1
|
Caldovic L, Ahn JJ, Andricovic J, Balick VM, Brayer M, Chansky PA, Dawson T, Edwards AC, Felsen SE, Ismat K, Jagannathan SV, Mann BT, Medina JA, Morizono T, Morizono M, Salameh S, Vashist N, Williams EC, Zhou Z, Morizono H. Datamining approaches for examining the low prevalence of N-acetylglutamate synthase deficiency and understanding transcriptional regulation of urea cycle genes. J Inherit Metab Dis 2024; 47:1175-1193. [PMID: 37847851 PMCID: PMC11586597 DOI: 10.1002/jimd.12687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/19/2023]
Abstract
Ammonia, which is toxic to the brain, is converted into non-toxic urea, through a pathway of six enzymatically catalyzed steps known as the urea cycle. In this pathway, N-acetylglutamate synthase (NAGS, EC 2.3.1.1) catalyzes the formation of N-acetylglutamate (NAG) from glutamate and acetyl coenzyme A. NAGS deficiency (NAGSD) is the rarest of the urea cycle disorders, yet is unique in that ureagenesis can be restored with the drug N-carbamylglutamate (NCG). We investigated whether the rarity of NAGSD could be due to low sequence variation in the NAGS genomic region, high NAGS tolerance for amino acid replacements, and alternative sources of NAG and NCG in the body. We also evaluated whether the small genomic footprint of the NAGS catalytic domain might play a role. The small number of patients diagnosed with NAGSD could result from the absence of specific disease biomarkers and/or short NAGS catalytic domain. We screened for sequence variants in NAGS regulatory regions in patients suspected of having NAGSD and found a novel NAGS regulatory element in the first intron of the NAGS gene. We applied the same datamining approach to identify regulatory elements in the remaining urea cycle genes. In addition to the known promoters and enhancers of each gene, we identified several novel regulatory elements in their upstream regions and first introns. The identification of cis-regulatory elements of urea cycle genes and their associated transcription factors holds promise for uncovering shared mechanisms governing urea cycle gene expression and potentially leading to new treatments for urea cycle disorders.
Collapse
Affiliation(s)
- Ljubica Caldovic
- Center for Genetic Medicine ResearchChildren's National Research Institute, Children's National HospitalWashingtonDCUSA
- Department of Genomics and Precision Medicine, School of Medicine and Health SciencesThe George Washington UniversityWashingtonDCUSA
| | - Julie J. Ahn
- Department of Anatomy and Cell BiologyThe George Washington University School of Medicine and Health SciencesWashingtonDCUSA
| | - Jacklyn Andricovic
- Department of Anatomy and Cell BiologyThe George Washington University School of Medicine and Health SciencesWashingtonDCUSA
| | - Veronica M. Balick
- Department of Biochemistry and Molecular MedicineThe George Washington University School of Medicine and Health SciencesWashingtonDCUSA
| | - Mallory Brayer
- Department of Biological SciencesThe George Washington UniversityWashingtonDCUSA
| | - Pamela A. Chansky
- The Institute for Biomedical ScienceSchool of Medicine and Health Sciences, George Washington UniversityWashingtonDCUSA
| | - Tyson Dawson
- The Institute for Biomedical ScienceSchool of Medicine and Health Sciences, George Washington UniversityWashingtonDCUSA
- AMPEL BioSolutions LLCCharlottesvilleVirginiaUSA
| | - Alex C. Edwards
- The Institute for Biomedical ScienceSchool of Medicine and Health Sciences, George Washington UniversityWashingtonDCUSA
- Center for Neuroscience ResearchChildren's National Research Institute, Children's National HospitalWashingtonDCUSA
| | - Sara E. Felsen
- The Institute for Biomedical ScienceSchool of Medicine and Health Sciences, George Washington UniversityWashingtonDCUSA
- Center for Neuroscience ResearchChildren's National Research Institute, Children's National HospitalWashingtonDCUSA
| | - Karim Ismat
- Center for Genetic Medicine ResearchChildren's National Research Institute, Children's National HospitalWashingtonDCUSA
- Department of Genomics and Precision Medicine, School of Medicine and Health SciencesThe George Washington UniversityWashingtonDCUSA
| | - Sveta V. Jagannathan
- The Institute for Biomedical ScienceSchool of Medicine and Health Sciences, George Washington UniversityWashingtonDCUSA
| | - Brendan T. Mann
- Department of Microbiology, Immunology, and Tropical MedicineSchool of Medicine and Health Sciences, George Washington UniversityWashingtonDCUSA
| | - Jacob A. Medina
- The Institute for Biomedical ScienceSchool of Medicine and Health Sciences, George Washington UniversityWashingtonDCUSA
| | - Toshio Morizono
- College of Science and EngineeringUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Michio Morizono
- College of Science and EngineeringUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Shatha Salameh
- Department of Pharmacology & PhysiologySchool of Medicine and Health Sciences, George Washington UniversityWashingtonDCUSA
- Sheikh Zayed Institute for Pediatric Surgical InnovationChildren's National HospitalWashingtonDCUSA
| | - Neerja Vashist
- Center for Genetic Medicine ResearchChildren's National Research Institute, Children's National HospitalWashingtonDCUSA
- Department of Genomics and Precision Medicine, School of Medicine and Health SciencesThe George Washington UniversityWashingtonDCUSA
| | - Emily C. Williams
- Department of Anatomy and Cell BiologyThe George Washington University School of Medicine and Health SciencesWashingtonDCUSA
