1
|
Ramezani A, Britton S, Zandi R, Alber M, Nematbakhsh A, Chen W. A multiscale chemical-mechanical model predicts impact of morphogen spreading on tissue growth. NPJ Syst Biol Appl 2023; 9:16. [PMID: 37210381 DOI: 10.1038/s41540-023-00278-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 05/03/2023] [Indexed: 05/22/2023] Open
Abstract
The exact mechanism controlling cell growth remains a grand challenge in developmental biology and regenerative medicine. The Drosophila wing disc tissue serves as an ideal biological model to study mechanisms involved in growth regulation. Most existing computational models for studying tissue growth focus specifically on either chemical signals or mechanical forces. Here we developed a multiscale chemical-mechanical model to investigate the growth regulation mechanism based on the dynamics of a morphogen gradient. By comparing the spatial distribution of dividing cells and the overall tissue shape obtained in model simulations with experimental data of the wing disc, it is shown that the size of the domain of the Dpp morphogen is critical in determining tissue size and shape. A larger tissue size with a faster growth rate and more symmetric shape can be achieved if the Dpp gradient spreads in a larger domain. Together with Dpp absorbance at the peripheral zone, the feedback regulation that downregulates Dpp receptors on the cell membrane allows for further spreading of the morphogen away from its source region, resulting in prolonged tissue growth at a more spatially homogeneous growth rate.
Collapse
Affiliation(s)
- Alireza Ramezani
- Department of Physics and Astronomy, University of California, Riverside, CA, 92521, USA
- Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, CA, 92521, USA
| | - Samuel Britton
- Department of Mathematics, University of California, Riverside, CA, 92521, USA
| | - Roya Zandi
- Department of Physics and Astronomy, University of California, Riverside, CA, 92521, USA
- Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, CA, 92521, USA
| | - Mark Alber
- Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, CA, 92521, USA
- Department of Mathematics, University of California, Riverside, CA, 92521, USA
| | - Ali Nematbakhsh
- Department of Mathematics, University of California, Riverside, CA, 92521, USA.
| | - Weitao Chen
- Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, CA, 92521, USA.
- Department of Mathematics, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
2
|
From spikes to intercellular waves: Tuning intercellular calcium signaling dynamics modulates organ size control. PLoS Comput Biol 2021; 17:e1009543. [PMID: 34723960 PMCID: PMC8601605 DOI: 10.1371/journal.pcbi.1009543] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 11/18/2021] [Accepted: 10/07/2021] [Indexed: 12/18/2022] Open
Abstract
Information flow within and between cells depends significantly on calcium (Ca2+) signaling dynamics. However, the biophysical mechanisms that govern emergent patterns of Ca2+ signaling dynamics at the organ level remain elusive. Recent experimental studies in developing Drosophila wing imaginal discs demonstrate the emergence of four distinct patterns of Ca2+ activity: Ca2+ spikes, intercellular Ca2+ transients, tissue-level Ca2+ waves, and a global “fluttering” state. Here, we used a combination of computational modeling and experimental approaches to identify two different populations of cells within tissues that are connected by gap junction proteins. We term these two subpopulations “initiator cells,” defined by elevated levels of Phospholipase C (PLC) activity, and “standby cells,” which exhibit baseline activity. We found that the type and strength of hormonal stimulation and extent of gap junctional communication jointly determine the predominate class of Ca2+ signaling activity. Further, single-cell Ca2+ spikes are stimulated by insulin, while intercellular Ca2+ waves depend on Gαq activity. Our computational model successfully reproduces how the dynamics of Ca2+ transients varies during organ growth. Phenotypic analysis of perturbations to Gαq and insulin signaling support an integrated model of cytoplasmic Ca2+ as a dynamic reporter of overall tissue growth. Further, we show that perturbations to Ca2+ signaling tune the final size of organs. This work provides a platform to further study how organ size regulation emerges from the crosstalk between biochemical growth signals and heterogeneous cell signaling states. Calcium (Ca2+) is a universal second messenger that regulates a myriad of cellular processes such as cell division, cell proliferation and apoptosis. Multiple patterns of Ca2+ signaling including single-cell spikes, multicellular Ca2+ transients, large-scale Ca2+ waves, and global “fluttering” have been observed in epithelial systems during organ development. Key molecular players and biophysical mechanisms involved in formation of these patterns during organ development are not well understood. In this work, we developed a generalized multicellular model of Ca2+ that captures all the key categories of Ca2+ activity as a function of key hormonal signals. Integration of model predictions and experiments reveals two subclasses of cell populations and demonstrates that Ca2+ signaling activity at the organ scale is defined by a general decrease in gap junction communication as an organ grows. Our experiments also reveal that a “goldilocks zone” of optimal Ca2+ activity is required to achieve optimal growth at the organ level.
