1
|
Wang YR, Wang PJ, Tao LY, Hu LL, Liu QQ, Sun SC, Wei JX, Wang Y. Loss of KIFC1 activity induces spindle instability and actin defects during porcine oocyte maturation. Theriogenology 2025; 235:254-261. [PMID: 39919850 DOI: 10.1016/j.theriogenology.2025.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 02/09/2025]
Abstract
KIFC1 is a motor protein of the Kinesin family and it is involved in spindle apparatus assembly, chromosome arrangement, and microfilament-mediated biological processes in mitosis. However, the specific function of KIFC1 in pig oocytes remains unclear. Here, in order to explore the function of KIFC1 in porcine oocytes, the AZ82 inhibitor was used to inhibit the activity of KIFC1. Our results showed when KIFC1 was inhibited, the polar body extrusion rate was obviously decreased, indicating that KIFC1 plays a crucial role in porcine oocytes. We next measured the spindle structure and chromosome arrangement via immunofluorescent staining and found both the rates of abnormal spindle and chromosome disorder increased significantly. By further analyzing the causes of the abnormal spindle, we found the acetylation of tubulin was disrupted. In addition, we also found the spindle position was impaired after KIFC1 inhibition, declaring the spindle migration was affected. Further analysis found cortex actin decreased and cytoplasmic actin increased after KIFC1 inhibition. In summary, we found that KIFC1 played a critical role in porcine oocytes maturation by controlling spindle apparatus via mediating the acetylation of microtubule and regulating the spindle migration via affecting actin dynamics.
Collapse
Affiliation(s)
- Yu-Ran Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Peng-Jie Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Le-Yan Tao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lin-Lin Hu
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi of Guangxi Higher Education Institutions, Reproductive Medicine of Guangxi Medical and Health Key Discipline Construction Project, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Qiang-Qiang Liu
- College of Foreign Studies, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China; Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi of Guangxi Higher Education Institutions, Reproductive Medicine of Guangxi Medical and Health Key Discipline Construction Project, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Jing-Xi Wei
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi of Guangxi Higher Education Institutions, Reproductive Medicine of Guangxi Medical and Health Key Discipline Construction Project, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China.
| | - Yue Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
2
|
Xie P, Zhu S, Zhang J, Wang X, Jiang X, Xiong F, Chen L, Fang K, Ji Y, Zheng B, Da L, Cao H, Sun Y, Luo Z, Lin C. 4D live tracing reveals distinct movement trajectories of meiotic chromosomes. LIFE MEDICINE 2024; 3:lnae038. [PMID: 39872155 PMCID: PMC11748274 DOI: 10.1093/lifemedi/lnae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 11/11/2024] [Indexed: 01/29/2025]
Abstract
Proper chromosome alignment at the spindle equator is a prerequisite for accurate chromosome segregation during cell division. However, the chromosome movement trajectories prior to alignment remain elusive. Here, we established a 4D imaging analysis framework to visualize chromosome dynamics and develop a deep-learning model for chromosome movement trajectory classification. Our data reveal that chromosomes follow at least three distinct movement trajectories (retracing, congressing, and quasi-static) to arrive at the equator. We further revealed the distinct roles of multiple kinesin superfamily proteins (KIFs) in coordinating and maintaining the chromosome movement trajectories. In summary, we have presented an efficient and unbiased approach to studying chromosome dynamics during cell division, thereby uncovering a variety of chromosome movement trajectories that precede alignment.
Collapse
Affiliation(s)
- Peng Xie
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 211102, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Shiqi Zhu
- School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Jin Zhang
- School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Xinrui Wang
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350004, China
| | - Xu Jiang
- School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Feng Xiong
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 211102, China
| | - Linjin Chen
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350004, China
| | - Ke Fang
- School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Yuanhui Ji
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211102, China
| | - Beihong Zheng
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital, Fuzhou 350001, China
| | - Lincui Da
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital, Fuzhou 350001, China
| | - Hua Cao
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350004, China
| | - Yan Sun
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital, Fuzhou 350001, China
| | - Zhuojuan Luo
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
- School of Life Science and Technology, Southeast University, Nanjing 210096, China
- Shenzhen Research Institute, Southeast University, Shenzhen 518057, China
| | - Chengqi Lin
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
- School of Life Science and Technology, Southeast University, Nanjing 210096, China
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital, Fuzhou 350001, China
- Shenzhen Research Institute, Southeast University, Shenzhen 518057, China
| |
Collapse
|
3
|
Wang W, Shi Z, Zhang D, Hou W, Ma H, Liu X, Zhang Y, Zhu J, Yang Z, Jia B, Xu Q, Zhang Y, Zhang M. Kinesin motor KIF16A regulates microtubule stability and actin-dependent spindle migration in mouse oocyte meiosis. FASEB J 2024; 38:e23750. [PMID: 38888878 DOI: 10.1096/fj.202400989r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/22/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024]
Abstract
Kif16A, a member of the kinesin-3 family of motor proteins, has been shown to play crucial roles in inducing mitotic arrest, apoptosis, and mitotic cell death. However, its roles during oocyte meiotic maturation have not been fully defined. In this study, we report that Kif16A exhibits unique accumulation on the spindle apparatus and colocalizes with microtubule fibers during mouse oocyte meiotic maturation. Targeted depletion of Kif16A using gene-targeting siRNA disrupts the progression of the meiotic cell cycle. Furthermore, Kif16A depletion leads to aberrant spindle assembly and chromosome misalignment in oocytes. Our findings also indicate that Kif16A depletion reduces tubulin acetylation levels and compromises microtubule resistance to depolymerizing drugs, suggesting its crucial role in microtubule stability maintenance. Notably, we find that the depletion of Kif16A results in a notably elevated incidence of defective kinetochore-microtubule attachments and the absence of BubR1 localization at kinetochores, suggesting a critical role for Kif16A in the activation of the spindle assembly checkpoint (SAC) activity. Additionally, we observe that Kif16A is indispensable for proper actin filament distribution, thereby impacting spindle migration. In summary, our findings demonstrate that Kif16A plays a pivotal role in regulating microtubule and actin dynamics crucial for ensuring both spindle assembly and migration during mouse oocyte meiotic maturation.
