Imanbekova M, Perumal AS, Kheireddine S, Nicolau DV, Wachsmann-Hogiu S. Lensless, reflection-based dark-field microscopy (RDFM) on a CMOS chip.
BIOMEDICAL OPTICS EXPRESS 2020;
11:4942-4959. [PMID:
33014592 PMCID:
PMC7510856 DOI:
10.1364/boe.394615]
[Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 06/11/2023]
Abstract
We present for the first time a lens-free, oblique illumination imaging platform for on-sensor dark- field microscopy and shadow-based 3D object measurements. It consists of an LED point source that illuminates a 5-megapixel, 1.4 µm pixel size, back-illuminated CMOS sensor at angles between 0° and 90°. Analytes (polystyrene beads, microorganisms, and cells) were placed and imaged directly onto the sensor. The spatial resolution of this imaging system is limited by the pixel size (∼1.4 µm) over the whole area of the sensor (3.6×2.73 mm). We demonstrated two imaging modalities: (i) shadow imaging for estimation of 3D object dimensions (on polystyrene beads and microorganisms) when the illumination angle is between 0° and 85°, and (ii) dark-field imaging, at >85° illumination angles. In dark-field mode, a 3-4 times drop in background intensity and contrast reversal similar to traditional dark-field imaging was observed, due to larger reflection intensities at those angles. With this modality, we were able to detect and analyze morphological features of bacteria and single-celled algae clusters.
Collapse