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/03/2023] [Accepted: 10/12/2023] [Indexed: 02/18/2024]
Abstract
Skeletal Class III (SCIII) is among the most challenging craniofacial dysmorphologies to treat. There is, however, a knowledge gap regarding which syndromes share this clinical phenotype. The aims of this study were to: (i) identify the syndromes affected by the SCIII phenotype; (ii) clarify the involvement of maxillary and/or mandibular structures; (iii) explore shared genetic/molecular mechanisms. A two-step strategy was designed: [Step#1] OMIM, MHDD, HPO, GeneReviews and MedGen databases were explored; [Step#2]: Syndromic conditions indexed in [Step#1] were explored in Medline, Pubmed, Scopus, Cochrane Library, WOS and OpenGrey. Eligibility criteria were defined. Individual studies were assessed for risk of bias using the New Ottawa Scale. For quantitative analysis, a meta-analysis was conducted. This scoping review is a hypothesis-generating research. Twenty-two studies met the eligibility criteria. Eight syndromes affected by the SCIII were targeted: Apert syndrome, Crouzon syndrome, achondroplasia, X-linked hypohidrotic ectodermal dysplasia (XLED), tricho-dento-osseous syndrome, cleidocranial dysplasia, Klinefelter and Down syndromes. Despite heterogeneity between studies [p < 0.05], overall effects showed that midface components were affected in Apert and Down Syndromes, lower face in Klinefelter Syndrome and midface and lower face components in XLED. Our review provides new evidence on the craniofacial characteristics of genetically confirmed syndromes exhibiting the SCIII phenotype. Four major regulatory pathways might have a modulatory effect on this phenotype. IMPACT: What does this review add to the existing literature? To date, there is no literature exploring which particular syndromes exhibit mandibular prognathism as a common trait. Through this research, it was possibly to identify the particular syndromes that share the skeletal Class III phenotype (mandibular prognathism) as a common trait highlighting the common genetic and molecular pathways between different syndromes acknowledging their impact in craniofacial development.
Collapse
Affiliation(s)
- Maria Cristina Faria-Teixeira
- Complutense University of Madrid, School of Dentistry, 28040, Madrid, Spain
- University of Lisbon, School of Medicine, University Clinic of Stomatology, 1200, Lisbon, Portugal
| | - Cristina Tordera
- Complutense University of Madrid, School of Dentistry, 28040, Madrid, Spain
| | | | | | - Alejandro Iglesias-Linares
- Complutense University of Madrid, School of Dentistry, 28040, Madrid, Spain.
- BIOCRAN (Craniofacial Biology) Research Group, Complutense University, 28040, Madrid, Spain.
| |
Collapse
|
6
|
Lee JH. New Understandings from the Biophysical Study of the Structure, Dynamics, and Function of Nucleic Acids 2.0. Int J Mol Sci 2022; 23:ijms232415822. [PMID: 36555459 PMCID: PMC9781435 DOI: 10.3390/ijms232415822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022] Open
Abstract
Nucleic acids play an essential role in all biological processes related to genetic information, such as replication, transcription, translation, repair, and recombination [...].