Collapse
Affiliation(s)
- Wei Wang
- College of Animal Science and Technology, Anhui Agricultural University, Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding of Anhui Province, Hefei, China
| | - Zhenhu Shi
- College of Animal Science and Technology, Anhui Agricultural University, Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding of Anhui Province, Hefei, China
| | - Dandan Zhang
- Department of Reproductive Medicine, General Hospital of Wanbei Coal Group, Key Laboratory of Reproductive Medicine and Embryo of Suzhou City, Suzhou, China
| | - Wenwen Hou
- Center of Reproductive Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
| | - Huijie Ma
- College of Animal Science and Technology, Anhui Agricultural University, Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding of Anhui Province, Hefei, China
| | - Xinyu Liu
- College of Animal Science and Technology, Anhui Agricultural University, Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding of Anhui Province, Hefei, China
| | - Yongteng Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding of Anhui Province, Hefei, China
| | - Jinbao Zhu
- College of Animal Science and Technology, Anhui Agricultural University, Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding of Anhui Province, Hefei, China
| | - Zaishan Yang
- College of Animal Science and Technology, Anhui Agricultural University, Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding of Anhui Province, Hefei, China
| | - Bo Jia
- College of Animal Science and Technology, Anhui Agricultural University, Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding of Anhui Province, Hefei, China
| | - Qimei Xu
- College of Animal Science and Technology, Anhui Agricultural University, Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding of Anhui Province, Hefei, China
| | - Yunhai Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding of Anhui Province, Hefei, China
| | - Mianqun Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding of Anhui Province, Hefei, China
| |
Collapse
|
4
|
Hoshina H, Sakatani T, Kawamoto Y, Ohashi R, Takei H. Cytomorphological Disparities in Invasive Breast Cancer Cells following Neoadjuvant Endocrine Therapy and Chemotherapy. Pathobiology 2024; 91:288-298. [PMID: 38447546 PMCID: PMC11309077 DOI: 10.1159/000538227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/04/2024] [Indexed: 03/08/2024] Open
Abstract
INTRODUCTION Neoadjuvant endocrine therapy (NAE) offers a breast-conserving surgery rate and clinical response rate similar to those of neoadjuvant chemotherapy (NAC), while presenting fewer adverse events and lower pathological complete response rates. The assessment of pathological response determines degenerative changes and predicts the prognosis of breast cancer treated with NAC. This study clarified the degenerative changes occurring in breast cancer following NAE. METHODS Our study encompassed two groups: NAE, consisting of 15 patients, and NAC, comprising 18 patients. Tissue samples were obtained from core needle biopsies and surgeries. Nuclear and cell areas were calculated using Autocell analysis. Furthermore, we assessed markers associated with microtubule depolymerization (KIF2A) and initiators of apoptosis (caspase-9). RESULTS In the NAC group, we observed significant increases in both cytoplasmic and cell areas. These changes in cytoplasm and cells were notably more pronounced in the NAC group compared to the NAE group. After treatment, KIF2A exhibited a decrease, with the magnitude of change being greater in the NET group than in the NAC group. However, no discernible differences were found in caspase-9 expression between the two groups. CONCLUSION Our findings indicate that NAE induces condensation in cancer cells via cell cycle arrest or apoptosis. Conversely, NAC leads to cell enlargement due to the absence of microtubule depolymerization. These discrepancies underscore the importance of accounting for these distinctions when establishing criteria for evaluating pathological responses.
Collapse
Affiliation(s)
- Hideko Hoshina
- Department of Breast Surgery and Oncology, Nippon Medical School, Tokyo, Japan,
| | - Takashi Sakatani
- Department of Diagnostic Pathology, Nippon Medical School Hospital, Tokyo, Japan
| | - Yoko Kawamoto
- Department of Integrated Diagnostic Pathology, Nippon Medical School, Tokyo, Japan
| | - Ryuji Ohashi
- Department of Integrated Diagnostic Pathology, Nippon Medical School, Tokyo, Japan
| | - Hiroyuki Takei
- Department of Breast Surgery and Oncology, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
5
|
Simerly C, Robertson E, Harrison C, Ward S, George C, Deleon J, Hartnett C, Schatten G. Male meiotic spindle poles are stabilized by TACC3 and cKAP5/chTOG differently from female meiotic or somatic mitotic spindles in mice. Sci Rep 2024; 14:4808. [PMID: 38413710 PMCID: PMC10899211 DOI: 10.1038/s41598-024-55376-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/22/2024] [Indexed: 02/29/2024] Open
Abstract
Transforming acidic acid coiled-coil protein 3 (TACC3) and cytoskeleton associated protein 5 (cKAP5; or colonic hepatic tumor overexpressed gene, chTOG) are vital for spindle assembly and stabilization initiated through TACC3 Aurora-A kinase interaction. Here, TACC3 and cKAP5/chTOG localization with monospecific antibodies is investigated in eGFP-centrin-2- expressing mouse meiotic spermatocytes. Both proteins bind spermatocyte spindle poles but neither kinetochore nor interpolar microtubules, unlike in mitotic mouse fibroblasts or female meiotic oocyte spindles. Spermatocytes do not display a liquid-like spindle domain (LISD), although fusing them into maturing oocytes generates LISD-like TACC3 condensates around sperm chromatin but sparse microtubule assembly. Microtubule inhibitors do not reduce TACC3 and cKAP5/chTOG spindle pole binding. MLN 8237 Aurora-A kinase inhibitor removes TACC3, not cKAP5/chTOG, disrupting spindle organization, chromosome alignment, and impacting spindle pole γ-tubulin intensity. The LISD disruptor 1,6-hexanediol abolished TACC3 in spermatocytes, impacting spindle bipolarity and chromosome organization. Cold microtubule disassembly and rescue experiments in the presence of 1,6-hexanediol reinforce the concept that spermatocyte TACC3 spindle pole presence is not required for spindle pole microtubule assembly. Collectively, meiotic spermatocytes without a LISD localize TACC3 and cKAP5/chTOG exclusively at spindle poles to support meiotic spindle pole stabilization during male meiosis, different from either female meiosis or mitosis.