- The George Washington University Cancer Center, School of Medicine and Health SciencesGeorge Washington UniversityWashingtonDCUSA
| | - Zhe Zhou
- Department of Civil and Environmental EngineeringThe George Washington UniversityWashingtonDCUSA
| | - Hiroki Morizono
- Center for Genetic Medicine ResearchChildren's National Research Institute, Children's National HospitalWashingtonDCUSA
- Department of Genomics and Precision Medicine, School of Medicine and Health SciencesThe George Washington UniversityWashingtonDCUSA
| |
Collapse
|
2
|
Wang Z, Lao J, Kang X, Xie Z, He W, Liu X, Zhong C, Zhang S, Jin J. Insights into the metabolic profiling of Polygonati Rhizoma fermented by Lactiplantibacillus plantarum under aerobic and anaerobic conditions using a UHPLC-QE-MS/MS system. Front Nutr 2023; 10:1093761. [PMID: 36776612 PMCID: PMC9908587 DOI: 10.3389/fnut.2023.1093761] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Introduction Polygonati Rhizoma is a multi-purpose food with medicinal uses. Fermentation of Polygonati Rhizoma by lactic acid bacteria could provide new insights into the development of Polygonati Rhizoma products. Methods In this study, Lactiplantibacillus plantarum was fermented with Polygonati Rhizoma extracts in a bioreactor under aerobic and anaerobic conditions with pH and DO real-time detection. Metabolic profiling was determined by UHPLC-QE-MS/MS system. Principal component analysis and orthogonal partial least-squares discriminant analysis were used to perform multivariate analysis. Results A total of 98 differential metabolites were identified in broth after fermentation, and 36 were identified between fermentation under aerobic and anaerobic conditions. The main metabolic pathways in the fermentation process are ABC transport and amino acid biosynthesis. Most of the compounds such as L-arginine, L-aspartic acid, leucine, L-lysine, citrate, inosine, carnitine, betaine, and thiamine were significantly increased during fermentation, playing a role in enhancing food flavor. Compared with anaerobic fermentation, aerobic conditions led to a significant rise in the levels of some compounds such as valine, isoleucine, and glutamate; this increase was mainly related to branched-chain amino acid transaminase, isocitrate dehydrogenase, and glutamate dehydrogenase. Discussion Aerobic fermentation is more beneficial for the fermentation of Polygonati Rhizoma by L. plantarum to produce flavor and functional substances. This study is the first report on the fermentation of Polygonati Rhizoma by L. plantarum and provides insights that would be applicable in the development of Polygonati Rhizoma fermented products.
Collapse
Affiliation(s)
- ZiLing Wang
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China,Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, Hunan, China
| | - Jia Lao
- Resgreen Group International Inc., Changsha, China
| | - XingYi Kang
- College of Mechanical and Energy Engineering, Shaoyang University, Shaoyang, Hunan, China
| | - ZhenNi Xie
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China,Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, Hunan, China
| | - Wei He
- Resgreen Group International Inc., Changsha, China
| | - XiaoLiu Liu
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China,Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, Hunan, China
| | - Can Zhong
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, Hunan, China
| | - ShuiHan Zhang
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, Hunan, China
| | - Jian Jin
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, Hunan, China,*Correspondence: Jian Jin,
| |
Collapse
|
3
|
Gene delivery corrects N-acetylglutamate synthase deficiency and enables insights in the physiological impact of L-arginine activation of N-acetylglutamate synthase. Sci Rep 2021; 11:3580. [PMID: 33574402 PMCID: PMC7878489 DOI: 10.1038/s41598-021-82994-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 01/20/2021] [Indexed: 11/19/2022] Open
Abstract
The urea cycle protects the central nervous system from ammonia toxicity by converting ammonia to urea. N-acetylglutamate synthase (NAGS) catalyzes formation of N-acetylglutamate, an essential allosteric activator of carbamylphosphate synthetase 1. Enzymatic activity of mammalian NAGS doubles in the presence of L-arginine, but the physiological significance of NAGS activation by L-arginine has been unknown. The NAGS knockout (Nags−/−) mouse is an animal model of inducible hyperammonemia, which develops hyperammonemia without N-carbamylglutamate and L-citrulline supplementation (NCG + Cit). We used adeno associated virus (AAV) based gene transfer to correct NAGS deficiency in the Nags−/− mice, established the dose of the vector needed to rescue Nags−/− mice from hyperammonemia and measured expression levels of Nags mRNA and NAGS protein in the livers of rescued animals. This methodology was used to investigate the effect of L-arginine on ureagenesis in vivo by treating Nags−/− mice with AAV vectors encoding either wild-type or E354A mutant mouse NAGS (mNAGS), which is not activated by L-arginine. The Nags−/− mice expressing E354A mNAGS were viable but had elevated plasma ammonia concentration despite similar levels of the E354A and wild-type mNAGS proteins. The corresponding mutation in human NAGS (NP_694551.1:p.E360D) that abolishes binding and activation by L-arginine was identified in a patient with NAGS deficiency. Our results show that NAGS deficiency can be rescued by gene therapy, and suggest that L-arginine binding to the NAGS enzyme is essential for normal ureagenesis.
Collapse
|