Collapse
Affiliation(s)
- Joon-Hwa Lee
- Department of Chemistry and RINS, Gyeongsang National University, Jinju 52828, Gyeongnam, Republic of Korea
| |
Collapse
|
7
|
Raik S, Thakur R, Rattan V, Kumar N, Pal A, Bhattacharyya S. Temporal Modulation of DNA Methylation and Gene Expression in Monolayer and 3D Spheroids of Dental Pulp Stem Cells during Osteogenic Differentiation: A Comparative Study. Tissue Eng Regen Med 2022; 19:1267-1282. [PMID: 36221017 PMCID: PMC9679125 DOI: 10.1007/s13770-022-00485-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Human mesenchymal stem cells are being used for various regenerative applications in past decades. This study chronicled a temporal profile of the transcriptional pattern and promoter methylation status of the osteogenic related gene in dental pulp stem cells (DPSCs) derived from 3-dimensional spheroid culture (3D) vis a vis 2-dimensional (2D) monolayer culture upon osteogenic induction. METHODS Biomimetic properties of osteogenesis were determined by alkaline phosphatase assay and alizarin red staining. Gene expression and promoter methylation status of osteogenic genes such as runt-related transcription factor-2, collagen1α1, osteocalcin (OCN), and DLX5 (distal-homeobox) were performed by qPCR assay and bisulfite sequencing, respectively. Furthermore, µ-Computed tomography (micro-CT) was performed to examine the new bone formation in critical-sized rat calvarial bone defect model. RESULTS Our results indicated a greater inclination of spheroid culture-derived DPSCs toward osteogenic lineage than the monolayer culture. The bisulfite sequencing of the promoter region of osteogenic genes revealed sustenance of low methylation levels in DPSCs during the progression of osteogenic differentiation. However, the significant difference in the methylation pattern between 2D and 3D derived DPSCs were identified only for OCN gene promoter. We observed differences in the mRNA expression pattern of epigenetic writers such as DNA methyltransferases (DNMTs) and methyl-cytosine dioxygenases (TET) between the two culture conditions. Further, the DPSC spheroids showed enhanced new bone formation ability in an animal model of bone defect compared to the cells cultivated in a 2D platform which further substantiated our in-vitro observations. CONCLUSION The distinct cellular microenvironment induced changes in DNA methylation pattern and expression of epigenetic regulators such as DNMTs and TETs genes may lead to increase expression of osteogenic markers in 3D spheroid culture of DPSCs which make DPSCs spheroids suitable for osteogenic regeneration compared to monolayers.
Collapse
Affiliation(s)
- Shalini Raik
- Department of Biophysics, Post Graduate Institution of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Reetu Thakur
- Department of Biochemistry, Post Graduate Institution of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Vidya Rattan
- Unit of Oral and Maxillofacial Surgery, Department of Oral Health Sciences, PGIMER, Chandigarh, India
| | - Navin Kumar
- Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Arnab Pal
- Department of Biochemistry, Post Graduate Institution of Medical Education and Research (PGIMER), Chandigarh, 160012, India.
| | - Shalmoli Bhattacharyya
- Department of Biophysics, Post Graduate Institution of Medical Education and Research (PGIMER), Chandigarh, 160012, India.
| |
Collapse
|
8
|
Salt Dependence of DNA Binding Activity of Human Transcription Factor Dlx3. Int J Mol Sci 2022; 23:ijms23169497. [PMID: 36012753 PMCID: PMC9409194 DOI: 10.3390/ijms23169497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 11/17/2022] Open
Abstract
Distal-less 3 (Dlx3) is a homeobox-containing transcription factor and plays a crucial role in the development and differentiation process. Human Dlx3 consists of two transactivation domains and a homeobox domain (HD) that selectively binds to the consensus site (5'-TAATT-3') of the DNA duplex. Here, we performed chemical shift perturbation experiments on Dlx3-HD in a complex with a 10-base-paired (10-bp) DNA duplex under various salt conditions. We also acquired the imino proton spectra of the 10-bp DNA to monitor the changes in base-pair stabilities during titration with Dlx3-HD. Our study demonstrates that Dlx3-HD selectively recognizes its consensus DNA sequences through the α3 helix and L1 loop regions with a unique dynamic feature. The dynamic properties of the binding of Dlx3-HD to its consensus DNA sequence can be modulated by varying the salt concentrations. Our study suggested that this unique structural and dynamic feature of Dlx3-HD plays an important role in target DNA recognition, which might be associated with tricho-dento-osseous syndrome.