Collapse
Affiliation(s)
- Calvin Simerly
- Departments of Cell Biology, Ob-Gyn-Repro Sci, and Bioengineering, Pittsburgh Development Center of Magee-Womens Research Institute, University of Pittsburgh Medical Center, 204 Craft Avenue, Pittsburgh, PA, 15213, USA
| | - Emily Robertson
- Departments of Cell Biology, Ob-Gyn-Repro Sci, and Bioengineering, Pittsburgh Development Center of Magee-Womens Research Institute, University of Pittsburgh Medical Center, 204 Craft Avenue, Pittsburgh, PA, 15213, USA
| | - Caleb Harrison
- Departments of Cell Biology, Ob-Gyn-Repro Sci, and Bioengineering, Pittsburgh Development Center of Magee-Womens Research Institute, University of Pittsburgh Medical Center, 204 Craft Avenue, Pittsburgh, PA, 15213, USA
| | - Sydney Ward
- Departments of Cell Biology, Ob-Gyn-Repro Sci, and Bioengineering, Pittsburgh Development Center of Magee-Womens Research Institute, University of Pittsburgh Medical Center, 204 Craft Avenue, Pittsburgh, PA, 15213, USA
| | - Charlize George
- Departments of Cell Biology, Ob-Gyn-Repro Sci, and Bioengineering, Pittsburgh Development Center of Magee-Womens Research Institute, University of Pittsburgh Medical Center, 204 Craft Avenue, Pittsburgh, PA, 15213, USA
| | - Jasmine Deleon
- Departments of Cell Biology, Ob-Gyn-Repro Sci, and Bioengineering, Pittsburgh Development Center of Magee-Womens Research Institute, University of Pittsburgh Medical Center, 204 Craft Avenue, Pittsburgh, PA, 15213, USA
| | - Carrie Hartnett
- Departments of Cell Biology, Ob-Gyn-Repro Sci, and Bioengineering, Pittsburgh Development Center of Magee-Womens Research Institute, University of Pittsburgh Medical Center, 204 Craft Avenue, Pittsburgh, PA, 15213, USA
| | - Gerald Schatten
- Departments of Cell Biology, Ob-Gyn-Repro Sci, and Bioengineering, Pittsburgh Development Center of Magee-Womens Research Institute, University of Pittsburgh Medical Center, 204 Craft Avenue, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
6
|
KYOGOKU H, KITAJIMA TS. The large cytoplasmic volume of oocyte. J Reprod Dev 2023; 69:1-9. [PMID: 36436912 PMCID: PMC9939283 DOI: 10.1262/jrd.2022-101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The study of the size of cells and organelles has a long history, dating back to the 1600s when cells were defined. In particular, various methods have elucidated the size of the nucleus and the mitotic spindle in several species. However, little research has been conducted on oocyte size and organelles in mammals, and many questions remain to be answered. The appropriate size is essential to cell function properly. Oocytes have a very large cytoplasm, which is more than 100 times larger than that of general somatic cells in mammals. In this review, we discuss how oocytes acquire an enormous cytoplasmic size and the adverse effects of a large cytoplasmic size on cellular functions.
Collapse
Affiliation(s)
- Hirohisa KYOGOKU
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan,Laboratory for Chromosome Segregation, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Tomoya S KITAJIMA
- Laboratory for Chromosome Segregation, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| |
Collapse
|
7
|
Osteoarthritis Affects Mammalian Oogenesis: Effects of Collagenase-Induced Osteoarthritis on Oocyte Cytoskeleton in a Mouse Model. Int J Inflam 2021; 2021:8428713. [PMID: 34795891 PMCID: PMC8595018 DOI: 10.1155/2021/8428713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 10/12/2021] [Accepted: 10/18/2021] [Indexed: 11/17/2022] Open
Abstract
Known as a degenerative joint disorder of advanced age affecting predominantly females, osteoarthritis can develop in younger and actively working people because of activities involving loading and injuries of joints. Collagenase-induced osteoarthritis (CIOA) in a mouse model allowed us to investigate for the first time its effects on key cytoskeletal structures (meiotic spindles and actin distribution) of ovulated mouse oocytes. Their meiotic spindles, actin caps, and chromatin were analyzed by immunofluorescence. A total of 193 oocytes from mice with CIOA and 209 from control animals were obtained, almost all in metaphase I (M I) or metaphase II (MII). The maturation rate was lower in CIOA (26.42% M II) than in controls (55.50% M II). CIOA oocytes had significantly larger spindles (average 37 μm versus 25 μm in controls, p < 0.001), with a proportion of large spindles more than 64% in CIOA versus up to 15% in controls (p < 0.001). Meiotic spindles were wider in 68.35% M I and 54.90% M II of CIOA oocytes (mean 18.04 μm M I and 17.34 μm M II versus controls: 11.64 μm M I and 12.64 μm M II), and their poles were approximately two times broader (mean 6.9 μm) in CIOA than in controls (3.6 μm). CIOA oocytes often contained disoriented microtubules. Actin cap was visible in over 91% of controls and less than 20% of CIOA oocytes. Many CIOA oocytes without an actin cap had a nonpolarized thick peripheral actin ring (61.87% of M I and 52.94% of M II). Chromosome alignment was normal in more than 82% in both groups. In conclusion, CIOA affects the cytoskeleton of ovulated mouse oocytes—meiotic spindles are longer and wider, their poles are broader and with disorganized fibers, and the actin cap is replaced by a broad nonpolarized ring. Nevertheless, meiotic spindles were successfully formed in CIOA oocytes and, even when abnormal, allowed correct alignment of chromosomes.