Collapse
|
3
|
Optimal Scaling of Critical Size for Metamorphosis in the Genus Drosophila. iScience 2019; 20:348-358. [PMID: 31610371 PMCID: PMC6817650 DOI: 10.1016/j.isci.2019.09.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 07/19/2019] [Accepted: 09/23/2019] [Indexed: 12/19/2022] Open
Abstract
Juveniles must reach a critical body size to become a mature adult. Molecular determinants of critical size have been studied, but the evolutionary importance of critical size is still unclear. Here, using nine fly species, we show that interspecific variation in organism size can be explained solely by species-specific critical size. The observed variation in critical size quantitatively agrees with the interspecific scaling relationship predicted by the life history model, which hypothesizes that critical size mediates an energy allocation switch between juvenile and adult tissues. The mechanism underlying critical size scaling is explained by an inverse relationship between growth duration and growth rate, which cancels out their contributions to the final size. Finally, we show that evolutionary changes in growth duration can be traced back to the scaling of ecdysteroid hormone dynamics. We conclude that critical size adaptively optimizes energy allocation, and has a central role in organism size determination.
Collapse
|
4
|
Vollmer J, Casares F, Iber D. Growth and size control during development. Open Biol 2018; 7:rsob.170190. [PMID: 29142108 PMCID: PMC5717347 DOI: 10.1098/rsob.170190] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/17/2017] [Indexed: 11/30/2022] Open
Abstract
The size and shape of organs are characteristic for each species. Even when organisms develop to different sizes due to varying environmental conditions, such as nutrition, organ size follows species-specific rules of proportionality to the rest of the body, a phenomenon referred to as allometry. Therefore, for a given environment, organs stop growth at a predictable size set by the species's genotype. How do organs stop growth? How can related species give rise to organs of strikingly different size? No definitive answer has been given to date. One of the major models for the studies of growth termination is the vinegar fly Drosophila melanogaster. Therefore, this review will focus mostly on work carried out in Drosophila to try to tease apart potential mechanisms and identify routes for further investigation. One general rule, found across the animal kingdom, is that the rate of growth declines with developmental time. Therefore, answers to the problem of growth termination should explain this seemingly universal fact. In addition, growth termination is intimately related to the problems of robustness (i.e. precision) and plasticity in organ size, symmetric and asymmetric organ development, and of how the ‘target’ size depends on extrinsic, environmental factors.
Collapse
Affiliation(s)
- Jannik Vollmer
- D-BSSE, ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland.,Swiss Institute of Bioinformatics (SIB), Mattenstrasse 26, 4058 Basel, Switzerland
| | - Fernando Casares
- CABD, CSIC-Universidad Pablo de Olavide-JA, 41013 Seville, Spain
| | - Dagmar Iber
- D-BSSE, ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland .,Swiss Institute of Bioinformatics (SIB), Mattenstrasse 26, 4058 Basel, Switzerland
| |
Collapse
|
5
|
Vollmer J, Fried P, Aguilar-Hidalgo D, Sánchez-Aragón M, Iannini A, Casares F, Iber D. Growth control in the Drosophila eye disc by the cytokine Unpaired. Development 2017; 144:837-843. [PMID: 28246213 DOI: 10.1242/dev.141309] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 01/10/2017] [Indexed: 01/14/2023]
Abstract
A fundamental question in developmental biology is how organ size is controlled. We have previously shown that the area growth rate in the Drosophila eye primordium declines inversely proportionally to the increase in its area. How the observed reduction in the growth rate is achieved is unknown. Here, we explore the dilution of the cytokine Unpaired (Upd) as a possible candidate mechanism. In the developing eye, upd expression is transient, ceasing at the time when the morphogenetic furrow first emerges. We confirm experimentally that the diffusion and stability of the JAK/STAT ligand Upd are sufficient to control eye disc growth via a dilution mechanism. We further show that sequestration of Upd by ectopic expression of an inactive form of the receptor Domeless (Dome) results in a substantially lower growth rate, but the area growth rate still declines inversely proportionally to the area increase. This growth rate-to-area relationship is no longer observed when Upd dilution is prevented by the continuous, ectopic expression of Upd. We conclude that a mechanism based on the dilution of the growth modulator Upd can explain how growth termination is controlled in the eye disc.
Collapse
Affiliation(s)
- Jannik Vollmer
- Department of Biosystems, Science and Engineering (D-BSSE), ETH Zurich, Mattenstraße 26, Basel 4058, Switzerland.,Swiss Institute of Bioinformatics (SIB), Mattenstraße 26, Basel 4058, Switzerland
| | - Patrick Fried
- Department of Biosystems, Science and Engineering (D-BSSE), ETH Zurich, Mattenstraße 26, Basel 4058, Switzerland.,Swiss Institute of Bioinformatics (SIB), Mattenstraße 26, Basel 4058, Switzerland
| | - Daniel Aguilar-Hidalgo
- Department of Gene Regulation and Morphogenesis, CABD, Universidad Pablo de Olavide, Seville 41013, Spain
| | - Máximo Sánchez-Aragón
- Department of Gene Regulation and Morphogenesis, CABD, Universidad Pablo de Olavide, Seville 41013, Spain
| | - Antonella Iannini
- Department of Gene Regulation and Morphogenesis, CABD, Universidad Pablo de Olavide, Seville 41013, Spain
| | - Fernando Casares
- Department of Gene Regulation and Morphogenesis, CABD, Universidad Pablo de Olavide, Seville 41013, Spain
| | - Dagmar Iber
- Department of Biosystems, Science and Engineering (D-BSSE), ETH Zurich, Mattenstraße 26, Basel 4058, Switzerland .,Swiss Institute of Bioinformatics (SIB), Mattenstraße 26, Basel 4058, Switzerland
| |
Collapse
|