Collapse
|
9
|
Fazel M, Afshari E, Jarrahi N. Dental management of tricho-dento-osseous syndrome in adolescent patients: Literature review and case presentation. Dent Res J (Isfahan) 2022; 18:98. [PMID: 35003563 PMCID: PMC8672132 DOI: 10.4103/1735-3327.330879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 02/22/2021] [Accepted: 04/19/2021] [Indexed: 11/04/2022] Open
Abstract
Tricho-dento-osseous syndrome (TDO) is a rare autosomal dominant disorder with complete penetrance. Common clinical features include abnormalities of hair, teeth, and skull. Dental management of TDO patients is quite challenging in terms of existing dental and skeletal problems. The current article presents a 12-year-old girl suffering TDO, followed by a review on the published literature pertaining to the dental management of TDO patients. Patient history included, rejected corneal transplantation, stone-forming kidneys, and several previous dental treatments. She was noted to have signs of mandibular prognatia, frontal bossing of the skull, mild bilateral tibial bowing, microstomia, and labial fissures. Dental findings included severe generalized enamel defects, discolored teeth, microdontia, anterior open-bite, posterior cross-bite, deep periodontal pockets, hyperplastic inflamed gingiva, taurodontism of permanent molars, dental periapical radiolucencies, and missing teeth. She was the only child of healthy, nonconsanguineous parents with no familial history of similar congenital syndrome or dental abnormalities. A treatment plan was established based on medical/dental history and findings, using a team-based approach. This article emphasizes the importance of a multidisciplinary approach for the dental management of patients suffering TDO.
Collapse
Affiliation(s)
- Mojtaba Fazel
- Department of Emergency Medicine, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Elham Afshari
- Department of Pediatric Dentistry, School of Dentistry, Golestan university of Medical Sciences, Gorgan, Iran
| | - Neda Jarrahi
- Department of Prosthodontics, School of Dentistry, North Khorasan University of Medical Sciences, Bojnord, Iran
| |
Collapse
|
10
|
Li D, Yuan Q, Xiong L, Li A, Xia Y. The miR-4739/DLX3 Axis Modulates Bone Marrow-Derived Mesenchymal Stem Cell (BMSC) Osteogenesis Affecting Osteoporosis Progression. Front Endocrinol (Lausanne) 2021; 12:703167. [PMID: 34925225 PMCID: PMC8678599 DOI: 10.3389/fendo.2021.703167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 11/08/2021] [Indexed: 11/23/2022] Open
Abstract
Osteoporosis is a complex multifactorial disorder linked to various risk factors and medical conditions. Bone marrow-derived mesenchymal stem cell (BMSC) dysfunction potentially plays a critical role in osteoporosis pathogenesis. Herein, the study identified that miR-4739 was upregulated in BMSC cultures harvested from osteoporotic subjects. BMSCs were isolated from normal and osteoporotic bone marrow tissues and identified for their osteogenic differentiation potential. In osteoporotic BMSCs, miR-4739 overexpression significantly inhibited cell viability, osteoblast differentiation, mineralized nodule formation, and heterotopic bone formation, whereas miR-4739 inhibition exerted opposite effects. Through direct binding, miR-4739 inhibited distal-less homeobox 3 (DLX3) expression. In osteoporotic BMSCs, DLX3 knockdown also inhibited BMSC viability and osteogenic differentiation. Moreover, DLX3 knockdown partially attenuated the effects of miR-4739 inhibition upon BMSCs. Altogether, the miR-4739/DLX3 axis modulates the capacity of BMSCs to differentiate into osteoblasts, which potentially plays a role in osteoporosis pathogenesis. The in vivo and clinical functions of the miR-4739/DLX3 axis require further investigation.
Collapse
Affiliation(s)
- Ding Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Ding Li,
| | - Qi Yuan
- Department of Hepatopathy, The Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Liang Xiong
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Aoyu Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yu Xia
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
11
|
DLX3 regulates osteogenic differentiation of bone marrow mesenchymal stem cells via Wnt/β-catenin pathway mediated histone methylation of DKK4. Biochem Biophys Res Commun 2019; 516:171-176. [PMID: 31202458 DOI: 10.1016/j.bbrc.2019.06.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 06/06/2019] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Distal-less homeobox 3 (DLX3) is an important transcription factor involved in the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). However, the underlying mechanism is not clear. This study investigated the underlying mechanism of DLX3 in osteogenic differentiation. METHODS DLX3 overexpression and knockdown in cells were achieved using lentiviruses. The osteogenic differentiation of BMSCs was detected using alkaline phosphatase expression, alizarin red staining, real-time quantitative polymerase chain reaction (RT-qPCR), Western blotting, and chromatin immunoprecipitation (ChIP) assays. RESULTS DLX3 overexpression promoted the osteogenic differentiation of BMSCs, whereas DLX3 knockdown reduced the osteogenic differentiation of BMSCs. RT-qPCR and Western blotting assays showed that DLX3 modulated osteogenic differentiation via the Wnt/β-catenin pathway. ChIP-qPCR showed that DLX3 knockdown promoted DKK4 expression by decreasing the enrichment of histone H3 lysine 27 trimethylation (H3K27me3) in the promotor region of DKK4. CONCLUSION Our data implied that DLX3 regulated Wnt/β-catenin pathway through histone modification of DKK4 during the osteogenic differentiation of BMSCs.