Collapse
|
8
|
Gao H, Zhang Y, Li Y, Lin X. KIF2A regulates ovarian development via modulating cell cycle progression and vitollogenin levels. INSECT MOLECULAR BIOLOGY 2021; 30:165-175. [PMID: 33251618 DOI: 10.1111/imb.12685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/17/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
The kinesin superfamily of proteins (KIFs) are microtubule motor proteins that use the hydrolysis of ATP to power directional movement along microtubules. KIFs induce microtubule depolymerization to regulate the length and dynamics of microtubules in a variety of cell processes and structures, including the mitotic and meiotic spindles and centriole and interphase microtubules. KIF plays a significant role in the transport of organelles, protein complexes and mRNAs. The brown planthopper (Nilaparvata lugens) is a major insect pest in rice paddy fields. Ovarian development is regulated by multiple factors, including endocrine factors. The role of KIFs in brown planthopper ovarian development remains unknown. We found that downregulation of KIF2A significantly compromised the development and eclosion of the brown planthopper, delayed ovarian cell cycle progression, disrupted ovarian development, reduced the expression of MCM genes required for DNA replication and significantly reduced the number of nuclei in the follicles. We also found a significant reduction in Vg mRNA and protein levels. We conclude that downregulation of KIF2A disrupts the cell cycle progression of cells. Alternatively, the ovarian phenotype could be an indirect effect of a compromised trophic cord. In summary, KIF2A regulates ovarian development via modulating cell cycle progression and/or vitollogenin transportation.
Collapse
Affiliation(s)
- H Gao
- College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Y Zhang
- College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Y Li
- College of Life Sciences, China Jiliang University, Hangzhou, China
| | - X Lin
- College of Life Sciences, China Jiliang University, Hangzhou, China
| |
Collapse
|
9
|
Identification of Kinesin Family Member 2A (KIF2A) as a Promising Therapeutic Target for Osteosarcoma. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7102757. [PMID: 33204709 PMCID: PMC7655250 DOI: 10.1155/2020/7102757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/07/2019] [Accepted: 08/12/2020] [Indexed: 12/30/2022]
Abstract
Background Osteosarcoma is known as a type of common human bone malignancy, and more therapeutic targets are still required to combat this disease. In recent years, the involvement of KIF2A in cancer progression has been widely revealed; however, its potential effect on osteosarcoma development remains unknown. This study is to assess the KIF2A expression levels in human osteosarcoma tissues and explore its potential role in osteosarcoma development. Methods Immunohistochemical (IHC) assays were conducted to evaluate the expression levels of KIF2A in a total of 74 samples of osteosarcoma tissues and adjacent nontumor tissues. According to the staining intensity in tumor tissues, patients were divided into highly expressed and low expression KIF2A groups. The possible links between the KIF2A expression and the clinical pathological features were explored and analyzed, and the effects of KIF2A on osteosarcoma cell proliferation, migration, and invasion were detected through colony formation assay, MTT assay, wound closure assay, and transwell assay, respectively. The effects of KIF2A on tumor growth and metastasis were detected by the use of animal models. Results KIF2A was highly expressed in human osteosarcoma tissues. Meanwhile, KIF2A was obviously correlated to the tumor size (P = 0.001∗) and clinical stage (P = 0.014∗) of osteosarcoma patients. Our results also revealed that the ablation of KIF2A dramatically blocked the proliferation, migration, and invasion capacity of osteosarcoma cells in vitro and blocked tumor growth and metastasis in mice. Conclusions We investigated the involvement of KIF2A in the development and metastasis of osteosarcoma and therefore thought KIF2A as a promising therapeutic target for osteosarcoma treatment.
Collapse
|
10
|
Amargant F, Barragan M, Vassena R, Vernos I. Insights of the tubulin code in gametes and embryos: from basic research to potential clinical applications in humans†. Biol Reprod 2020; 100:575-589. [PMID: 30247519 DOI: 10.1093/biolre/ioy203] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 07/05/2018] [Accepted: 09/20/2018] [Indexed: 12/14/2022] Open
Abstract
Microtubules are intracellular filaments that define in space and in time a large number of essential cellular functions such as cell division, morphology and motility, intracellular transport and flagella and cilia assembly. They are therefore essential for spermatozoon and oocyte maturation and function, and for embryo development. The dynamic and functional properties of the microtubules are in large part defined by various classes of interacting proteins including MAPs (microtubule associated proteins), microtubule-dependent motors, and severing and modifying enzymes. Multiple mechanisms regulate these interactions. One of them is defined by the high diversity of the microtubules themselves generated by the combination of different tubulin isotypes and by several tubulin post-translational modifications (PTMs). This generates a so-called tubulin code that finely regulates the specific set of proteins that associates with a given microtubule thereby defining the properties and functions of the network. Here we provide an in depth review of the current knowledge on the tubulin isotypes and PTMs in spermatozoa, oocytes, and preimplantation embryos in various model systems and in the human species. We focus on functional implications of the tubulin code for cytoskeletal function, particularly in the field of human reproduction and development, with special emphasis on gamete quality and infertility. Finally, we discuss some of the knowledge gaps and propose future research directions.
Collapse
Affiliation(s)
- Farners Amargant
- Clínica EUGIN, Barcelona, Spain.,Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| | | | | | - Isabelle Vernos
- Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Institució Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
11
|
Roeles J, Tsiavaliaris G. Actin-microtubule interplay coordinates spindle assembly in human oocytes. Nat Commun 2019; 10:4651. [PMID: 31604948 PMCID: PMC6789129 DOI: 10.1038/s41467-019-12674-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 09/18/2019] [Indexed: 12/18/2022] Open
Abstract
Mammalian oocytes assemble a bipolar acentriolar microtubule spindle to segregate chromosomes during asymmetric division. There is increasing evidence that actin in the spindle interior not only participates in spindle migration and positioning but also protects oocytes from chromosome segregation errors leading to aneuploidy. Here we show that actin is an integral component of the meiotic machinery that closely interacts with microtubules during all major events of human oocyte maturation from the time point of spindle assembly till polar body extrusion and metaphase arrest. With the aid of drugs selectively affecting cytoskeleton dynamics and transiently disturbing the integrity of the two cytoskeleton systems, we identify interdependent structural rearrangements indicative of a close communication between actin and microtubules as fundamental feature of human oocytes. Our data support a model of actin-microtubule interplay that is essential for bipolar spindle assembly and correct partitioning of the nuclear genome in human oocyte meiosis.
Collapse
Affiliation(s)
- Johannes Roeles
- Cellular Biophysics, Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Georgios Tsiavaliaris
- Cellular Biophysics, Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.
| |
Collapse
|
12
|
Zhang Q, Lu D, Liu W, Ye S, Guo H, Liao T, Chen C. Effects of KIF2A on the prognosis of nasopharyngeal carcinoma and nasopharyngeal carcinoma cells. Oncol Lett 2019; 18:2718-2723. [PMID: 31452750 DOI: 10.3892/ol.2019.10597] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 06/13/2019] [Indexed: 02/07/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a common tumor in south China. Kinesin family member 2A (KIF2A) belongs to the kinesin-13 family and is associated with the growth and invasion of a number of different types of human cancer, including ovarian, breast and prostate cancer. The aim of the present study was to evaluate the expression of KIF2A in NPC and explore the relationship between KIF2A and the basic characteristics of 5-8F cells. Immunohistochemistry was performed on tissues from 97 patients with NPC to assess KIF2A protein expression. KIF2A was knocked down by a specific short interfering (si)RNA in 5-8F cell lines. Cell proliferation, apoptosis and cycle were analyzed by MTT assay and flow cytometry. The invasive ability and angiogenesis were evaluated by Matrigel assay and reverse transcription-quantitative PCR. The level of KIF2A was associated with the growth and migration of primary tumor, nodal status and tumor stage. The viability of KIF2A-knockdown cells was decreased compared with that of the control cells. The number of apoptotic cells, as well as the percentage of cells in the G0/G1 phase, was higher in the KIF2A siRNA group compared with the control group. The invasive and angiogenetic ability of 5-8F cells in the KIF2A siRNA group was decreased compared with the control group. In conclusion, the expression of KIF2A correlated with the poor clinicopathological features in NPC. Therefore, KIF2A may serve an important role in the progression of NPC and proliferation of 5-8F cells, which might present a potential therapeutic target for patients with NPC.
Collapse
Affiliation(s)
- Qiuchan Zhang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, P.R. China
| | - Dongling Lu
- Department of Otorhinolaryngology-Head and Neck Surgery, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, P.R. China
| | - Wenlin Liu
- Department of Otorhinolaryngology-Head and Neck Surgery, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, P.R. China
| | - Shijie Ye
- Department of Otorhinolaryngology-Head and Neck Surgery, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, P.R. China
| | - Huanping Guo
- Department of Otorhinolaryngology-Head and Neck Surgery, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, P.R. China
| | - Tianyi Liao
- Department of Otorhinolaryngology-Head and Neck Surgery, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, P.R. China
| | - Cuifang Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, P.R. China
| |
Collapse
|
13
|
Homma N, Zhou R, Naseer MI, Chaudhary AG, Al-Qahtani MH, Hirokawa N. KIF2A regulates the development of dentate granule cells and postnatal hippocampal wiring. eLife 2018; 7:30935. [PMID: 29313800 PMCID: PMC5811213 DOI: 10.7554/elife.30935] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 01/08/2018] [Indexed: 01/23/2023] Open
Abstract
Kinesin super family protein 2A (KIF2A), an ATP-dependent microtubule (MT) destabilizer, regulates cell migration, axon elongation, and pruning in the developing nervous system. KIF2A mutations have recently been identified in patients with malformed cortical development. However, postnatal KIF2A is continuously expressed in the hippocampus, in which new neurons are generated throughout an individual's life in established neuronal circuits. In this study, we investigated KIF2A function in the postnatal hippocampus by using tamoxifen-inducible Kif2a conditional knockout (Kif2a-cKO) mice. Despite exhibiting no significant defects in neuronal proliferation or migration, Kif2a-cKO mice showed signs of an epileptic hippocampus. In addition to mossy fiber sprouting, the Kif2a-cKO dentate granule cells (DGCs) showed dendro-axonal conversion, leading to the growth of many aberrant overextended dendrites that eventually developed axonal properties. These results suggested that postnatal KIF2A is a key length regulator of DGC developing neurites and is involved in the establishment of precise postnatal hippocampal wiring.