Collapse
|
12
|
Abstract
The group of sclerosing bone dysplasia's is a clinically and genetically heterogeneous group of rare bone disorders which, according to the latest Nosology and classification of genetic skeletal disorders (2015), can be subdivided in three subgroups; the neonatal osteosclerotic dysplasias, the osteopetroses and related disorders and the other sclerosing bone disorders. Here, we give an overview of the most important radiographic and clinical symptoms, the underlying genetic defect and potential treatment options of the different sclerosing dysplasias included in these subgroups.
Collapse
Affiliation(s)
- Eveline Boudin
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Wim Van Hul
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium.
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW The group of sclerosing bone disorders encompasses a variety of disorders all marked by increased bone mass. In this review, we give an overview of the genetic causes of this heterogeneous group of disorders and briefly touch upon the value of these findings for the development of novel therapeutic agents. RECENT FINDINGS Advances in the next-generation sequencing technologies are accelerating the molecular dissection of the pathogenic mechanisms underlying skeletal dysplasias. Throughout the years, the genetic cause of these disorders has been extensively studied which resulted in the identification of a variety of disease-causing genes and pathways that are involved in bone formation by osteoblasts, bone resorption by osteoclasts, or both processes. Due to this rapidly increasing knowledge, the insights into the regulatory mechanisms of bone metabolism are continuously improving resulting in the identification of novel therapeutic targets for disorders with reduced bone mass and increased bone fragility.
Collapse
Affiliation(s)
- Raphaël De Ridder
- Centre of Medical Genetics, University of Antwerp & University Hospital Antwerp, Antwerp, Belgium
| | - Eveline Boudin
- Centre of Medical Genetics, University of Antwerp & University Hospital Antwerp, Antwerp, Belgium
| | - Geert Mortier
- Centre of Medical Genetics, University of Antwerp & University Hospital Antwerp, Antwerp, Belgium
| | - Wim Van Hul
- Centre of Medical Genetics, University of Antwerp & University Hospital Antwerp, Antwerp, Belgium.
| |
Collapse
|
14
|
DLX3 promotes bone marrow mesenchymal stem cell proliferation through H19/miR-675 axis. Clin Sci (Lond) 2017; 131:2721-2735. [PMID: 28963438 DOI: 10.1042/cs20171231] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/03/2017] [Accepted: 09/27/2017] [Indexed: 11/17/2022]
Abstract
The underlying molecular mechanism of the increased bone mass phenotype in Tricho-dento-osseous (TDO) syndrome remains largely unknown. Our previous study has shown that the TDO point mutation c.533A>G, Q178R in DLX3 could increase bone density in a TDO patient and transgenic mice partially through delaying senescence in bone marrow mesenchymal stem cells (BMSCs). In the present study, we provided a new complementary explanation for TDO syndrome: the DLX3 (Q178R) mutation increased BMSCs proliferation through H19/miR-675 axis. We found that BMSCs derived from the TDO patient (TDO-BMSCs) had stronger proliferation ability than controls by clonogenic and CCK-8 assays. Next, experiments of overexpression and knockdown of wild-type DLX3 via lentiviruses in normal BMSCs confirmed the results by showing its negative role in cell proliferation. Through validated high-throughput data, we found that the DLX3 mutation reduced the expression of H19 and its coexpression product miR-675 in BMSCs. Function and rescue assays suggested that DLX3, long noncoding RNA H19, and miR-675 are negative factors in modulation of BMSCs proliferation as well as NOMO1 expression. The original higher proliferation rate and the expression of NOMO1 in TDO-BMSCs were suppressed after H19 restoration. Collectively, it indicates that DLX3 regulates BMSCs proliferation through H19/miR-675 axis. Moreover, the increased expression of NOMO1 and decreased H19/miR-675 expression in DLX3 (Q178R) transgenic mice, accompanying with accrual bone mass and density detected by micro-CT, further confirmed our hypothesis. In summary, we, for the first time, demonstrate that DLX3 mutation interferes with bone formation partially through H19/miR-675/NOMO1 axis in TDO syndrome.