Collapse
Affiliation(s)
- Noriko Homma
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ruyun Zhou
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Muhammad Imran Naseer
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Adeel G Chaudhary
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed H Al-Qahtani
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nobutaka Hirokawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
14
|
Camlin NJ, McLaughlin EA, Holt JE. Motoring through: the role of kinesin superfamily proteins in female meiosis. Hum Reprod Update 2017; 23:409-420. [PMID: 28431155 DOI: 10.1093/humupd/dmx010] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 04/01/2017] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The kinesin motor protein family consists of 14 distinct subclasses and 45 kinesin proteins in humans. A large number of these proteins, or their orthologues, have been shown to possess essential function(s) in both the mitotic and the meiotic cell cycle. Kinesins have important roles in chromosome separation, microtubule dynamics, spindle formation, cytokinesis and cell cycle progression. This article contains a review of the literature with respect to the role of kinesin motor proteins in female meiosis in model species. Throughout, we discuss the function of each class of kinesin proteins during oocyte meiosis, and where such data are not available their role in mitosis is considered. Finally, the review highlights the potential clinical importance of this family of proteins for human oocyte quality. OBJECTIVE AND RATIONALE To examine the role of kinesin motor proteins in oocyte meiosis. SEARCH METHODS A search was performed on the Pubmed database for journal articles published between January 1970 and February 2017. Search terms included 'oocyte kinesin' and 'meiosis kinesin' in addition to individual kinesin names with the terms oocyte or meiosis. OUTCOMES Within human cells 45 kinesin motor proteins have been discovered, with the role of only 13 of these proteins, or their orthologues, investigated in female meiosis. Furthermore, of these kinesins only half have been examined in mammalian oocytes, despite alterations occurring in gene transcripts or protein expression with maternal ageing, cryopreservation or behavioral conditions, such as binge drinking, for many of them. WIDER IMPLICATIONS Kinesin motor proteins have distinct and important roles throughout oocyte meiosis in many non-mammalian model species. However, the functions these proteins have in mammalian meiosis, particularly in humans, are less clear owing to lack of research. This review brings to light the need for more experimental investigation of kinesin motor proteins, particularly those associated with maternal ageing, cryopreservation or exposure to environmental toxicants.
Collapse
Affiliation(s)
- Nicole J Camlin
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia.,Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Eileen A McLaughlin
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia.,Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, NSW 2308, Australia.,School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Janet E Holt
- Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, NSW 2308, Australia.,School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
15
|
Ding ZM, Huang CJ, Jiao XF, Wu D, Huo LJ. The role of TACC3 in mitotic spindle organization. Cytoskeleton (Hoboken) 2017; 74:369-378. [PMID: 28745816 DOI: 10.1002/cm.21388] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 07/04/2017] [Accepted: 07/21/2017] [Indexed: 12/31/2022]
Abstract
TACC3 regulates spindle organization during mitosis and also regulates centrosome-mediated microtubule nucleation by affecting γ-Tubulin ring complexes. In addition, it interacts with different proteins (such as ch-TOG, clathrin and Aurora-A) to function in mitotic spindle assembly and stability. By forming the TACC3/ch-TOG complex, TACC3 acts as a plus end-tracking protein to promote microtubule elongation. The TACC3/ch-TOG/clathrin complex is formed to stabilize kinetochore fibers by crosslinking adjacent microtubules. Furthermore, the phosphorylation of TACC3 by Aurora-A is important for the formation of TACC3/ch-TOG/clathrin and its recruitment to kinetochore fibers. Recently, the aberrant expression of TACC3 in a variety of human cancers has been linked with mitotic defects. Thus, in this review, we will discuss our current understanding of the biological roles of TACC3 in mitotic spindle organization.