Collapse
|
15
|
Hofstetter S, Welle M, Gorgas D, Balmer P, Roosje P, Mock T, Meylan M, Jagannathan V, Drögemüller C. A de novo germline mutation of DLX3 in a Brown Swiss calf with tricho-dento-osseus-like syndrome. Vet Dermatol 2017; 28:616-e150. [PMID: 28670783 DOI: 10.1111/vde.12462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2017] [Indexed: 11/30/2022]
Abstract
OBJECTIVE A novel congenital disorder affecting a calf was observed, and its phenotype and genetic mutation identified. ANIMAL A six-month-old female Brown Swiss calf. METHODS Diagnostic investigation and whole genome sequencing of a case parent trio was performed. RESULTS The calf had a dull kinky coat with mild hypotrichosis, and teeth with brown staining and enamel defects. Histological examination of skin biopsies was compatible with a follicular dysplasia. Radiography and computed tomography revealed thickening of the skull bones and large pulp cavities with a marked thinning of enamel affecting all teeth. A de novo germline mutation affecting the distal-less homeobox gene (DLX3) was identified. The 10 bp frameshift mutation in exon 3 of the bovine DLX3 gene is predicted to replace the second C-terminal transactivation domain of the wild-type protein by a recoded peptide of 99 amino acids without any sequence similarity. CONCLUSION AND CLINICAL IMPORTANCE A causative mutation for a sporadic phenotype resembling human tricho-dento-osseous syndrome was identified after detection of a de novo germline mutation in the DLX3 gene.
Collapse
Affiliation(s)
- Sonja Hofstetter
- Vetsuisse Faculty, Institute of Genetics, University of Bern, Bremgartenstrasse 109a, Bern, 3001, Switzerland
| | - Monika Welle
- Vetsuisse Faculty, Institute of Animal Pathology, University of Bern, Länggassstrasse 122, Bern, 3001, Switzerland.,DermFocus, University of Bern, Bremgartenstrasse 109a, Bern, 3001, Switzerland
| | - Daniela Gorgas
- Vetsuisse Faculty, Division of Radiology, Department of Clinical Veterinary Medicine, University of Bern, Länggassstrasse 128, Bern, 3001, Switzerland
| | - Pierre Balmer
- DermFocus, University of Bern, Bremgartenstrasse 109a, Bern, 3001, Switzerland.,Vetsuisse Faculty, Division of Clinical Dermatology, Department of Clinical Veterinary Medicine, University of Bern, Länggassstrasse 128, Bern, 3001, Switzerland
| | - Petra Roosje
- DermFocus, University of Bern, Bremgartenstrasse 109a, Bern, 3001, Switzerland.,Vetsuisse Faculty, Division of Clinical Dermatology, Department of Clinical Veterinary Medicine, University of Bern, Länggassstrasse 128, Bern, 3001, Switzerland
| | - Thomas Mock
- Vetsuisse Faculty, Clinic for Ruminants, University of Bern, Bremgartenstrasse 109a, Bern, 3012, Switzerland
| | - Mireille Meylan
- Vetsuisse Faculty, Clinic for Ruminants, University of Bern, Bremgartenstrasse 109a, Bern, 3012, Switzerland
| | - Vidhya Jagannathan
- Vetsuisse Faculty, Institute of Genetics, University of Bern, Bremgartenstrasse 109a, Bern, 3001, Switzerland
| | - Cord Drögemüller
- Vetsuisse Faculty, Institute of Genetics, University of Bern, Bremgartenstrasse 109a, Bern, 3001, Switzerland
| |
Collapse
|