Collapse
Affiliation(s)
- Zhi-Ming Ding
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong, Agricultural University, Wuhan, 430070, China
| | - Chun-Jie Huang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong, Agricultural University, Wuhan, 430070, China
| | - Xiao-Fei Jiao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong, Agricultural University, Wuhan, 430070, China
| | - Di Wu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong, Agricultural University, Wuhan, 430070, China
| | - Li-Jun Huo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong, Agricultural University, Wuhan, 430070, China
| |
Collapse
|
16
|
Meyer C, Burmeister T, Gröger D, Tsaur G, Fechina L, Renneville A, Sutton R, Venn NC, Emerenciano M, Pombo-de-Oliveira MS, Barbieri Blunck C, Almeida Lopes B, Zuna J, Trka J, Ballerini P, Lapillonne H, De Braekeleer M, Cazzaniga G, Corral Abascal L, van der Velden VHJ, Delabesse E, Park TS, Oh SH, Silva MLM, Lund-Aho T, Juvonen V, Moore AS, Heidenreich O, Vormoor J, Zerkalenkova E, Olshanskaya Y, Bueno C, Menendez P, Teigler-Schlegel A, Zur Stadt U, Lentes J, Göhring G, Kustanovich A, Aleinikova O, Schäfer BW, Kubetzko S, Madsen HO, Gruhn B, Duarte X, Gameiro P, Lippert E, Bidet A, Cayuela JM, Clappier E, Alonso CN, Zwaan CM, van den Heuvel-Eibrink MM, Izraeli S, Trakhtenbrot L, Archer P, Hancock J, Möricke A, Alten J, Schrappe M, Stanulla M, Strehl S, Attarbaschi A, Dworzak M, Haas OA, Panzer-Grümayer R, Sedék L, Szczepański T, Caye A, Suarez L, Cavé H, Marschalek R. The MLL recombinome of acute leukemias in 2017. Leukemia 2017; 32:273-284. [PMID: 28701730 PMCID: PMC5808070 DOI: 10.1038/leu.2017.213] [Citation(s) in RCA: 506] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/25/2017] [Accepted: 06/21/2017] [Indexed: 12/16/2022]
Abstract
Chromosomal rearrangements of the human MLL/KMT2A gene are associated with infant, pediatric, adult and therapy-induced acute leukemias. Here we present the data obtained from 2345 acute leukemia patients. Genomic breakpoints within the MLL gene and the involved translocation partner genes (TPGs) were determined and 11 novel TPGs were identified. Thus, a total of 135 different MLL rearrangements have been identified so far, of which 94 TPGs are now characterized at the molecular level. In all, 35 out of these 94 TPGs occur recurrently, but only 9 specific gene fusions account for more than 90% of all illegitimate recombinations of the MLL gene. We observed an age-dependent breakpoint shift with breakpoints localizing within MLL intron 11 associated with acute lymphoblastic leukemia and younger patients, while breakpoints in MLL intron 9 predominate in AML or older patients. The molecular characterization of MLL breakpoints suggests different etiologies in the different age groups and allows the correlation of functional domains of the MLL gene with clinical outcome. This study provides a comprehensive analysis of the MLL recombinome in acute leukemia and demonstrates that the establishment of patient-specific chromosomal fusion sites allows the design of specific PCR primers for minimal residual disease analyses for all patients.
Collapse
Affiliation(s)
- C Meyer
- Institute of Pharmaceutical Biology/Diagnostic Center of Acute Leukemia (DCAL), Goethe-University, Frankfurt/Main, Germany
| | - T Burmeister
- Charité-Department of Hematology, Oncology and Tumorimmunology, Berlin, Germany
| | - D Gröger
- Charité-Department of Hematology, Oncology and Tumorimmunology, Berlin, Germany
| | - G Tsaur
- Regional Children Hospital 1, Research Institute of Medical Cell Technologies, Pediatric Oncology and Hematology Center, Ural Federal University, Ekaterinburg, Russia
| | - L Fechina
- Regional Children Hospital 1, Research Institute of Medical Cell Technologies, Pediatric Oncology and Hematology Center, Ural Federal University, Ekaterinburg, Russia
| | - A Renneville
- Laboratory of Hematology, Biology and Pathology Center, CHRU of Lille; INSERM, UMR-S 1172, Cancer Research Institute of Lille, Lille, France
| | - R Sutton
- Children's Cancer Institute Australia, Uinversity of NSW Sydney, Sydney, New South Wales, Australia
| | - N C Venn
- Children's Cancer Institute Australia, Uinversity of NSW Sydney, Sydney, New South Wales, Australia
| | - M Emerenciano
- Pediatric Hematology-Oncology Program-Research Center, Instituto Nacional de Cancer Rio de Janeiro, Rio de Janeiro, Brazil
| | - M S Pombo-de-Oliveira
- Pediatric Hematology-Oncology Program-Research Center, Instituto Nacional de Cancer Rio de Janeiro, Rio de Janeiro, Brazil
| | - C Barbieri Blunck
- Pediatric Hematology-Oncology Program-Research Center, Instituto Nacional de Cancer Rio de Janeiro, Rio de Janeiro, Brazil
| | - B Almeida Lopes
- Pediatric Hematology-Oncology Program-Research Center, Instituto Nacional de Cancer Rio de Janeiro, Rio de Janeiro, Brazil
| | - J Zuna
- CLIP, Department of Paediatric Haematology/Oncology, Charles University Prague, 2nd Faculty of Medicine, Prague, Czech Republic
| | - J Trka
- CLIP, Department of Paediatric Haematology/Oncology, Charles University Prague, 2nd Faculty of Medicine, Prague, Czech Republic
| | - P Ballerini
- Biological Hematology, AP-HP A. Trousseau, Pierre et Marie Curie University, Paris, France
| | - H Lapillonne
- Biological Hematology, AP-HP A. Trousseau, Pierre et Marie Curie University, Paris, France
| | - M De Braekeleer
- Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé, Laboratoire d'Histologie, Embryologie et Cytogénétique & INSERM-U1078, Brest, France
| | - G Cazzaniga
- Centro Ricerca Tettamanti, Clinica Pediatrica Univ. Milano Bicocca, Monza, Italy
| | - L Corral Abascal
- Centro Ricerca Tettamanti, Clinica Pediatrica Univ. Milano Bicocca, Monza, Italy
| | | | - E Delabesse
- CHU Purpan, Laboratoire d'Hématologie, Toulouse, France
| | - T S Park
- Department of Laboratory Medicine, School of Medicine, Kyung Hee University, Seoul, Korea
| | - S H Oh
- Department of Laboratory Medicine, Inje University College of Medicine, Busan, Korea
| | - M L M Silva
- Cytogenetics Department, Bone Marrow Transplantation Unit, National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - T Lund-Aho
- Laboratory of Clinical Genetics, Fimlab Laboratories, Tampere, Finland
| | - V Juvonen
- Department of Clinical Chemistry and TYKSLAB, University of Turku and Turku University Central Hospital, Turku, Finland
| | - A S Moore
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - O Heidenreich
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - J Vormoor
- The Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - E Zerkalenkova
- Dmitry Rogachev National Scientific and Practical Center of Pediatric Hematology, Oncology and Immunology, Moscow
| | - Y Olshanskaya
- Dmitry Rogachev National Scientific and Practical Center of Pediatric Hematology, Oncology and Immunology, Moscow
| | - C Bueno
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain.,CIBER de Cancer (CIBERONC), ISCIII, Madrid, Spain.,Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - P Menendez
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain.,CIBER de Cancer (CIBERONC), ISCIII, Madrid, Spain.,Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - A Teigler-Schlegel
- Department of Experimental Pathology and Cytology, Institute of Pathology, Giessen, Germany
| | - U Zur Stadt
- Center for Diagnostic, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - J Lentes
- Department of Human Genetics, Hannover Medical School, Hanover, Germany
| | - G Göhring
- Department of Human Genetics, Hannover Medical School, Hanover, Germany
| | - A Kustanovich
- Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Republic of Belarus
| | - O Aleinikova
- Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Republic of Belarus
| | - B W Schäfer
- Department of Oncology, University Children's Hospital Zurich, Zurich, Switzerland
| | - S Kubetzko
- Department of Oncology, University Children's Hospital Zurich, Zurich, Switzerland
| | - H O Madsen
- Department of Clinical Immunology, University Hospital Rigshospitalet, Copenhagen, Denmark
| | - B Gruhn
- Department of Pediatrics, Jena University Hospital, Jena, Germany
| | - X Duarte
- Department of Pediatrics, Portuguese Institute of Oncology of Lisbon, Lisbon, Portugal
| | - P Gameiro
- Hemato-Oncology Laboratory, UIPM, Portuguese Institute of Oncology of Lisbon, Lisbon, Portugal
| | - E Lippert
- Hématologie Biologique, CHU de Brest and INSERM U1078, Université de Bretagne Occidentale, Brest, France
| | - A Bidet
- Hématologie Biologique, CHU de Brest and INSERM U1078, Université de Bretagne Occidentale, Brest, France
| | - J M Cayuela
- Laboratoire d'hématologie, AP-HP Saint-Louis, Paris Diderot University, Paris, France
| | - E Clappier
- Laboratoire d'hématologie, AP-HP Saint-Louis, Paris Diderot University, Paris, France
| | - C N Alonso
- Hospital Nacional de Pediatría Prof Dr J. P. Garrahan, Servcio de Hemato-Oncología, Buenos Aires, Argentina
| | - C M Zwaan
- Department of Pediatric Oncology/Hematology, Erasmus MC, Sophia Children's Hospital, Rotterdam, The Netherlands
| | - M M van den Heuvel-Eibrink
- Department of Pediatric Oncology/Hematology, Erasmus MC, Sophia Children's Hospital, Rotterdam, The Netherlands
| | - S Izraeli
- The Chaim Sheba Medical Center, Department of Pediatric Hemato-Oncology and the Cancer Research Center, Tel Aviv, Israel.,Sackler Medical School Tel Aviv University, Tel Aviv, Israel
| | - L Trakhtenbrot
- The Chaim Sheba Medical Center, Department of Pediatric Hemato-Oncology and the Cancer Research Center, Tel Aviv, Israel.,Sackler Medical School Tel Aviv University, Tel Aviv, Israel
| | - P Archer
- Bristol Genetics Laboratory, Pathology Sciences, Southmead Hospital, North Bristol NHS Trust, Bristol, UK
| | - J Hancock
- Bristol Genetics Laboratory, Pathology Sciences, Southmead Hospital, North Bristol NHS Trust, Bristol, UK
| | - A Möricke
- Department of Pediatrics, University Medical Centre Schleswig-Holstein, Kiel, Germany
| | - J Alten
- Department of Pediatrics, University Medical Centre Schleswig-Holstein, Kiel, Germany
| | - M Schrappe
- Department of Pediatrics, University Medical Centre Schleswig-Holstein, Kiel, Germany
| | - M Stanulla
- Department of Pediatrics, MHH, Hanover, Germany
| | - S Strehl
- Children's Cancer Research Institute and St Anna Children's Hospital, Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - A Attarbaschi
- Children's Cancer Research Institute and St Anna Children's Hospital, Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - M Dworzak
- Children's Cancer Research Institute and St Anna Children's Hospital, Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - O A Haas
- Children's Cancer Research Institute and St Anna Children's Hospital, Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - R Panzer-Grümayer
- Children's Cancer Research Institute and St Anna Children's Hospital, Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - L Sedék
- Department of Microbiology and Immunology, Medical University of Silesia, Zabrze, Poland
| | - T Szczepański
- Department of Pediatric Hematology and Oncology, Medical University of Silesia, Zabrze, Poland
| | - A Caye
- Department of Genetics, AP-HP Robert Debré, Paris Diderot University, Paris, France
| | - L Suarez
- Department of Genetics, AP-HP Robert Debré, Paris Diderot University, Paris, France
| | - H Cavé
- Department of Genetics, AP-HP Robert Debré, Paris Diderot University, Paris, France
| | - R Marschalek
- Institute of Pharmaceutical Biology/Diagnostic Center of Acute Leukemia (DCAL), Goethe-University, Frankfurt/Main, Germany
| |
Collapse
|